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Lecture 9

We will prove Gauss’ lemma today.

0.33. Gauss’ lemma proof.

Let U ⇢ TpM and V 3 p be neighborhoods where the exponential map expp :
U ! V is di↵eomorphism. Consider the ball Br(0) such that Br(p) :=exppBr(0)
with its closure lies in V as in the picture above. Denote Sr(0) the border of the
ball Br(0) and Sr(p) :=expp(Sr(0)).

Here how the radial geodesics expp(tv) intersect the spheres expp(Sr(0)) (in a
picture below).

Proof. 1. Introduce polar coordinates (⇢,'1, ...,'m�1) on TpM , thus ⇢2 =
P

i x
2
i

and 'i are local coordinates on the unit sphere Sm�1 ⇢ TpM . Using expp, we can
view these as coordinates on (suitable open subsets of) expp(Br(0)) for r < ip(M).
We have a well-defined vector field @

@⇢ on expp(Br(0) \ {0})28.
2. In these coordinates we have g⇢⇢ = 1, g⇢'j = 0.
We will skip the proof here, the second equation follows from the fact that the

connection is torsion-free.
3. From the above we have that the radial geodesics expp(tv) are orthogonal to

the spheres expp(Sr(0)), for all 0 < r < ip(M).
Indeed, define Z := (expp)⇤

@
@⇢ . Then Z�v(t) = �0

v(t) (we use |Z| = 1).

28Note that its integral curves are exactly the unit speed radial geodesics.
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We want any vector tangent to Sr(p) at �v(t) be orthogonal to Z�v(t). Let X be
any vector field defined on S1(0). Extend this field to B1(0) \ {0} by Xt! = X!,
for ! 2 S1(0).

It su�ces to show that Y := (expp)⇤X and �0
v are orthogonal along �v.

Fix v and consider function f(t) = g(Y�v(t), Z�v(t)). We are going to prove that
f(t) = 0.

d

dt
f(t) = Zg(Y, Z) = g(rZY, Z) + g(Y,rZZ),

the second term is zero by definition since �v is geodesic.

g(rZY, Z) = g(rY Z,Z) + g([Z, Y ], Z)

the first term vanishes since 2g(rY Z,Z) = Y g(Z,Z) = 0.
Moreover, [Z, Y ] = [(expp)⇤@⇢, (expp)⇤X] = (expp)⇤[@⇢, X] = 0.
Thereofore, f(t) = c for some constant c.

Now we extend X and @⇢ along the arc {tv} continuously to 0, hence we can
extend Y, Z along �v to p. As we have seen in the proof of proposition 0.4 the map
(expp)⇤ : T0(TpM) = TpM ! TpM is the identity, so Yp = X0 and Zp = (@⇢)0.
Therefore, c = limt!0 g(Y, Z)�v(t) = g(Y, Z)p = g(X, @⇢)0 = 0.

4. Consider any curve �(t) be any curve with �(0) = p, �(1) = q. Suppose that
�(t) 2 expp(Br(0) {0}). The derivative in geodesic polar coordinates is

�̇ = ⇢̇
@

@⇢
+

X

j

'̇j
@

@'j

5. We have g(�̇, �̇) � |⇢̇|2 and equality holds i↵ 'j = const.
6. Then we have

L(�) =21
0 g(�̇, �̇)1/2dt �

Z 1

0
|⇢̇|dt �

Z 1

0
⇢̇dt = ⇢(1) = r

. ⇤
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Corollary 0.2. Let p, q 2 M . Suppose there exists a piecewise smooth curve � :
[0, 1] ! M of length d(p, q) from p to q. Then � is a reparametrization of a smooth

geodesic of length d(p, q).

Proof. Compactness of �([0, 1]) ⇢ M implies that the infimum of the set of all
injectivity radii i�(t)(M) is strictly positive. Choose number ✏ > 0 to be smaller
than this infimum.

Then for any two points on the curve, of distance less than ✏, the unique shortest
curve connecting these points is the geodesic given by the exponential map (Gauss’
lemma). In particular, � must coincide with that geodesic up to reparametrization.

⇤
Example: Let us describe geodesics in CPn. Consider vector field E =

Pn+1
j x2j�1@2j�

x2j@2j�1 on S2n+1.Consider Hz – the set of fields in TzS2n+1 which are orthogonal
to E(z). The map �z = d⇡z : Hz ! T⇡(z)CP

n29 is invertible so we an define the
Riemannian metric on CPn:

h(X,Y ) = gz(�
�1(X),��1(Y ))

This metric is known Fubini-Study metric.
If � is geodesic in this metric (�(0) = ⇡(z), �0(0) = X) then there is geodesic �̃ ⇢

S2n+1 with �̃ = Z = ��1(X). It has a form �̃(t) = zcos t+Z sin t. Moreover, �̃0(t) 2
H�̃(t). Then � = ⇡ · �̃. Therefore, all geodesics in (CPn, h) are the projections of
geodesics in (S2n+1, g) so that �̃0(t) 2 H�̃(t) for all t.

0.34. Hopf-Rinow. Since geodesics are so important, and their short time exis-
tence and uniquess are so useful, it is important to know when they can be extended
for all time.

Definition 0.33. (M, g) is (geodesically) complete if expp(X) is defined for all

X 2 TpM and for all p 2 M .

Equivalently, normalised geodesics �(p,X)(t) =expp(tX) are defined for all X 2
TpM with |X| = 1, for all t 2 R and for all p 2 M .

Examples:

1. We see that (R2, g0) is complete because straight lines �(t) = (x1+ty1, x2+
ty2) are defined for all t 2 R and any y1, y2 2 R. The same argument true
for Rn. And for torus Tn ⇢ R

n.
2. On Sn with the standard induced Riemannian metric g normalised geodesics

are great circles, they are parameterized by t and so are certainly defined
for all points and tangent vectors, hence (Sn, g) is complete.

3. If we remove a point from the sphere then the geodesics that passed through
that point are now no longer defined for all t 2 R. In fact, we see that if
we take any Riemannian manifold and remove a point then it cannot be
complete with the induced Riemannian metric.

Proposition 0.18. If p, q 2 (M, g), define d(p, q) ⌘ dist(p, q) = inf{L(�) : � is a

piecewise smooth curve from p to q}. Then (M,d) is a metric space.

For the proof we need to check that the metric ball is usual ball and back.

29
⇡ is the Hopf fibration.


