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Lecture 8

First we start with parallel transport in terms of Christo↵el symbols.
We will talk about geodesics today. In the course of curves and surfaces we have

seen that geodesics are curves in the surface giving locally the shortest path between
any two points, and they were defined by the condition that their acceleration field
was normal to the surface. Again, we do not have an ambient space to define the
condition to be a geodesic so we define things intrinsically. But they still will be
the shortest ones!

0.27. Parallel transport revisited. Let us recall that a section s is parallel along
a path � : [0, 1] ! M if r�0(t)(s) = 0 throughout [0, 1]. And it gives the isomor-
phism of E�(0) and E�(1) is called parallel transport along �.

Now we can state

Theorem 0.15. Let r be a metric connection on a manifold M . Let � : I ! M
be a smooth curve, X0 2 T�(t0)M where t0 2 I. Then there is a unique parallel

vector field X(t) 2 T�(t) along �, with the property X(t0) = X0. The linear map

T�(t0)M ! T�(t)M, X0 7! X(t)

is called parallel transport along �, with respect to the connection r.

We have already seen that the proof is due to solving of the first order linear
ODEs. Now we can just do it locally using Christo↵el symbols as well (for X =P

i bi@i, �
0 =

P
x0
i@i:

dbi
dt

+
X

jk

�i
jkx

0
jbk = 0

Moreover, an a�ne connection r on a pseudo-Riemannian manifold (M, g) is
a metric connection if and only if parallel transport along curves preserves inner
products.

0.28. Second fundamental form. Suppose N ⇢ M is a smoothly embedded
submanifold. We write rT and r? for the components of r in TN and µN , the
normal bundle of N in M (so that TM |N = TN � µN).

Definition 0.30. (Second fundamental form) For vectors X,Y 2 TpN define

the second fundamental form II(X,Y ) 2 µpN by locally extending X and Y to

vector fields on N , and using the formula

II(X,Y ) := r?
XY.

Lemma 0.3. The second fundamental form is well-defined, tensorial, and symmet-

ric in its two terms, what means it is a section II 2 �(S2(T ⇤N)⌦ µN).

Proof. Evidently II(X,Y ) is tensorial in X, so it su�ces to show that it is sym-
metric. By computation we have

r?
XY = rXY �rT

XY = rY X �rT
Y X = r?

Y X

where we use the fact that both r,rT are torsion-free.
⇤

Remark. If it is the second fundamental form, then what is the first one? The
“first fundamental form” on N is simply the restriction of the inner product on M
to TN . Therefore, it is synonymous with the induced Riemannian metric on N .



MATH0072: RIEMANNIAN GEOMETRY 41

0.29. Geodesics.

Definition 0.31. Let r be an a�ne connection on a manifold M . A smooth curve

� : I ! M is called a geodesic for the connection �, if and only if the velocity vector

field gamma0 is parallel along �.

Remark: If ' : Ĩ ! I is di↵eomorphism then �̃ = �('(t̃)) is geodesic if and
only if ' is linear on t̃.

Check it!

Why one come up with this particular definition? Let us compute d
dtg(�

0, �0). It
is equal to �0(g(�0, �0)) = 2g(r�0�0, �0), that is zero if we on the geodesics. Hence,
|�0| =

p
g(�0, �0) is constant along the curve. We call � normalized if |�0| = 1.

Theorem 0.16. In local coordinates, geodesics are the solutions of the second order

ordinary di↵erential equation,

d2xi

dt2
+

X

jk

�i
jkẋj ẋk = 0 (geodesic equation)

Proof. We can just use bi = ẋi and plug into the equation of parallel transport.
However, let us do the calculation explicitly:

In local chart (U,') we have ' · � = (x1, ..., xn), then �0 =
P

i x
0
i('⇤)�1(@i) =P

i x
0
iXi, where Xi are coordinate vector fields.

Hence,

r�0�0 =
X

i

r�0(x0
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�0(x0
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=
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1

AXk

⇤

Remark: Only �i
jk + �i

kj contributes to the geodesic equation. Therefore, if
one is interested in the geodesic flow of a metric connection r, one might as well
assume that r is the Levi-Civita connection.

Examples:

1. R
n. Geodesic equation gives x00

k = 0. The solution is straight lines xk(t) =
akt+ bk. And normalized means

P
i a

2
i = 1.

2. On the standard n-torus Tn ⇢ R2n we saw that �k
ij = 0 and geodesic

equations are ✓00i = 0. We deduce that ✓i = ait + bi, so the geodesics are
�(t) = (cos (a1t+ b1), ..., sin(ant+ bn)), i.e. the images of the straight lines
in Tn.

3. Another example just to confirm something that we have already been
aware of for the long time is the 2-dimensional sphere S2. Let us consider a
normalized geodesic in spherical variables �(t) = (sin ✓(t)cos'(t), sin ✓(t) sin'(t), cos ✓(t)).
Recall that �1

11 = �1
12 = 0,�1

22 = � sin ✓cos ✓,�2
11 = �2

22 = 0,�2
12 = cot ✓.

Therefore, for the geodesic equations we have ✓00 � sin ✓cos ✓('0)2 =
0,'00 + 2 cot ✓✓0'0 = 0.
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We can see that '0 = 0 and ✓00 = 0 gives a solution if ✓0 = 1, which
is �(t) = (sin(t + ✓0)cos'0, sin(t + ✓0) sin'0, cos (t + ✓0)). This is a great

circle as expected.

0.30. Exponential map. Consider local coordinates xi,
dxi
dt =: ⇠i on TM (recall

it is subspace of M ⇥R
n). Hence we can define the following vector field using the

geodesic equation:

S =
X

i

⇠i
@

@xi
�

X

ijk

�i
jk⇠j⇠k

@

@⇠i

This vector field S is called the geodesic spray of �, and the corresponding flow
is called the geodesic flow. If S is complete then M is called geodesically complete.

Definition 0.32. (Exponential map). The exponential map exp is a map from

a certain open domain U in TM (containing the zero section) to M , defined by

exp(v) = �v(1), where v 2 TpM , and � : [0, 1] ! M is the unique smooth geodesic

with �(0) = p and �0(0) = v (if it exists). The restriction of exp to its domain of

definition in TpM is denoted expp.

This definition is based on the following

Theorem 0.17. For any p 2 M, v 2 TpM there exists a unique maximal geodesic

�v : I ! M , where �v(0) = p, �0
v(0) = v.

Idea of proof is based on the fact that geodesics on M are the projections of the
geodesic spray S by the base point projection ⇡ : TM ! M , which is equivalent to
say �v(t) = ⇡('t(v)) ('t is geodesic flow).

What is exponential map geometrically? It moves points along geodesics starting

from the point p.
First consider our basic example with (Rn, g0) we have �p,X(t) = p + tX, so

expp(X) = p+X. It is a translation.
Another example is the sphere S2. Recently we found that geodesics are given

by �(t) = (sin(ct+ ✓0)cos'0, sin(ct+ ✓0) sin'0, cos (ct+ ✓0)). They all start from p
but �0(0) = cX, hence expp(2⇡X1) =expp(X1). It means that the exponential map
is not injective in that case.

The origin of the name ”exponential” comes from matrix groups (in particular
SO(n)). In this case exponential map expI : TISO(n) ! SO(n) is expI(A) =
exp(A). Since A is skew-symmetric, we have exp(A) 2 SO(n). Curves �v in that
case play the role of 1-parametric subgroups.

Remark: In the above example we have seen that the exponential map is not
necessarily di↵eomorphism. Even if it is defined on all of TpM , is typically not a
global di↵eomorphism, or even a covering map. But locally it is!

Lemma 0.4. For all p there is an open subset U ⇢ TpM containing the origin so

that the restriction expp : U ! M is a di↵eomorphism onto its image.
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Proof. Since expp is smooth. Indeed, exponential map is (as we know) restriction
of the map ⇡ · ' to the submanifold {1}⇥ TpM and hence smooth.

So it su�ces to show that dexpp : T0TpM ! TpM is nonsingular. But if we
identify T0TpM with TpM using its linear structure, the definition of exp implies
that d expp : TpM ! TpM is the identity map: T0expp(v) = d

dt |t=0expp(tv) =
d
dt |t=0�v(t) = v.

Hence, it is nonsingular. We need to use the Inverse function theorem to prove
the existence of such neighborhood. ⇤

Remember, one time I mentioned we have normal coordinates (local). Now we
have it as just a consequence of the above!

If one chooses a basis in TpM (ie identifying TpM and R
m), the exponential

map gives a system of local coordinates x1, ..., xm on a neighborhood of p. These
coordinates are called normal coordinates at p:

Theorem 0.18. In normal coordinates x1, ..., xm based at p 2 M , the geodesics

through p are given by straight lines, xi(t) = tai, ai 2 R. Moreover, all Christo↵el

symbols �i
jk vanish at 0.

0.31. Energy functional. We have stated that geodesic are indeed minimizing in
a classic sense. First one could ask what are we minimizing here. We will start
with some ”physics”.

Define the energy function E(v) = 1
2gp(v, v), in the other words E(�) = 1

2

R b
a |�̇|2dt27.

Let us work now with LC connection. Since parallel transport for a metric con-
nection preserves inner products, the geodesic flow preserves the energy: That is,
S(E) = 0. It follows that S is tangent to the level surfaces of the energy functional.

If we are looking for curve minimizing length (a posteriori energy) we can write
down the length functional :

L(�) =

Z b

a
|�̇|dt

And the minimizing the length functional is the the same as solving Euler-
Lagrange equations:

d

dt

@L

@x0
k

� @L

@xk

Question: How the energy and length are connected?
Let us apply the Cauchy-Schwartz inequality:

L(�)2 
Z b

a
12dt ·

Z b

a
|�̇|2dt = 2(b� a)E(�),

where the equality holds i↵ |�̇| is constant. Therefore,

Proposition 0.17. A curve � minimize E(�) if and only if it minimize L(�) and
|�̇| is constant.

Since any curve can be reparametrized to have constant |�̇|, to minimize L(�) is
equivalent to minimize E(�), whose integrand is much simpler.

27Sometimes this functional is called action.
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0.32. Gauss’ lemma. Gauss’ Lemma is the key to showing that geodesics are
locally unique distance minimizers. That is,

Lemma 0.5. (Gauss lemma) Let p 2 M and X 2 TpM such that expp(X)
defined. If Y 2 TX(TpM) (which is once again identified with another copy of R

n

at p – TpM) then

gexpp(X) (d(expp)X(X), d(expp)X(Y )) = gp(X,Y ).

The proof of lemma involves ”geodesic polar coordinates”. In these words, Gauss’
Lemma says that if we exponentiate (orthogonal) polar coordinates r, ✓i on TpM ,
then the image of the radial vector field dexpp(@r) (which is tangent to the geodesics
through p) is perpendicular to the level sets exp(r = constant).

Remark: For each p 2 M , the injectivity radius of (M, g) at p is injp(M, g) =
sup{r : expp is a di↵eomorphism on Br(0) ⇢ TpM}, and the injectivity radius of
(M, g) is inj(M, g) = inf{injp(M, g)|p 2 M}.

For example, inj(Sn, gSn) = ⇡.

Lemma 0.6. (Gauss’ lemma reformulated) For all 0 < r < ip(M), the radial

geodesics expp(tv) intersect the spheres expp(Sr(0)) orthogonally.
For any v 2 Sr(0), the point q =expp(v) has distance d(p, q) = r from p, and

the geodesic expp(tv) is the unique (up to reparametrization) curve of length d(p, q)
connecting p, q.

In particular, expp(Sr(0)) = Sr(p) for any 0 < r < ip(M).


