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Lecture 7

We will prove the existence of Levi-Civita connection and discuss parallel trans-
port once again.

0.25. Levi-Civita connection: proof. I will start with a remark about metric
connections.

Remark: One may ask how we can write rg if g is (2,0)-tensor and not a vector
field. Recall that we can extend connection to all tensor bundles. In particular,
connection r induced on T ⇤M is defined as follows (which I will also denote r
given by

r : �(TM)⇥ �(TM) ! �(T ⇤M), (X,↵) 7! rX(↵)

where (rX↵)(Y ) = X(↵(Y )) � ↵(rXY ). Hence, rX(↵(Y )) = (rX↵)(Y ) +
↵(rXY ). This generalizes the same way to any tensor bundle. Now, g is a
(2,0)-tensor. So if Y, Z are vector fields, g(Y, Z) is a smooth function and hence
rXg(Y, Z) = X(g(Y, Z))

On the other hand, by from the extension of connection to the tensor we have
rX(g(Y, Z)) = (rXg)(Y, Z) + g(rXY, Z) + g(Y,rXZ).25

Using these two equations, we see that (rg)(X,Y, Z) = rXg)(Y, Z) = X(g(Y, Z))�
g(rXY, Z)� g(Y,rXZ). So we see that r is compatible with the metric g if and
only if ((rg)(X,Y, Z) = 0 for all vector fields X,Y, Z.

Now we are ready to prove the existence and uniqueness of metric torsion-free
connection.

Proof. We will have some formula which defines r and it will show uniqueness,
and then we will show that the object given by this formula satisfy all properties
of connection.

1. By the metric property, we have

Xg(Y, Z) = g(rXY, Z) + g(Y,rXZ)

and similarly for the other two cyclic permutations of X,Y, Z.
Adding the first two permutations and subtracting the third, together with the

torsion-free property to eliminate expressions of the form rXY � rY X gives the
identity

2g(rXY, Z) = Xg(Y, Z)+Y g(X,Z)�Zg(X,Y )+g([X,Y ], Z)�g([X,Z], Y )�g([Y, Z], X)

This identity known as Koszul identity shows uniqueness. Any other map r0

satisfying (i)-(v) is also defined by the same formula so must equal r, if it is exist.
Conversely, defining r by this formula one can check that it satisfies the prop-

erties of a connection. ⇤

Examples:

1. On R
n , [@i, @j ] = 0 and go(@i, @j) = �ij are constant functions, so by the

metric properties of Levi-Civita connection g0(r@i@j , @k) = 0 and hence
r@i@j = 0.

25To be precise we shall write rX(g(Y, Z)) = (r(TM⌦TM)⇤
X g)(Y, Z) + g(rTM

X Y, Z) +

g(Y,rTM
X Z)
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2. On Euclidean En with global coordinates xi the vector fields @i are parallel
in the Levi-Civita connection. If Y is a vector field, Xp is a vector at p
and � : [0, 1] ! En is a smooth path with �(0) = p and �0(0) = Xp then
(@XY )(p) = d

dt |t=0Y (�(t)).
3. On Tn ⇢ R

2n we have thatXi = � sin ✓i@2i�1+cos ✓i@2i satisfy g(Xi, Xj) =
�ij constant and [Xi, Xj ] = 0, so rXiXj = 0.

4. Let us define for a smooth submanifold S the ”tangential part” of the
ambient connection on E

n. There is a natural orthogonal projection map
⇡ : TpE

n ! TpS. We can then define a connection rT := ⇡ ·r on TS. For
X,Y, Z 2 X (S) we have

Xg(Y, Z) = g(rXY, Z) + g(Y,rXZ) = g(rT
XY, Z) + g(Y,rT

XZ)

.
Moreover, rT is a metric connection. Similarly, since [X,Y ] is in X (S)

whenever X and Y are, the perpendicular components of rXY and of
rY X are equal, so rT is torsion-free. Therefore, rT is the Levi-Civita
connection on S.

By the Nash theorem Levi-Civita connection on any manifold can be
thought as above.

5. On S2 we let f(✓,') = (sin ✓cos', sin ✓ sin', cos ✓) and let X1 = f⇤@✓ and
X2 = f⇤@' be the coordinate vector fields on S2. Then [X1, X2] = 0. We
also have g(X1, X1) = 1, g(X1, X2) = 0 and g(X2, X2) = sin2 ✓.

By Koszul identity we have g(rX1X1, X1) = 1
2X1(g(X1, X1)) = 0.

And g((rX1X1, X2) = 1
2 (2X1g(X1, X2)�X2g(X1, X1)) = 0. Therefore,

rX1X1 = 0.
Moreover,

g(rX2X2, X1) =
1

2
(2X2(g(X1, X1))�X1g(X2, X2)) = �1

2

@

@✓
sin2 ✓ = � sin ✓cos ✓

and

g(rX2X2, X2) =
1

2
(X2g(X2, X2)) =

1

2

@

@'
sin2 ✓ = 0

The last is computation of rX1X2 and rX2X1:

g(rX1X2, X1) = 0, g(rX1X2, X2) =
1

2
(X1g(X2, X2) +X2g(X2, X1)�X2g(X1, X2)) = sin ✓cos ✓

Therefore, rX1X2 = rX2X1 = cot ✓X2

Remark: Let us talk about Levi-Civita connection in terms of dynamics (ex-
ample 4 above). We may assume the Riemannian manifold is an embedded sub-
manifold of Euclidean space: its metric at any point is just the restriction of the
Euclidean inner product to the tangent plane. Imagine we live on this submanifold
(just like we live on a sphere called Earth) and we want to calculate things, such
as our acceleration as we run around our planet.

Remember, the metric gives us a means of measuring distances and angles, but
no direct way of computing rates-of-change of vector fields. A connection is what
determines the rates-of-change of vector fields (such as acceleration, which is the
rate-of-change of velocity vectors). And connections are just ”infinitesimal limits”
of parallel transport. The case of a smooth submanifold is instructive. We can
imagine defining parallel transport along a path � in S by “rolling” the tangent
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plane to S along �, infinitesimally projecting it to TS as we go. Since the projection
is orthogonal, the plane does not “twist” in the direction of TS as it is rolled; this
is the geometric meaning of the fact that this connection is torsion-free. In the
language of flight dynamics, there is pitch where the submanifold S is not flat and
roll where the curve � is not “straight”, but no yaw.

0.26. Christo↵el symbols. How to compute connections in local coordinates?
The answer is given by Christo↵el symbols.

Definition 0.29. With respect to local coordinates xi, the Christo↵el symbols of a

connection r on TM are the functions �k
ij defined by the formula

ri@j =
X

k

�k
ij@k

Remark: The Christo↵el symbols depend on the choice of coordinates!26

1. On R
n we have r@i@j = 0 so �k

ij = 0. Similarly on Tn.
2. For S2 we see that rX1X1 = 0 so

�1
11 = �2

11 = 0.

Also we have rX2X2 = � sin ✓cos ✓X1, so

�1
22 = � sin ✓cos ✓,�2

22 = 0.

Also, rX1X2 = rX2X1 = cot ✓X2 so

�1
12 = �1

21 = 0, �2
12 = �2

21 = cot ✓.

Now we are ready to compute the Levi-Civita connection r locally when using
the coordinate vector fields.

Let us take a look on Koszul formula from the the proof of theorem 0.13.

2g(rXY, Z) = Xg(Y, Z)+Y g(X,Z)�Zg(X,Y )+g([X,Y ], Z)�g([X,Z], Y )�g([Y, Z], X)

Taking X = @x, Y = @y, Z = @z to be coordinate vector fields in the formula
above, we obtain a formula for the Christo↵el symbols �i

jk of the Levi-Civita con-
nection:

2
X

i

�i
jkgil =

@gkl
@xj

+
@gjl
@xk

� @gjk
@xl

26This is why a lot of people try not to use them. Historically, they have been used much since
it is possible to compute a lot of things locally.
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Theorem 0.14. In local coordinates, the Christo↵el symbols for the Levi-Civita

connection are given by

�i
jk =

1

2

X

i

(g�1)il

✓
@gkl
@xj

+
@gjl
@xk

� @gjk
@xl

◆
,

where (g�1)il denote the inverse matrix to gij.

Remark: Of course it is possible to start with this formula to define LC-
connection, and then check that the local definitions patch together.

Remark: Since the Christo↵el symbols are symmetric in j, k, it is immediate
from this formula that r is torsion-free. Indeed, rXjXk�rXkXj = [Xj , Xk] which
is equivalent to

P
i(�

i
jk � �i

kj)Xi = 0.


