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LECTURE 7

We will prove the existence of Levi-Civita connection and discuss parallel trans-
port once again.

0.25. Levi-Civita connection: proof. I will start with a remark about metric
connections.

Remark: One may ask how we can write Vg if g is (2,0)-tensor and not a vector
field. Recall that we can extend connection to all tensor bundles. In particular,
connection V induced on T*M is defined as follows (which I will also denote V
given by

V:T(TM)xI(TM) = T(T*M),(X,a) = Vx(a)

where (Vxa)(Y) = X(a(Y)) — a(VxY). Hence, Vx(a(Y)) = (Vxa)(Y) +
a(VxY). This generalizes the same way to any tensor bundle. Now, g is a
(2,0)-tensor. So if Y, Z are vector fields, g(Y,Z) is a smooth function and hence
Vxg(Y, Z) = X(g(Y, 2))

On the other hand, by from the extension of connection to the tensor we have
Vx(9(Y,2)) = (Vxg)(Y,Z) + 9(VxY, Z) + g(Y,Vx Z).%°

Using these two equations, we see that (Vg)(X,Y,Z) = Vxg)(Y,Z) = X (9(Y, Z))—
9(VxY,Z) — g(Y,VxZ). So we see that V is compatible with the metric g if and
only if ((Vg)(X,Y, Z) = 0 for all vector fields X,Y, Z.

Now we are ready to prove the existence and uniqueness of metric torsion-free
connection.

Proof. We will have some formula which defines V and it will show uniqueness,
and then we will show that the object given by this formula satisfy all properties
of connection.

1. By the metric property, we have

Xg(Y,Z2) = g(VxY,Z) + g(Y,Vx Z)

and similarly for the other two cyclic permutations of X, Y, Z.

Adding the first two permutations and subtracting the third, together with the
torsion-free property to eliminate expressions of the form VxY — Vy X gives the
identity

29(VxY, Z2) = Xg(Y, 2)+Yg(X, 2)=Zg(X,Y)+9([X, Y], Z)—g([X, Z],Y)—¢([Y, Z], X)

This identity known as Koszul identity shows uniqueness. Any other map V'
satisfying (i)-(v) is also defined by the same formula so must equal V, if it is exist.
Conversely, defining V by this formula one can check that it satisfies the prop-
erties of a connection. a

Examples:

1. On R™ , [0;,0;] = 0 and ¢,(0;,90;) = d;; are constant functions, so by the
metric properties of Levi-Civita connection go(V9;0;,0,) = 0 and hence

Va,0; = 0.

25T be precise we shall write Vx (g(Y, Z)) = (VgM@’TM)*g)(Y, Z) + g(VEMY, Z) +
g(Y, VM Z)
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2. On Euclidean E™ with global coordinates x; the vector fields d; are parallel
in the Levi-Civita connection. If Y is a vector field, X, is a vector at p
and v : [0,1] — E™ is a smooth path with (0) = p and 7/(0) = X, then
(OxY)(p) = %\t:oy(’Y(t))'

3. OnT™ C R?" we have that X; = — sin 6;0o;_1+cos 0;0s; satisfy g(X;, X;) =
d;; constant and [X;, X;] =0, so Vx, X, =0.

4. Let us define for a smooth submanifold S the ”tangential part” of the
ambient connection on E™. There is a natural orthogonal projection map
7 : T,E™ — T,S. We can then define a connection VT := -V on T'S. For
X,Y,Z € X(S) we have

Xg(Y,2) = g(VxY,2) + g(Y,VxZ) = g(VLY, Z) + g(Y,V% Z)

Moreover, V7 is a metric connection. Similarly, since [X, Y] is in X'(.9)
whenever X and Y are, the perpendicular components of VxY and of
Vy X are equal, so V7 is torsion-free. Therefore, V7 is the Levi-Civita
connection on S.

By the Nash theorem Levi-Civita connection on any manifold can be
thought as above.

5. On 5% we let f(0, ) = (sinfcos ¢,sinfsin ¢, cos §) and let X; = f.0p and
X5 = f,0, be the coordinate vector fields on S?. Then [X7, X2] = 0. We
also have g(X1,X1) = 1,9(X1, Xo) = 0 and g(X», X5) = sin?4.

By Koszul identity we have ¢(Vx, X1,X1) = 3X1(9(X1,X1)) = 0.
And g((Vx, X1, X5) = %(QXlg(Xl,Xg) — X59(X1,X1)) = 0. Therefore,

Vx, X1 =0.
Moreover,
1 10 ., .
g(VX2X27X1) = 5 (2X2(9(X17X1)) — Xlg(XQ,XQ)) = —5% sin“ § = —sinfcos 6
and

1 10 .
9(Vx, X2, X5) = §(X29(X2, Xs)) = 200 sin?§ = 0

The last is computation of Vx, X5 and Vx, X;:
1 .
9(Vx, X2, X1) =0, g(Vx, X, Xo) = 3 (X19(X2, X2) + Xag(X2, X1) — X2g(X1, X2)) = sinfcos

Therefore7 le Xg = szXl = cot 0X2

Remark: Let us talk about Levi-Civita connection in terms of dynamics (ex-
ample 4 above). We may assume the Riemannian manifold is an embedded sub-
manifold of Euclidean space: its metric at any point is just the restriction of the
Euclidean inner product to the tangent plane. Imagine we live on this submanifold
(just like we live on a sphere called Earth) and we want to calculate things, such
as our acceleration as we run around our planet.

Remember, the metric gives us a means of measuring distances and angles, but
no direct way of computing rates-of-change of vector fields. A connection is what
determines the rates-of-change of vector fields (such as acceleration, which is the
rate-of-change of velocity vectors). And connections are just ”infinitesimal limits”
of parallel transport. The case of a smooth submanifold is instructive. We can
imagine defining parallel transport along a path v in S by “rolling” the tangent
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plane to S along ~, infinitesimally projecting it to 7'S as we go. Since the projection
is orthogonal, the plane does not “twist” in the direction of T'S as it is rolled; this
is the geometric meaning of the fact that this connection is torsion-free. In the
language of flight dynamics, there is pitch where the submanifold S is not flat and
roll where the curve « is not “straight”, but no yaw.

Center of
Gravity A Y I

Pitch Axis

Roll Axis

Yaw Axis
+Roll

0.26. Christoffel symbols. How to compute connections in local coordinates?
The answer is given by Christoffel symbols.

Definition 0.29. With respect to local coordinates x;, the Christoffel symbols of a
connection V on T'M are the functions Ff defined by the formula

V,0; = Z IF0k
Remark: The Christoffel symbols depend on the choice of coordinates!?®

1. On R™ we have Vy,0; = 0 so I'}; = 0. Similarly on 7.
2. For 5% we see that Vx, X1 = 0 so

L, =r2 =o.
Also we have Vx,Xs = —sinfcos X1, so
Iy, = —sinfcosh, T3, = 0.

Also, Vx, X9 =Vx,X; = cot X3 so
I, =T3 =0, T} =TI% =cot.

Now we are ready to compute the Levi-Civita connection V locally when using
the coordinate vector fields.
Let us take a look on Koszul formula from the the proof of theorem 0.13.

QQ(Vva Z) = Xg(Y7 Z)+Y9(X? Z)_ZQ(X7 Y)"’g([Xv Y],Z)—g([X, Z],Y)—g([Y, Z]>X)

Taking X = 0,,Y = 0,,Z = 0, to be coordinate vector fields in the formula
above, we obtain a formula for the Christoffel symbols F;k of the Levi-Civita con-
nection:

gkl g1 9gjk
2 I i =
Z jk9il = + oz, o,

26T his is why a lot of people try not to use them. Historically, they have been used much since
it is possible to compute a lot of things locally.
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Theorem 0.14. In local coordinates, the Christoffel symbols for the Levi-Civita
connection are given by

; 1 Ogr1 | 9951 Ogjk

i -1y, Jb J

L) zZ:(g i (815 + Ox, Oz )’
where (g71)y denote the inverse matriz to g;;.

Remark: Of course it is possible to start with this formula to define LC-
connection, and then check that the local definitions patch together.

Remark: Since the Christoffel symbols are symmetric in j, k, it is immediate
from this formula that V is torsion-free. Indeed, Vx, Xr—Vx, X; = [X};, X;] which
is equivalent to y°, ("%, —T'};)X; = 0.



