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Lecture 5

We will continue the Lie derivative, di↵erential forms, and Cartan formula.

0.16. Lie derivative (continuation).

Definition 0.16. Any complete vector field X 2 X (M) with flow 't gives rise to

a family of maps '
⇤
t : X (M) ! X (M). One defines the Lie derivative LX of a

vector field Y 2 X (M) by

LX(Y ) =
d

dt
|t=0'

⇤
tY 2 X (M)

.

Remark. The definition of Lie derivative also works for incomplete vector
fields, since the definition only involves derivatives at t = 0.

Remark. The Lie derivative of vector field is also a vector field.
Question: What is the geometric meaning of the Lie derivative? Let X,Y 2

�(TM), p 2 M and consider the flow '
X
t of X near p so that we can look at how Y

“changes” along the flow of X. First we can look at Y at time t along the integral
curve �p, which is the tangent vector Y '

X
t (p) 2 Y'X

t (p)M (because '
X
t (p) = �p(t).

Second, 'x
�1('

X
t (p)) = p)so

d('X
�t)'X

t (p) : T'X
t (p)M ! TpM

Analogously we can map back to TpM the tangent vector Y ('X
t (p) via ('X

�t)⇤. And
now we can compare this translated vector with Y (p).

This gives Lx(Y )(p) = limt!0
('X

�t)⇤(Y ('X
t (p))�Y (p)

t , which exactly the same Lie
derivative as defined above.

Example. Let Y =
P

j bj@j be a vector field on R
n. We know that flows are

given by '
@i
t = p+ tei. Therefore, ('

@i
�t)⇤ = id

17

Then we have by definition

L@iY (p) = lim
t!0

'
X
�t(Y ('X

t (p))� Y (p)

t
= lim

t!0

P
j bj(p+ tei)('

@i
�t)⇤@j � bj(p)@j

t

=
X

j

lim
t!0

bj(p+ tei)� bj(p)

t
@j =

X

j

@bj

@j
(p)@j

In particular, L@i@j = 0.
And if X = x1@2 � x2@1, then L@1X = @2, L@2X = �@1, L@3X = 0.

Proposition 0.14. The Lie derivative LXY = [X,Y ]. Moreover, [Lx, LY ] =
L[X,Y ]

Proof. Let 't be the flow of X. For any f 2 C
1(M) we calculate,

(LXY )(f) =
d

dt
|t=0 ('

⇤
tY ) (f) =

d

dt
|t=0'

⇤
t

�
Y
�
'
⇤
�t(f)

��
=

d

dt
|t=0'

⇤
t (Y (f))�Y ('⇤

t (f)) = X(Y (f))�Y (X(f)) = [X,Y ](f).

The identity [LX , LY ] = L[X,Y ] just rephrases the Jacobi identity for the Lie
bracket. ⇤

17Here we immediately identify tangent spaces Tp+teiR
n and TpR

n.
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0.17. Di↵erential forms. Recall that on R
n we have 1-forms dx1, ..., dxn so every

1-form can be written as a combination of these 1-forms
Pn

i=1 aidxi for functions
ai. These 1-forms are linear maps defined by their action on tangent vectors:

dxi(@j) = �ij

Remark. The cotangent bundle T ⇤
M is defined to be the dual bundle to TM ;

i.e. the bundle whose fiber at each point is the dual to the corresponding fiber of
TM . Sections of T ⇤

M are 1-forms (covectors).

Remark. Recall the following construction: let V be a (real) vector space, and
let V

⇤ denote its dual. Then (V ⇤)⌦n = (V ⌦n)⇤. For ui 2 V
⇤ and vi 22 V the

pairing is given by

u1 ⌦ ...⌦ un(v1 ⌦ ...⌦ vn) = u1(v1) · · · un(vn)

We denote by T (V ) the graded algebra T (V ) :=
L1

n=0(V
⌦n) and call it the tensor

algebra of V . Let I(V ) ⇢ T (V ) be the 2-sided ideal generated by elements of the
form v ⌦ v for v 2 V . This is a graded ideal and the quotient inherits a grading.

The quotient T (V )/I(V ) is denoted Lambda(V ), it is a graded algebra which is
called exterior algebra of V . The part of ⇤(V ) in dimension j is denoted ⇤j(V ).
If V is finite dimensional, and has a basis v1, ..., vn then a basis for ⇤j(V ) is given
by the image of j-fold “ordered” products vi1 ⌦ ... ⌦ vij with ik < il for k < l. In
particular, the dimension of Lambda

j(V ) is n!/j!(n� j)!, and the total dimension
of ⇤(V ) is 2n.

We define ⌦m to be the space of smooth sections of the bundle ⇤m
T

⇤
M , whose

fiber at each point p is equal to ⇤m
T

⇤
pM . An element of ⌦m is called a (smooth)

m-form.
We also define ⌦0 = C

1(M), the space of smooth functions on M
18. An m-form

can be expressed in local coordinates as a sum

! =
X

J

aJdxJ ,

where J denotes a multi-index of length m, so that dxJ stands for an expression of
the form dxJ := dxj1 ^ ... ^ dxjm for some j1 < j2 < ... < jm.

In the language of vector bundles the above means that k-forms are secrions of
vector bundle ⇤k

T
⇤
M = [p2M⇤k

T
⇤
pM .

Example: Consider the form ! = x1dx2�x2dx1

x2
1+x2

2
on R

1 {0}, then we can evaluate

this form ! on the vector field x1@2 � x2@1. It gives

!(x1@2 � x2@1) =
x
2
1 + x

2
2

x2
1 + x2

2

= 1

Definition 0.17. . There is a linear operator d : ⌦m ! ⌦m+1
defined in local

coordinates by

d(aJdxJ) =
X

i

(@iaJ)dxi ^ dxJ

Exterior derivative satisfies a Leibniz rule

d(↵ ^ �) = d↵ ^ � + (�1)deg(↵)↵ ^ d�

18Via “identity” ⇤0
V = R for a real vector space V .
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Remark. We have seen that for function we have df =
P

@if
@i

dxi.

Remark. Exterior derivative satisfies d(d!) = 0.19.
Remark. If TM is trivial we have n linearly independent vector fields

X1, ..., Xn, so we can define !i(Xj) = �ij . Therefore, by the Proposition 0.7 T
⇤
M

is also trivial.
Question: We see that we can relate vector fields and 1-forms when TM is

trivial, but what about in general? Well, if there is a Riemannian metric, then we
can. This is the natural duality between a inner product space and its dual.

Definition 0.18. Let f : M ! N be a smooth map. If ! 2 �(⇤k
T

⇤
N) we can

define the pullback f
⇤
! 2 �(⇤k

T
⇤
M) by

(f⇤
!)(p)(X1, ..., Xk) = !(f(p))(dfp(X1), ..., dfp(Xk))

for all p 2 M and X 2 T
p
M .

Remark. Notice that (f · g)⇤ = f
⇤ · f⇤.

Example: For the 1-form above field X = x1@2 � x2@1, and a map f : R ! R
2

given by polar coordinates. Then f⇤(@✓) = � sin ✓@1 + cos ✓@2 is the field on S
1.

Hence, f⇤
!(@✓) = !(f⇤@✓) = !(X) = 1.

Since all computations local we can define exterior derivative locally for pullback
to R

n and then pullback it back..

0.18. Cartan’s formula. Now we can define Lie derivative for forms also!

Definition 0.19. Given X 2 �(TM) and ! 2 �(⇤k
T

⇤
M), the Lie derivative of !

with respect to X:

LX(!)(p) = lim
t!0

('X
t )⇤(!('X

t (p))� !(p)

t

It is also a form of the same degree. In particular, for function the Lie derivative
is X(f), a directional derivative of function.

Definition 0.20. We define the interior product of X with k-form ! , to be the

(k � 1)-form defined by

ix!(Y1, ..Yk�1) = !(X,Y1, ..., Yk�1

Interior product satisfies iX iY ! = �iX iY ! and the Leibniz rule

iX(↵ ^ �) = (iX↵) ^ � + (�1)p↵ ^ (iX�)

whenever ↵ 2 ⌦p.

Theorem 0.6. Let X be a vector field and ! a k-form on M . Then Cartan’s

formula holds

LX! = d(iX!) + iX(d!).

The proof itself isn’t worth much interest, since it is purely calculation.

We can easily apply it for functions, indeed, since iXf = 0 for a function f we
have LXf = iXdf = df(X) = X(f).

19It follows that d makes ⌦⇤ into a chain complex of real vector spaces, whose homology is
the de Rham cohomology of M, and is denoted H

⇤
dR(M). Explicitly, an m-form ! is said to

be closed if d! = 0, and to be exact if there is some m� 1-form ↵ with d↵ = !. Then H
m(M) is

defined to be the quotient of the vector space of closed m-forms by the vector subspace of exact
m-forms.


