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LECTURE 5
We will continue the Lie derivative, differential forms, and Cartan formula.
0.16. Lie derivative (continuation).

Definition 0.16. Any complete vector field X € X (M) with flow ¢; gives rise to
a family of maps ¢y : X(M) — X(M). One defines the Lie derivative Lx of a
vector field Y € X(M) by

d
Lx(Y) = 2 lemoprY € X(M)

Remark. The definition of Lie derivative also works for incomplete vector
fields, since the definition only involves derivatives at ¢ = 0.

Remark. The Lie derivative of vector field is also a vector field.

Question: What is the geometric meaning of the Lie derivative? Let X,Y €
T'(TM),p € M and consider the flow gpf( of X near p so that we can look at how Y
“changes” along the flow of X. First we can look at Y at time ¢ along the integral
curve v,, which is the tangent vector Yi¥ (p) € Y, x M (because o (p) = Yp(t).

Second, % 1 (7" (p)) = p)so
A2 Tox M = T,M
Analogously we can map back to T, M the tangent vector Y (¢3X (p) via (9%;).. And
now we can compare this translated vector with Y'(p).
X X

This giVeS L£(y)(p) _ limtﬂo (V’—t)*(y(ﬁatt (p)=Y(p)
derivative as defined above.

Example. Let Y =} .b;0; be a vector field on R". We know that flows are
given by ap?i = p + te;. Therefore, ((p‘zit)* =id!7

Then we have by definition

, which exactly the same Lie

X X _
Lo.Y (p) = lim 02, (Y (i (p)) — Y (p) — lim
K t—0 t t—0 t
7 . bilpt+te) —bi(p) , _ —0bj 4
=2 }g% e 0; = Z E(p)aj
J J

In particular, Ly,0; = 0.
And if X = 1’102 — ng)l, then LalX = 82,L32X = —81,L33X =0.

Proposition 0.14. The Lie derivative LxY = [X,Y]. Moreover, [Ly,Ly| =
Lixy)

Proof. Let ¢; be the flow of X. For any f € C°°(M) we calculate,

(EXY)() = lomo (@) (1) = Ehimagi (V (02(0)) = lemoiei (V=Y (1) = X(V(H) -V (X() =

The identity [Lx,Ly] = Lx,y] just rephrases the Jacobi identity for the Lie
bracket. a

17Here we immediately identify tangent spaces Tptte; R™ and TpR™.
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0.17. Differential forms. Recall that on R we have 1-forms dz, ..., dz, so every
1-form can be written as a combination of these 1-forms 22;1 a;dx; for functions

a;. These 1-forms are linear maps defined by their action on tangent vectors:
dl‘z(aj) = (51‘]'
Remark. The cotangent bundle T*M is defined to be the dual bundle to T'M;

i.e. the bundle whose fiber at each point is the dual to the corresponding fiber of
TM. Sections of T*M are 1-forms (covectors).

Remark. Recall the following construction: let V be a (real) vector space, and
let V* denote its dual. Then (V*)®" = (V®)* For u; € V* and v; €€ V the
pairing is given by

U ®...® u"(vl ®...R® Un) = ul(vl) s Un(vn)
We denote by T'(V') the graded algebra T'(V) := @, ,(V®") and call it the tensor

algebra of V. Let I(V) C T(V) be the 2-sided ideal generated by elements of the
form v ® v for v € V. This is a graded ideal and the quotient inherits a grading.

The quotient T'(V)/I(V) is denoted Lambda(V'), it is a graded algebra which is
called exterior algebra of V. The part of A(V') in dimension j is denoted A;(V).
If V is finite dimensional, and has a basis vy, ..., v, then a basis for A7(V) is given
by the image of j-fold “ordered” products v;, ® ... ® v;; with i, <i; for k <. In
particular, the dimension of Lambda’ (V) is n!/j!(n — j)!, and the total dimension
of A(V) is 2™.

We define Q™ to be the space of smooth sections of the bundle A™T* M, whose
fiber at each point p is equal to A™T;M. An element of Q2™ is called a (smooth)
m-form.

We also define Q° = C°°(M), the space of smooth functions on M!8. An m-form
can be expressed in local coordinates as a sum

w= E aydry,
J

where J denotes a multi-index of length m, so that dz ; stands for an expression of
the form dxy :=dx;, A ... Adxj,, for some ji1 < jo < ... < jim.

In the language of vector bundles the above means that k-forms are secrions of
vector bundle A*T*M = Uy AFT M.

Example: Consider the form w = % on R! {0}, then we can evaluate
this form w on the vector field x102 — x20;. It gives
z% + x%

L2 q
2 2
Ty + x5

w(x182 — $281) =

Definition 0.17. . There is a linear operator d : Q™ — Q™! defined in local
coordinates by

d(CLJd.I‘J) = Z(alaJ)drl A d.’EJ
Exterior derivative satisfies a Leibniz rule

daAB) =daA B+ (—1)*9Da Adp

18via “identity” A9V =R for a real vector space V.
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Remark. We have seen that for function we have df = > 4,5 dz;.
9;

Remark. Exterior derivative satisfies d(dw) = 0.19.

Remark. If TM is trivial we have n linearly independent vector fields
X1, ..., Xn, so we can define w;(X;) = ;5. Therefore, by the Proposition 0.7 T M
is also trivial.

Question: We see that we can relate vector fields and 1-forms when TM is
trivial, but what about in general? Well, if there is a Riemannian metric, then we
can. This is the natural duality between a inner product space and its dual.

Definition 0.18. Let f : M — N be a smooth map. If w € T(AFT*N) we can
define the pullback f*w € T(AFT*M) by

(Frw)(p) (X1, oy Xi) = w(f () (dfp(X1), ... dfp(Xi))
forallpe M and X € TPM.

Remark. Notice that (f-g)* = f*- f*.

Example: For the 1-form above field X = 2105 — 2201, and a map f : R — R?
given by polar coordinates. Then f,(0p) = —sin09; + cos 00 is the field on S*.
Hence, f*w(8p) = w(f00) = w(X) = 1.

Since all computations local we can define exterior derivative locally for pullback
to R™ and then pullback it back..

0.18. Cartan’s formula. Now we can define Lie derivative for forms also!

Definition 0.19. Given X € T(TM) and w € T(A*T*M), the Lie derivative of w
with respect to X :

Ly (@)(p) = Jim :

It is also a form of the same degree. In particular, for function the Lie derivative
is X(f), a directional derivative of function.

Definition 0.20. We define the interior product of X with k-form w , to be the
(k — 1)-form defined by
tow(Y1, . Y1) = w(X, Y1, ..., Vi1
Interior product satisfies i yiyw = —ixiyw and the Leibniz rule
iX(aNp)=(ixa) N+ (=1)PaA (ixp)
whenever a € P.
Theorem 0.6. Let X be a vector field and w a k-form on M. Then Cartan’s

formula holds
Lxw= d(in) + ix(dw).

The proof itself isn’t worth much interest, since it is purely calculation.

We can easily apply it for functions, indeed, since ix f = 0 for a function f we
have Lx f = ixdf = df(X) = X(f).

19T follows that d makes Q* into a chain complex of real vector spaces, whose homology is
the de Rham cohomology of M, and is denoted H},(M). Explicitly, an m-form w is said to
be closed if dw = 0, and to be exact if there is some m — 1-form o with dov = w. Then H™ (M) is
defined to be the quotient of the vector space of closed m-forms by the vector subspace of exact
m-forms.



