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Lecture 4

In this lecture we will continue discussion of vector bundles, and then discuss
the Lie bracket, di↵erential forms and Cartan’s formula.

0.11. Vector bundles. Here we will introduce the notion of a vector bundle in a
general setting. It will generalize the one which we just had above for the tangent
bundle.

Definition 0.9. A vector bundle of rank k over a manifold M is a manifold E,

together with a smooth map ⇡ : E ! M , and a structure of a vector space on each

fiber Ep := ⇡
�1(p), satisfying the following local triviality condition: Each

point in M admits an open neighborhood U , and a smooth map  : ⇡�1(U) !
U ⇥ R

k
, such that  restricts to linear isomorphisms Ep ! R

k
for all p 2 U .

The map  : EU ⌘ ⇡
�1(U) ! U ⇥ R

k is called a (local) trivialization of E
over U . In general, there need not be a trivialization over U = M .

Definition 0.10. A vector bundle chart for a vector bundle ⇡ : E ! M is a

chart (U,') for M , together with a chart (⇡�1(U), '̂) for EU = ⇡
�1(U),such that

'̂ : ⇡�1(U) ! R
m ⇥ R

k
restricts to linear isomorphisms from each fiber Ep onto

'(p)⇥ R
k
.

Remark. Every vector bundle chart defines a local trivialization. Conversely,
if  : E|U ! U ⇥ R

k is a trivialization of EU , where U is the domain of a chart
(U,'), one obtains a vector bundle chart (⇡�1(U), '̄) for E.

Example (Vector bundles over the Grassmannnian). Recall that Grass-
manian Gr(k, n) is the set of k-dimensional linear subspaces in R

n11 Then Gr(1, n)
is projective space RP

n�1. For any p 2 Gr(k, n), let Ep ⇢ R
n be the k-plane it

represents. Then E = [p2Gr(k,n)Ep is a vector bundle over Gr(k, n), called the
tautological vector bundle.

Recall the definition of charts 'I : UI ! L(RI
, R

I0
) for the Grassmannian,

where any p = {E} = UI is identified with the linear map A having E as its
graph. Let '̂I : ⇡�1(UI) ! L(RI

,R
I0
) ⇥ R

I be the map '̂I(v) = ('(⇡(v)),⇡I(v))
where ⇡I : Rn ! R

I is orthogonal projection. The '̂ serve as bundle charts for the
tautological vector bundle.

There is another natural vector bundle E
0 over Gr(k, n), with fiber E

0
p := E

?
p

the orthogonal complement of Ep.
In the case of RPn�1

E is called the tautological line bundle, and E
0 the hyper-

plane bundle.
At this stage, we are mainly interested in tangent bundles of manifolds.

Theorem 0.3. For any manifold M , the disjoint union TM = [p2MTpM carries

the structure of a vector bundle over M , where ⇡ takes v 2 TpM to the base point

p.

11Grassmanian is a manifold. A C
1-atlas may be constructed as follows. For any subset

I ⇢ {1, ..., n} let I
0 = {1, ..., n} \ I be its complement. Let R

I ⇢ R
n be the subspace consisting

of all x 2 R
n with xi = 0 for i 62 I. If I has cardinality k, then R

I 2 Gr(k, n). Note that

R
I0 = (RI)?. Let UI = {E 2 Gr(k, n)|E \ R

I0 = 0}. Each E 2 UI is described as the graph

of a unique linear map A : R
I ! R

I0 , that E = {x + A(x)|x 2 R
I}. This gives a bijection

'I : UI ! L(RI
, R

I0 ) ' R
k(n�k).
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Proof. Consider an arbitrary chart U,') for a manifold M , then we have Tp' :
TpM ! R

m for all p 2 U . Consider all these maps together, this gives a bijection,

T' : ⇡�1(U) ! Y ⇥ R
m

Now we take the collection of (⇡�1
, T') as vector bundle charts for TM . The

thing that we need to show now is that the transition maps are smooth. To do so,
consider another coordinate chart (V, ) with U \ V 6= ;, then the transition map
for ⇡�1(U \ V ) is given by

T · (T')�1 : (U \ V )⇥ R
m ! (U \ V )⇥ R

m

For any given point p 2 U \ V the map T · (Tp')�1 = T'(p)( · '�1) is just
the Jacobian for the change of coordinates  · '�1 and it depends smoothly on
'(p). ⇤

Example. For any vector bundle E ! M , E⇤ = \pE
⇤
p is again a vector bundle.

It is called the dual bundle to E. In particular, one defines T ⇤
M := (TM)⇤, called

the cotangent bundle. The sections of T ⇤
M are called covector fields or “1-forms”12.

Remark. Let F 2 C
1(M,N) be a smooth map. Then the collection of

tangent maps TpF : TpM ! TF (p)N defines a map TF : TM ! TN which is easily
seen to be smooth. The map TF is an example of a vector bundle map: It takes

fibers to fibers, and the restriction to each fiber is a linear map. For instance, local
trivializations ' : E|U ! U ⇥ R

k are vector bundle maps.

0.12. Vector fields. Remember in multivariable calculus we often needed to com-
pute the flow or flux of vector field along the curve/through something. Back in
calculus vector field literally was just a vector attached to any point of some re-
gion. Now we are going to formalize it via the concept of vector bundle we just
introduced.

Definition 0.11. A (smooth) section of a vector bundle ⇡ : E ! M is a smooth

map � : M ! E with the property ⇡ · � = idM . The space of sections of E is

denoted �1(M,E).
Therefore, a section is a family of vectors �p 2 Ep depending smoothly on p.

Definition 0.12. A section of the tangent bundle TM is called a vector field on

M . The space of vector fields is denoted X (M) = �1(M,TM).

Examples.

1. Zero section. Every vector bundle has it, namely p 7! �p = 0
2. Trivial bundle. Consider the bundle on M which is M ⇥R

k13. A section of
such bundle is equivalent to a smooth function from M to R

k, locally in a
trivialization chart (U ⇥ R

k
, ) it is a smooth function  �|U : U ! R

k.
3. Standard vector field on R

n
. We have seen that @i =

@
@xi

(we will use this
notation from now on) are di↵erential operators from R

n to R.
4. Restriction of a vector field from R

n Vector field on M ✓ R
n is a restriction

of a vector field on R
n.

12We will di↵erential forms later.
13Recall that not all bundles are like that.
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5. Let f : Rn ! T
n be a map given by f(✓1, ..., ✓n) = (cos ✓1, sin ✓1, ..., cos ✓n, sin ✓n).

The di↵erential of this map is df(✓1,...,✓n)@✓i = � sin ✓i@2i�1 + cos ✓i@2i, so
Xi = � sin ✓i@2i�1 + cos ✓i@2i

14 are vector fields for Tn for all i.

Remark. The space �1(M,E) is (a) a vector space itself, (b) C
1-module

under multiplication.

Proposition 0.7. A vector bundle of rank m is trivial if and only if it has m

linearly independent sections.

Remark. The latter example above leads to the following: let f : M ! N be a
di↵eomorphism. Then we define the pushforward f⇤ : TM ! TN by f⇤(X)(f(p)) =
dfp(X(p)) for 8p 2 M . This clearly defines a vector field because f is a di↵eomor-
phism. If f is not injective the potential pushforward vector field is not even
well-defined, and if f is not surjective then the vector field is not defined on all of
N .

This leads to the following:

Proposition 0.8. Every vector field on U ✓ M can be given as

('�1)⇤

 
nX

i=1

ai@i

!

via di↵eomorphism '
�1 : '(U) ! U .

Indeed, the local correspondence between vector fields on M and vector fields on
R

n in a chart (U,') is exactly X 7! '⇤(X) where we consider X restricted to U :

'⇤(X) =
nX

i=1

ai@i

for some smooth functions ai : '(U) ! R. The same way '
�1 : '(U) ! U is

di↵eomorphism so we can do pushforward for it too getting the statement above.
We will use it a lot.

0.13. Pollarizable manifolds. Recall that (1) not all vector fields are linear com-
bination of @i. As we have seen for the sphere S

2, (2) the tangent bundle is trivial
if it is isomorphic to M ⇥ R

n.
If TM is trivial we say that M is parallelizable.
As we have seen R

n and S
1 are parallelizable. And S

2 is not. Moreover,S3

is parallelizable, but S
2n is not. This is not about odd or even as S

5 is not, for
example.

By Proposition 0.7 we have a condition of being parallelizable.
For a 1-dimensional manifold, being parallelizable is the same as having a nowhere

vanishing vector field. The field we constructed for S1 is nowhere vanishing.
However, the Hairy Ball Theorem implies that every vector field on S

2n has
at least one point where it vanishes,

14Here we transferred(=”push forwarded”) vector field from R
n to T

n.
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0.14. Lie brackets. Let X 2 X (M) be a vector field on M . Each Xp 2 TpM

defines a linear map Xp : C1(M) ! R. Letting p vary, this gives a linear map

X : C1(M) ! C
1(M), (X(f))p = Xp(f)

We need to show that the right hand side really does define a smooth function
on M . Indeed, this follows from the expression in local coordinates (U,'). In a
local coordinates vector field is represented by the vector field which is the sum of
@i.

Moreover,

Theorem 0.4. A linear map X : C1(M) ! C
1(M) is a vector field if and only

if it is a derivation of the algebra C
1(M):

X(f1f2) = f2X(f1) + f1X(f2), 8f1, f2 2 C
1

We omit the proof, the idea is to show that map p 7! Xp defines a smooth section
of TM . It is done via local computation, basically we show that coe�cients in the
decomposition with the respect with the standard basis @i.

0.14.1. Definition. So a vector field allows us to di↵erentiate functions. Now we
would like to compose vector fields, just like you compose derivatives, but there is
a problem – the composition X · Y is not a vector field. However, Lie bracket is.

Definition 0.13. Given X,Y 2 �(TM) we define the Lie bracket of X,Y to be

[X,Y ]]XY � Y X, i.e. for a smooth function f :

[X,Y ](f) = X(Y (f))� Y (X(f))

Then [X,Y ] 2 �(TM).

Remark. Notice that [Y,X] = �[X,Y ] so [X,X] = 0.
To definition make sense we need to check correctness. Indeed, it is easily checked

that the right hand side defines a derivation, and by 0.4 we know it is the vector
field.

Alternatively, the calculation can be carried out in local coordinates (U,'): if
XU is represented by

P
i ai@i and YU by

P
i bi@i , then [X,Y ]U is represented by

X

i

ai@i

0

@
X

j

bj@j

1

A�
X

i

bi@i

0

@
X

j

aj@j

1

A =
X

j

 
X

i

ai
@bj

@xj
� bi

@aj

@xj

!
@j

Example.

1. For standard vector fields @i, @j on R
n we have [@i, @j ] = 0.

2. Let E1 = x3@2 � x2@3, E2 = x1@3 � x3@1, E3 = x2@1 � x1@2 be three vector
fields on R

315. Then [E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2.

Proposition 0.9. Let f : M ! N be a di↵eomorphism. Then f⇤[X,Y ] =
[f⇤X, f⇤Y ].

15We may recall that this fields are connected with circls in the coordinate planes.
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Proof. If we choose local charts (U,') and (V, ) for M and N such that f : U ! V

is a di↵eomorphism and  · f = ' (we can do this because f is a di↵eomorphism so
we can define the charts on N using the charts on M in this way), then  ⇤ · f = '⇤
so it follows immediately from the fact that '⇤[X,Y ] = ['⇤X,'⇤Y ] (just local
computation). ⇤

Coordinate vector fields. Recall that @i are the standard vector fields on R
n,

then we call fields Xi = ('�1)⇤(@i) on the chart (U,') coordinate vector fields.
Remark. The Lie bracket transforms canonically under the di↵eomorphism

'. Now if we have a straightening 'U of the vector field U (such that '⇤
U (U) is

constant in our coordinate system), then [U, V ] is just the derivative of V along
(the constant direction) U in that coordinate system.

The main property of the Lie bracket is given by the following

Proposition 0.10. The Lie bracket satisfies the Jacobi identity: i.e. for X,Y, Z 2
�(TM)

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Proof is by local computation.

0.14.2. Geometric meaning of a Lie bracket. Suppose that we are given two vector
fields u and v on a manifold M . Flowing with v and then u is usually di↵erent from
flowing with u and then v.

Example. u = @1 and v = �y@1 + x@2

This di↵erence is described by the Lie bracket (also known commutator) of u
and v. This is another vector field, denoted [u, v].

We have seen the pushfofward before, there is also a pullback which we will
discuss later though.

If f 2 C
1(N) and F 2 C

1(M,N) we define the pull-back F
⇤(f) = f · F 2

C
1(M). Thus pull-back is a linear map, F ⇤ : C1(N) ! C

1(M).
Remark. Using pull-backs, the definition of a tangent map reads

TpF (v) = v · F ⇤ : C1(N) ! R.

For any vector field X 2 X (M) and any di↵eomorphism F 2 C
1(M,N) we have

F
⇤
X(F ⇤

f) = F
⇤(X(f)). That is, F ⇤

X = F
⇤ ·X · (F ⇤)�1.

In particular,

Proposition 0.11. If X,Y are vector fields on N , F
⇤[X,Y ] = [F ⇤

X,F
⇤
Y ].
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0.15. Flow and Lie derivative. Given a curve � : (�✏, ✏) ! M, we can define
�
0(t) 2 T�(t)M by �0(t) = �

0
t(0) where �t(s) = �(s+ t).

Hence, we have a map t 7! �
0(t) from (�✏, ✏) into TM is smooth, so defines a

vector field �0 along curve �.

Proposition 0.12. Let X 2 �(TM) and p 2 M . There exists a unique curve �p

through p such that �
0
p(t) = X(�p(t)) for 8t 2 (�✏, ✏).

Indeed, we can consider local chart (U,'), and then write '·�(t) = (x1(t), ..., xn(t))
and '⇤(X) =

P
i ai@i. Therefore, '⇤(�0p(t)) = (' · �p)0(t) =

P
i x

0
i(t)@i.

It gives us a system of ODEs x
0
i(t) = ai(x1(t), ...xn(t)) with initial condition

'(p) = (x1(0), ..., xn(0)).
Remark. The vector field X�(t)(f) is

P
i(x(t))

@
@xi

(f · '�1)|x(t).

Definition 0.14. Given X 2 �(TM) and p 2 M , then there is a open set V such

that for all points q 2 V there are curves �q(t) 2 V centered at q with �
0
q(t) =

X(�q(t)).
These curves are called the integral curves (or solution16

) of vector field X.

Remark. Uniqueness and existence of solution is the a very important and
fundamental result from the theory of ODEs. Also the solution depends smoothly
on initial conditions.

Examples. 1) If V = (0, 1) ⇢ R and a(x) = 1, the solution curves to x
0 =

a(x(t)) = 1 with initial condition x0 2 V are x(t) = x0 + t, defined for �x0 < t <

1� x0.
2) a(x) = x

2 has solution curves, x(t) = �1
t�c , these escape to infinity for t ! c.

3) Let X = x1@2 � x2@1 and let (a1, a2, a3) 2 R
3. The integral curve �(t) =

(x1(t), x2(t), x3(t)) of X through x satisfies

x
0
1@1 + x

0
2@2 + x

0
3@3 = x1@2 � x2@1

Therefore, we have three equations which we can solve since x
00
1(t) = �x1(t) forces

x1 = Acos t+B sin t, x2 = �Bcos t+A sin t then it means we have

x1 = a1cos t� a2 sin t, x2 = a2cos t+ a1 sin t, x3 = a3

Therefore the integral curves of X are circles in a plane x3 = a3.

Remark. Note that the uniqueness part uses the Hausdor↵ property in the
definition of manifolds. Indeed, the uniqueness part may fail for non-Hausdor↵
manifolds. A counter-example is the non-Hausdor↵ manifold Y = R ⇥ {1} [ R ⇥
{1}/ ⇠, where ⇠ glues two copies of the real line along the strictly negative real
axis. Let U± denote the charts obtained as images of R⇥{±}. Let X be the vector
field on Y , given by @

@x in both charts. It is well-defined, since the transition map is
just the identity map. Then �+(t) = ⇡(t, 1) and ��(t) = ⇡(t,�1) are both solution
curves, and they agree for negative t but not for positive t.

Definition 0.15. Let X 2 �(TM) and p 2 M . Let V 3 p be an open set such that

we have integral curves �q : (�✏, ✏) ! M of X through q for all q 2 V . We define

16Because to find them we solved ODE...
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the flow of X on V as the family of smooth maps

{'X
t : V ! M, t 2 (�✏, ✏)}

given by '
X
t (q) = �q(t). Notice that '

X
0 is the identity on V .

Geometrically speaking, the flow says how points on M move by the vector field
X. As much as we did it in R

n we can now think of X as a family of “arrows”
on M which point in the direction of the flow (the integral curves). Despite being
defined locally, quite often the flow is globally defined.

Examples.

1. For @i on R
n we saw that �q(t) = q+tei so '

@i
t so the flow is just translation

in the direction of ei.
2. The flow of the vector fieldXj on T

n is '
Xj

t = (cos ✓1, sin ✓1, ..., cos ✓n, sin ✓n) =
(cos ✓1, sin ✓1, ..., cos (✓i + t), sin(✓i + t), ..., cos ✓n, sin ✓n).

Proposition 0.13. Let p 2 M and let {'X
t :! M, t 2 (�✏, ✏)} be the flow of

X 2 �(TM) on V 3 p. Then '
X
t1 · 'X

t2 = '
X
t1+t2 if both sides are well-defined and

'
X
t is a local di↵eomorphism at p.

Proof. Consider the two curves

�(t) = 't('t2(p)), �(t) = 't+t2(p).

By definition of ', the curve � is a solution curve with initial value �(0) = 't2(p)
(assuming it is in the small neighborhood of point p).

We claim that � is also a solution curve, hence coincides with � by uniqueness
of solution curves. We calculate

d

dt
�(t) =

d

dt
't+t2 =

d

du
|u=t+t2'u(p) = X'u(p)|u=t+t2 = X�(t)

⇤
Remark. A vector field X 2 X (M) is called complete if the domain of

definition of its flow '
X is M ⇥ R.

Here is the most important result of this section

Theorem 0.5. If X is a complete vector field, the flow 't defines a 1-parameter

group of di↵eomorphisms. Namely each 't is a di↵eomorphism and

'0 = idM , 't1 · 't2 = 't1+t2 .

Conversely, if 't is a 1-parameter group of di↵eomorphisms such that the map

(t, p) 7! 't(p) is smooth, the equation

Xp(f) =
d

dt
|t=0f('t(p))

defines a smooth vector field on M , with flow 't.

Proof. By previous proposition the first part is done.

Clearly, Xp is a tangent vector at p 2 M . Using local coordinates, one can show
that Xp depends smoothly on p, hence it defines a vector field. Given p 2 M we
have to show that �(t) = 't(p) is an integral curve of X. Indeed,

d

dt
't(p) =

d

ds
|s=0't+s(p) =

d

ds
|s=0's('t(p)) = X't(p)

⇤
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Example. Given A 2 Mm(R) let 't : Rm ! R
m be multiplication by the matrix

e
tA =

P
j

tj

j!A
j (i.e. exponential map of matrices).

Since e
(t1+t2)A = e

t1Aet2A, and since (t, x) 7! e
tA
x is a smooth map, 't defines

a flow. What is the corresponding vector field X? For any function f 2 C
1(Rm)

we calculate

Xx(f) =
d

dt
|t=0f(e

tA
x) =

X

j

@f

@xj
(Ax)j =

X

jk

Ajkxk
@f

@xj


