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LECTURE 4

In this lecture we will continue discussion of vector bundles, and then discuss
the Lie bracket, differential forms and Cartan’s formula.

0.11. Vector bundles. Here we will introduce the notion of a vector bundle in a
general setting. It will generalize the one which we just had above for the tangent
bundle.

Definition 0.9. A vector bundle of rank k over a manifold M is a manifold E,
together with a smooth map m: E — M, and a structure of a vector space on each
fiber E, := 7w (p), satisfying the following local triviality condition: Each
point in M admits an open neighborhood U, and a smooth map ¢ : 7~ 1(U) —
U x RF, such that v restricts to linear isomorphisms E, — RE for allp € U.

The map 1 : Ey = 7~ }(U) — U x R¥ is called a (local) trivialization of F
over U. In general, there need not be a trivialization over U = M.

Definition 0.10. A wvector bundle chart for a vector bundle m : E — M is a
chart (U, @) for M, together with a chart (x~1(U), p) for Ey = =1 (U),such that
¢ HU) — R™ x R restricts to linear isomorphisms from each fiber E, onto

¢(p) x R¥.

Remark. Every vector bundle chart defines a local trivialization. Conversely,
if ¢ : E|y — U x R* is a trivialization of Ey, where U is the domain of a chart
(U, ), one obtains a vector bundle chart (7~1(U), @) for E.

Example (Vector bundles over the Grassmannnian). Recall that Grass-
manian Gr(k,n) is the set of k-dimensional linear subspaces in R*!* Then Gr(1,n)
is projective space RP"~!. For any p € Gr(k,n), let E, C R" be the k-plane it
represents. Then E = Upcark,n)Ep is a vector bundle over Gr(k,n), called the
tautological vector bundle.

Recall the definition of charts oy : Uy — L(R!,R"') for the Grassmannian,
where any p = {E} = Uy is identified with the linear map A having F as its
graph. Let ¢; : 7 1(Ur) — L(RT,R’) x R’ be the map ¢;(v) = (p(n(v)), 71(v))
where 77 : R” — R is orthogonal projection. The ¢ serve as bundle charts for the
tautological vector bundle.

There is another natural vector bundle E’ over Gr(k,n), with fiber E/, := E;-
the orthogonal complement of E,,.

In the case of RP™ ! E is called the tautological line bundle, and E’ the hyper-
plane bundle.

At this stage, we are mainly interested in tangent bundles of manifolds.

Theorem 0.3. For any manifold M, the disjoint union TM = UpepTp,M carries
the structure of a vector bundle over M, where m takes v € T,M to the base point

p.

11Grassmanian is a manifold. A C-atlas may be constructed as follows. For any subset
IC{l,..,n}let I' = {1,..,n}\ I be its complement. Let R! C R™ be the subspace consisting
of all z € R™ with &; = 0 for i ¢ I. If I has cardinality k, then R! € Gr(k,n). Note that
R = (ROL. Let Uy = {E € Gr(k,n)\EﬁRﬂ = 0}. Each E € Uy is described as the graph
of a unique linear map A : R! — RI(, that £ = {z + A(z)|z € R'}. This gives a bijection
@1 : U = L(R!, R!") > RF(n—h),
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Proof. Consider an arbitrary chart U, ¢) for a manifold M, then we have Tpp :
T,M — R™ for all p € U. Consider all these maps together, this gives a bijection,

To:n ' (U) =Y xR™

Now we take the collection of (771, T¢) as vector bundle charts for TM. The
thing that we need to show now is that the transition maps are smooth. To do so,
consider another coordinate chart (V,v) with U NV # (), then the transition map
for 7=1(U NV) is given by

Ty - (Te) ™ (UNV)xR™ = (UNV) x R™

For any given point p € U NV the map Ty - (Tp) ™' = Ty (¥ - ¢ 1) is just
the Jacobian for the change of coordinates 7 - ¢! and it depends smoothly on
o(p). O

Example. For any vector bundle E — M, E* = N, E} is again a vector bundle.
It is called the dual bundle to E. In particular, one defines T*M := (T'M)*, called
the cotangent bundle. The sections of T*M are called covector fields or “1-forms” 2.

Remark. Let F € C°°(M,N) be a smooth map. Then the collection of
tangent maps T, F : T, M — Tr,y N defines a map TF : TM — TN which is easily
seen to be smooth. The map TF is an example of a vector bundle map: It takes
fibers to fibers, and the restriction to each fiber is a linear map. For instance, local
trivializations ¢ : E|y — U x RF are vector bundle maps.

0.12. Vector fields. Remember in multivariable calculus we often needed to com-
pute the flow or flux of vector field along the curve/through something. Back in
calculus vector field literally was just a vector attached to any point of some re-
gion. Now we are going to formalize it via the concept of vector bundle we just
introduced.

Definition 0.11. A (smooth) section of a vector bundle 7 : E — M is a smooth
map o : M — E with the property w - o = idy. The space of sections of E is
denoted T°(M, E).

Therefore, a section is a family of vectors o, € E,, depending smoothly on p.

Definition 0.12. A section of the tangent bundle TM is called a vector field on
M. The space of vector fields is denoted X (M) =T°(M,TM).

Examples.

1. Zero section. Every vector bundle has it, namely p — o, =0

2. Trivial bundle. Consider the bundle on M which is M x RF!3, A section of
such bundle is equivalent to a smooth function from M to R*, locally in a
trivialization chart (U x R¥ 1) it is a smooth function ¢ao|y : U — RE.

3. Standard vector field on R™. We have seen that 0; = 6%1- (we will use this
notation from now on) are differential operators from R™ to R.

4. Restriction of a vector field from R™ Vector field on M C R" is a restriction

of a vector field on R™.

12\e will differential forms later.
13Recall that not all bundles are like that.
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5. Let f : R™ — T™ be amap given by f(61,...,6,) = (cosy,sinby,...,cos6,,sinb,).
The differential of this map is df g, ....0,)0s, = —sin6;02;_1 + cos 0;0a;, so
X; = —sinb;04;_1 + cos ;09;* are vector fields for T for all i.

Remark. The space I'°(M, E) is (a) a vector space itself, (b) C*°-module
under multiplication.

Proposition 0.7. A wvector bundle of rank m is trivial if and only if it has m
linearly independent sections.

Remark. The latter example above leads to the following: let f: M — N be a
diffeomorphism. Then we define the pushforward f, : TM — TN by f.(X)(f(p)) =
dfp(X(p)) for Vp € M. This clearly defines a vector field because f is a diffeomor-
phism. If f is not injective the potential pushforward vector field is not even
well-defined, and if f is not surjective then the vector field is not defined on all of
N.

This leads to the following:

Proposition 0.8. Every vector field on U C M can be given as

(071 (Z ai&)
i=1

via diffeomorphism o1 : (U) — U.

Indeed, the local correspondence between vector fields on M and vector fields on
R™ in a chart (U, @) is exactly X — ¢.(X) where we consider X restricted to U:

pu(X) = aid;
i=1

for some smooth functions a; : p(U) — R. The same way ¢~ : o(U) — U is
diffeomorphism so we can do pushforward for it too getting the statement above.
We will use it a lot.

0.13. Pollarizable manifolds. Recall that (1) not all vector fields are linear com-
bination of ;. As we have seen for the sphere S2, (2) the tangent bundle is trivial
if it is isomorphic to M x R™.

If TM is trivial we say that M is parallelizable.

As we have seen R" and S! are parallelizable. And S? is not. Moreover,S>
is parallelizable, but $2" is not. This is not about odd or even as S° is not, for
example.

By Proposition 0.7 we have a condition of being parallelizable.

For a 1-dimensional manifold, being parallelizable is the same as having a nowhere
vanishing vector field. The field we constructed for S! is nowhere vanishing.

However, the Hairy Ball Theorem implies that every vector field on S?" has
at least one point where it vanishes,

1Here we transferred(="push forwarded”) vector field from R™ to T™.
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0.14. Lie brackets. Let X € X(M) be a vector field on M. Each X, € T,M
defines a linear map X, : C°°(M) — R. Letting p vary, this gives a linear map

X : C®(M) = C®(M),(X(f)p = Xp(f)

We need to show that the right hand side really does define a smooth function
on M. Indeed, this follows from the expression in local coordinates (U, ¢). In a
local coordinates vector field is represented by the vector field which is the sum of
0;.

Moreover,

Theorem 0.4. A linear map X : C°(M) — C*°(M) is a vector field if and only
if it is a derivation of the algebra C*°(M):

X(f1fo) = 2X(f1r) + fiX(f2), Yfi,faeC™

We omit the proof, the idea is to show that map p — X, defines a smooth section
of TM. It is done via local computation, basically we show that coefficients in the
decomposition with the respect with the standard basis 0;.

0.14.1. Definition. So a vector field allows us to differentiate functions. Now we
would like to compose vector fields, just like you compose derivatives, but there is
a problem — the composition X - Y is not a vector field. However, Lie bracket is.

Definition 0.13. Given X|Y € I'(T'M) we define the Lie bracket of X,Y to be
X, Y)|XY =YX, i.e. fora smooth function f:

[(X,Y](f) = XY (f) =Y (X(f))
Then [X,Y] € T(TM).
Remark. Notice that [Y, X] = —[X,Y] so [X, X] =0.
To definition make sense we need to check correctness. Indeed, it is easily checked
that the right hand side defines a derivation, and by 0.4 we know it is the vector
field.

Alternatively, the calculation can be carried out in local coordinates (U, ¢): if
Xy is represented by Y. a;0; and Yy by Y. b;0; , then [X, Y]y is represented by

0b; Oa;
;al@ ;b]‘aj - ;bl& ;ajaj = ; ( i aiﬁix]j — 1£> (Dj
Example.

1. For standard vector fields 9;,9; on R™ we have [9;,9;] = 0.
2. Let E1 = Igag — x283, E2 = x163 — 1’381, E3 = 1’281 — x182 be three vector
fields on R315. Then [El, EQ} = Eg, [EQ7 E3] = El, [Eg,El] = Eg.

Proposition 0.9. Let f : M — N be a diffeomorphism. Then f.[X,Y] =
[fe X, fuY].

15We may recall that this fields are connected with circls in the coordinate planes.
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Proof. If we choose local charts (U, ) and (V,4) for M and N such that f : U — V
is a diffeomorphism and ¢ - f = ¢ (we can do this because f is a diffeomorphism so
we can define the charts on N using the charts on M in this way), then 1, - f = .
so it follows immediately from the fact that ¢.[X,Y] = [p.X, Y] (just local
computation). O

Coordinate vector fields. Recall that 0; are the standard vector fields on R",
then we call fields X; = (¢71).(8;) on the chart (U, ¢) coordinate vector fields.

Remark. The Lie bracket transforms canonically under the diffeomorphism
¢. Now if we have a straightening ¢y of the vector field U (such that ¢ (U) is
constant in our coordinate system), then [U, V] is just the derivative of V along
(the constant direction) U in that coordinate system.

The main property of the Lie bracket is given by the following

Proposition 0.10. The Lie bracket satisfies the Jacobi identity: i.e. for X,Y,Z €
(TM)
(X, [Y, Z]| + [V, [2, X]] + [Z,[X, Y]] = 0

Proof is by local computation.

0.14.2. Geometric meaning of a Lie bracket. Suppose that we are given two vector
fields v and v on a manifold M. Flowing with v and then w is usually different from
flowing with u and then v.
Example. u = 9; and v = —y0; + 20
&V

&[u,v]

This difference is described by the Lie bracket (also known commutator) of u
and v. This is another vector field, denoted [u, v].

We have seen the pushfofward before, there is also a pullback which we will
discuss later though.

If f e C®(N)and F € C°(M,N) we define the pull-back F*(f) = f-F €
C*(M). Thus pull-back is a linear map, F'* : C°(N) — C*°(M).

Remark. Using pull-backs, the definition of a tangent map reads

T,F(v)=v-F*:C®(N)—=R.

For any vector field X € X (M) and any diffeomorphism F' € C°(M, N) we have
F*X(F*f) = F*(X(f)). That is, F*X = F*. X . (F*)~L,

In particular,

Proposition 0.11. If X,Y are vector fields on N, F*[X,Y] = [F*X,F*Y].
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0.15. Flow and Lie derivative. Given a curve v : (—€,¢) — M, we can define
Y(£) € T, M by 7'(t) = 7}(0) where 5,(s) = (s +1).

Hence, we have a map ¢ — +/(t) from (—¢,€) into TM is smooth, so defines a
vector field 7" along curve .

Proposition 0.12. Let X € I'(TM) and p € M. There exists a unique curve 7,
through p such that v, (t) = X (7,(t)) for ¥t € (—¢,¢).

Indeed, we can consider local chart (U, ¢), and then write o-y(t) = (21 (¢), ..., 2o (t))
and ¢, (X) =3, a;0;. Therefore, 90*(71,7(15)) = (¢ 7)) =, zi(t)0;.

It gives us a system of ODEs z}(t) = a;(z1(t),...x,(¢)) with initial condition
4,0(?) = (‘Tl(o)v ,l‘n(O))

Remark. The vector field X (f) is 32, (2(t)) 52 (f - ™ lao)-

Definition 0.14. Given X € I'(TM) and p € M, then there is a open set V such
that for all points ¢ € V there are curves v4(t) € V centered at q with v, (t) =

X((1))-
These curves are called the integral curves (or solution'®) of vector field X .

Remark. Uniqueness and existence of solution is the a very important and
fundamental result from the theory of ODEs. Also the solution depends smoothly
on initial conditions.

Examples. 1) If V = (0,1) C R and a(z) = 1, the solution curves to z’ =
a(z(t)) = 1 with initial condition ¢ € V are z(t) = zo + t, defined for —xo < t <
1-— xo-

2) a(z) = x* has solution curves, z(t) = 7L, these escape to infinity for t — c.

3) Let X = 2105 — 120, and let (a1,a2,a3) € R3. The integral curve v(t) =
(z1(t), z2(t), z3(t)) of X through x satisfies

$/161 + 5612(92 + Z‘éag =1x2102 — 1201

Therefore, we have three equations which we can solve since 2/ (t) = —x1(t) forces
x1 = Acost + Bsint,xo = —Bcost + Asint then it means we have

r1 = aijcost — agsint, xo = ascost + ap sint, r3 = as

Therefore the integral curves of X are circles in a plane z3 = as.

Remark. Note that the uniqueness part uses the Hausdorff property in the
definition of manifolds. Indeed, the uniqueness part may fail for non-Hausdorff
manifolds. A counter-example is the non-Hausdorff manifold ¥ = R x {1} UR x
{1}/ ~, where ~ glues two copies of the real line along the strictly negative real
axis. Let Uy denote the charts obtained as images of R x {£}. Let X be the vector
field on Y, given by a% in both charts. It is well-defined, since the transition map is
just the identity map. Then v () = 7(¢,1) and v_(¢t) = w(¢, —1) are both solution
curves, and they agree for negative ¢ but not for positive ¢.

Definition 0.15. Let X € I(T'M) andp € M. Let V > p be an open set such that
we have integral curves vq : (—€,€) = M of X through q for all ¢ € V. We define

16Because to find them we solved ODE...
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the flow of X on V as the family of smooth maps
{oX :V = M,t € (€6}
given by X (q) = 7,(t). Notice that o is the identity on V.

Geometrically speaking, the flow says how points on M move by the vector field
X. As much as we did it in R™ we can now think of X as a family of “arrows”
on M which point in the direction of the flow (the integral curves). Despite being
defined locally, quite often the flow is globally defined.

Examples.

1. For 0; on R™ we saw that v4(t) = g+te; so w?’ so the flow is just translation
in the direction of e;.

2. The flow of the vector field X; on T™ is cptxj = (cosb1,sinby,...,cosb,,sinb,,)
(cosfy,sinby, ..., cos (0; +t),sin(0; + 1), ..., cos Oy, sinb,,).

Proposition 0.13. Let p € M and let {pX :— M,t € (—¢,¢)} be the flow of
X eT(TM) onV > p. Then goff . npi = got)fﬂz if both sides are well-defined and

03 is a local diffeomorphism at p.

Proof. Consider the two curves

V() = @i (p),  Alt) = it (P)-
By definition of ¢, the curve 7 is a solution curve with initial value v(0) = ¢, (p)
(assuming it is in the small neighborhood of point p).
We claim that A is also a solution curve, hence coincides with + by uniqueness
of solution curves. We calculate
d \E) = d o d _ -
dat (t) = asﬁwtz = %‘u:ﬂrta‘?u(p) = tiu(p)|u:t+t2 = X)\(t)
O

Remark. A vector field X € X (M) is called complete if the domain of
definition of its flow X is M x R.
Here is the most important result of this section

Theorem 0.5. If X is a complete vector field, the flow v defines a I-parameter
group of diffeomorphisms. Namely each ¢; is a diffeomorphism and
o =1idrr, Loy Pty = Pritts
Conversely, if p; is a 1-parameter group of diffeomorphisms such that the map
(t,p) — @i(p) is smooth, the equation

d
Xp(f) = %\t:of(%@))
defines a smooth vector field on M, with flow ¢;.

Proof. By previous proposition the first part is done.

Clearly, X, is a tangent vector at p € M . Using local coordinates, one can show
that X, depends smoothly on p, hence it defines a vector field. Given p € M we
have to show that v(t) = ¢:(p) is an integral curve of X. Indeed,

d d d
a@t(!’) = £|s:0§0t+s(p) = %'s:O‘Ps(@t(p)) = ch,,(p)
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Example. Given A € M,,(R) let ¢; : R™ — R™ be multiplication by the matrix
et = > %Aj (i.e. exponential map of matrices).

Since e(t1tt2)A4 — et1det2A and gince (t,x) — etz is a smooth map, ¢, defines
a flow. What is the corresponding vector field X? For any function f € C*°(R™)
we calculate

d , of of
Xo(f) = Zlh=of () = 5, (4 :jZkAjkzka—%



