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LECTURE 3

0.8. One more viewpoint. There is another definition of T, M. Let Cp°(M)
denote the subspace of functions vanishing at p, and let Cp°(M )2 consist of finite
sums Y, f;g; where f;,g; € C5°(M). Since any tangent vector v : C*°(M) — R
vanishes on constants, v is effectively a map v : Cp° (M) — R. Since tangent
vectors vanish on products, v vanishes on the subspace Cp°(M )2 C Ce(M). Thus
v descends to a linear map C°(M)/Cp°(M)* — R, i.e. an element of the dual
space'® (Cp°(M)/Cpe(M)?)*. The map T,M — (Cg°(M)/Cg°(M)?)* just defined
is an isomorphism, and can therefore be used as a definition of T, M.

Remark. This may appear very fancy on first sight, but really just says that
a tangent vector is a linear functional on C°°(M) that vanishes on constants and
depends only on the first order Taylor expansion of the function at p.

0.9. Differential and local diffeomorphisms. Recall from multivatiable cal-
culus the following: If we have open U C R™ and f : U — R be a smooth
function (given by components fi(x1,...,2n), ..., fe(Z1,...,2n), where each f; is
R-valued). Differential is a linear map df, : R* — R” given for h € R" by
df (h) = lim,_,o LEHRI=I @)

Remark: This linear map is given by the n x k-matrix with ij-coefficient being
equal to gg’; (z) (Jacobian as we know).

Remark: Differential df, is the best linear approximation of f at z € R™:

f(x+h) = f(z) + dfu(h) + o(||R]])

Remark: We can define the tangent space using differential as well. Let ¢ :
U — X be a local parametrization near z such that ¢(0) = 2. Then T, X — image
of dyg (it does not depend on a choice of local parametrization). Here the picture:
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Definition 0.7. Let f : M — N be a smooth map between manifolds. Let X =
7' (0) € T,M. Then f-~yis a curve in N through f(p). We define the differential of
[ at p, which is a linear map dfy, : TyM — Ty, N, by dfy(X) = (f - 7)'(0).

L

Geometrically in the case of manifolds in real vector spaces, differential is the
following map: if  is moving with the velocity v, then f(z) is moving with the
velocity df,(v).

10Here we use the well-known isomorphism between the dual space and homomorphisms from
a given space.
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We can also think of the differential in terms of a differential of a map between
Euclidean spaces. Given a curve v through p and a chart (U, ¢) at p, we have the
curve a = ¢ - v in Euclidean space. The curve f -+ defines a curve b = ¢ - f -~
in Euclidean space where (V,4) is a chart at f(p). The relationship between the
tangent vectors between the curves a and b at 0 is:

V' (0) = f1)0)= - [0 7)o o (@' (0)}
Hence the differential df, may be viewed as d(v - fo~')|,(p) given the charts.

In particular,this means that if M C R™ and N C R™ are manifolds and f :
R™ — R™ is a smooth map such that f(M) C N then dfy, : T,M — Ty,)N is the
restriction of the linear map dfy, : R™ — R™.

General philosophy:

X =/ v
~L<,a iwv
U --»" v

where h = ¢ - f - ¢~ 1. Therefore, to study local properties of a smooth map f it
is enough to study map h because ¢, are diffeomorphisms onto neighborhoods.

Remark: Differential df, does not to be injective/surjective/isomorphism in
general. For examplem, if X C R? surface and f : X — R the "height” (projection
to vertical axis) function.
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Here differential is either zero (horizonal) or onto (vertical).
Remark: Sometimes the differential for map F € C*(M,N) is called the
tangent map, and it could be defined as operator in the following way:

TyF(v)(f) = v(f - F)
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It is easy to check that T),F'(v) is a tangent vector indeed. And it is the same
object as above.

Examples.
1. Let f: R? — S2 C R? be given by f(6,¢) = (sinfcos ¢, sin fsin ¢, cos §),
then

cosfcosp —sinfsinp
df(g,0) = | cos Q'SiI;QO sin 0803 ®
—sin

In terms of differential operators we therefore have that

df(0,5)(0p) = cos Bcos pd;+cos 0 sin da—sin 003,  df g,y (partial,) = sin Opd;+sin Ocos s

2. Let us calculate the differential of the map f : S2 — RP? given by f(x) =
[z] at (0,0,1) € Us. Let X € T{g,0,1)5% be a vector in a tangent plane.
Then £(0,0,1) = [(0,0,1)] € Us = {[(v1,¥2,y3)] € RP? : y3 # 0}. Now we
want to calculate df(g,0,1)(X). We know that ¢5(0,0,1) = (0,0) and for
(71,2) € R? with |z| < 1,

f oty 10) = 2z 20y 1—|z?\] _ 2, 2z
Pl s WL E S I\ T P T e T (o2 )]~ \ T4 o T+ [

Therefore,

_ 2 14 22 — 22 2x1T
1 142
d(es - 05 )00 = A= =Py ( 2361332 2 1— a2 +al 0,0 =21

Remark. We can use the differential of f at p to detect when f is a local
diffeomorphism. For a given map f is difficult to know if it is a local diffeomorphism
as it is nonlinear in general, but the differential is a linear map and so is easier to
analyse.

Proposition 0.6. A smooth map f: M — N is a local diffeomorphism at p if and
only if dfy : Ty,M — Ty N is an isomorphism.

Remark: Above, we of course must have equal dimensions.

Proof. [:>] Suppose that f is a local diffeomorphism at p. Then by definition there
exist open U 3 p and open V' > f(p) such that f : U — V is a diffeomorphism.
Therefore, d(f~* f)p = d(f 1) s(p)-d(p) = id and df,-d(. Hence df,-d(f~1) () = id
is an isomorphism.

[<:] Now suppose that df, is an isomorphism. Let (U, ) and (V,4) be charts
around points p and f(p) respectively so that f(U) C V.

Again by the argument above d(,o;(lp) (R = T, M and dyp) : TippyN — R™ are
isomorphisms since ‘o1, are local diffeomorphisms, so d(% - f - go*l)gp(p) R —
R™ is a composition of isomorphisms by the chain rule and thus is an isomorphism:
explicitly,

d(- f - ‘Pil)w(m =dyp) - dfp - d(@il)w(p)
Now we can then use the Inverse Function Theorem to give open sets U’ © p and
V''5 f(p) so that ¥ - f - =1 : o(U") — (V') is a diffeomorphism (using the
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fact that o, are diffeomorphisms onto their images). Hence f : U’ — V' is a
diffeomorphism. O

Examples.

1. The map f : R? — S? above has differential with full rank (and is therefore
an isomorphism) except when sinf = 0. Hence f is not a local diffeomorphism, but
it is one restricted to any region where sin 6 # 0.

2. The map f : R™ — T™ clearly has differential whose image is n-dimensional
and thus is an isomorphism, and hence f is a local diffeomorphism.

3. The map f : S™ — RP™ given by f(x) = [z] has df, = dys - 2id - d(pg")p, s0
f is a local diffeomorphism. It is not a diffeomorphism because it is not a bijection.

Definition 0.8. A smooth map f : M — N is an immersion if df, : T,M —
Ty N is injective for all p € M (so we obviously need dim(N) = dim(M)).

An injective immersion is called an embedding. If f : M — N is an embedding
then f(M) is a manifold and f: M — f(M) is a diffeomorphism.

A smooth map f: M — N is a submersion if dfy, : T,M — Ty N is surjective
for allp € M (so we obviously need dimN < dimM ).

A map which is both an immersion and a submersion is a local diffeomorphism.

Example.
Let C = {(cos@,sin0,t) € R? : t € R} be the cylinder. Let f: S1 — C be given
by f(cos6,sinf,t) = (cosf,sind,0). Then

Tcos0,5m0)S" = {\(—sin0; + cos02) : A € R}

df(cos&,sin g)((— sin 081 ~+ cos 062)) = —sin 081 —+ cos 082
. So f is an immerssion. It is moreover injective and f is an isomorphism.
Now let g : C — S! be a map given f(cosf,sin@,t) = (cosf,sinf) then

T(cos 0,5in 0,6)C = Span{—sin 00, + cos 00, 03}
and
dG(cos 0,sin 0,¢)(— 8N 001 + €08 002) = sin 60y + cos 002,  dg(cos 0,sin 0,¢)(03)

Hence g is a submersion.

2. Let F': S™ — R given by F(z1,...,Zp4+1) = Tp41 1S not a submersion because
dF, is the zero map at the North and South poles. However, I : S™\ {N,S}R is a
submersion. This shows the relationship between submersions and regular values.

Let us now discuss geometrical meaning of differential map.

0.10. Tangent bundle. Let M be a manifold of dimension m. If M is an embed-
ded submanifold of R”, the tangent bundle TM is the subset of R?" = R" x R"
given by
TM = {(p,v) e R" xR"|pe M,v e T,M}
where each T),M is identified as a vector subspace of R". It is not hard to see that
TM is, in fact, a smooth embedded submanifold of dimension 2m. Moreover, the
natural map 7 : TM — M, (p,v) — p is smooth, and its “fibers” 7~ 1(p) = T, M
carry the structure of vector spaces.
Examples:

0. For R™: tangent space at point is R” and tangent bundle is R?® = R" x R™.
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1. It is straightforward to see that points in 7'S* are given by p = (cos @, sin )
and ¢ = A(—sin 6, cos ) since ¢ must be orthogonal to p, for some A, 0 € R.
Hence, there is a natural diffeomorphism f : S' x R — T'S' given by

f:(0,A) — A(—sinb,cosf) € T(Cose,smwsl

It implies that T'S? is diffeomorphic to S! x R. Moreover, for fixed (6, )
the map A — A(—sinf,cosf) € T{cos 6,sin 9)5'1 is an isomorphism of vector
spaces.

Question: Is T'M always isomorphic to M x R™?
The answer is negative.

3. TS? #£ 52 x R2. Tt is the same as the set of all oriented straight lines in
R3. Indeed, we know that points in T'S? are given by x € S? and y € R?
orthogonal to x. Then z defines an oriented straight line through 0. Since
y is orthogonal to x we can use it translate this straight line to get an
oriented straight line through y in the direction z.

Conversely, given an oriented straight line in R3, there is a unique closest
point from the line to 0, which gives a vector ¥ € R? orthogonal to the line.
Translating by y gives an oriented straight line through 0, which is uniquely
determined by some z € S2.

Remark. The set of all straight lines in R3 is a 4-dimensional manifold,
which is TRP?.

4. The same often happens in the higher dimensions.



