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Lecture 3

0.8. One more viewpoint. There is another definition of TpM . Let C
1
p (M)

denote the subspace of functions vanishing at p, and let C1
p (M)2 consist of finite

sums
P

i figi where fi, gi 2 C
1
p (M). Since any tangent vector v : C1(M) ! R

vanishes on constants, v is e↵ectively a map v : C
1
p (M) ! R. Since tangent

vectors vanish on products, v vanishes on the subspace C
1
p (M)2 ⇢ C

1
p (M). Thus

v descends to a linear map C
1
p (M)/C1

p (M)2 ! R, i.e. an element of the dual
space10 (C1

p (M)/C1
p (M)2)⇤. The map TpM ! (C1

p (M)/C1
p (M)2)⇤ just defined

is an isomorphism, and can therefore be used as a definition of TpM .
Remark. This may appear very fancy on first sight, but really just says that

a tangent vector is a linear functional on C
1(M) that vanishes on constants and

depends only on the first order Taylor expansion of the function at p.

0.9. Di↵erential and local di↵eomorphisms. Recall from multivatiable cal-
culus the following: If we have open U ⇢ R

n and f : U ! R
k be a smooth

function (given by components f1(x1, ..., xn), ..., fk(x1, ..., xn), where each fi is
R-valued). Di↵erential is a linear map dfx : R

n ! R
k given for h 2 R

n by

dfx(h) = limt!0
f(x+th)�f(x)

t .
Remark: This linear map is given by the n⇥ k-matrix with ij-coe�cient being

equal to @fi
@xj

(x) (Jacobian as we know).

Remark: Di↵erential dfx is the best linear approximation of f at x 2 R
n:

f(x+ h) = f(x) + dfx(h) + ō(||h||)

Remark: We can define the tangent space using di↵erential as well. Let ' :
U ! X be a local parametrization near x such that '(0) = x. Then TxX – image
of d'0 (it does not depend on a choice of local parametrization). Here the picture:

Definition 0.7. Let f : M ! N be a smooth map between manifolds. Let X =
�
0(0) 2 TpM . Then f · �is a curve in N through f(p). We define the di↵erential of

f at p, which is a linear map dfp : TpM ! Tf(p)N, by dfp(X) = (f · �)0(0).

Geometrically in the case of manifolds in real vector spaces, di↵erential is the
following map: if x is moving with the velocity v, then f(x) is moving with the
velocity dfx(v).

10Here we use the well-known isomorphism between the dual space and homomorphisms from
a given space.
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We can also think of the di↵erential in terms of a di↵erential of a map between
Euclidean spaces. Given a curve � through p and a chart (U,') at p, we have the
curve a = ' · � in Euclidean space. The curve f · � defines a curve b =  · f · �
in Euclidean space where (V, ) is a chart at f(p). The relationship between the
tangent vectors between the curves a and b at 0 is:

b
0(0) = ( · f�)0(0) = ( · f · '�1 · �a)|'(p)|'(p(a0(0))}

Hence the di↵erential dfp may be viewed as d( · f'�1)|'(p) given the charts.
In particular,this means that if M ⇢ R

n and N ⇢ R
m are manifolds and f :

R
n ! R

m is a smooth map such that f(M) ✓ N then dfp : TpM ! Tf(p)N is the
restriction of the linear map dfp : Rn ! R

m.
General philosophy:

X !f
Y

#' # 
U 99Kh V

,

where h =  · f ·'�1. Therefore, to study local properties of a smooth map f it
is enough to study map h because ', are di↵eomorphisms onto neighborhoods.

Remark: Di↵erential dfx does not to be injective/surjective/isomorphism in
general. For examplem, if X ⇢ R

3 surface and f : X ! R the ”height” (projection
to vertical axis) function.

Here di↵erential is either zero (horizonal) or onto (vertical).
Remark: Sometimes the di↵erential for map F 2 C

1(M,N) is called the
tangent map, and it could be defined as operator in the following way:

TpF (v)(f) = v(f · F )
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It is easy to check that TpF (v) is a tangent vector indeed. And it is the same
object as above.

Examples.

1. Let f : R2 ! S
2 ⇢ R

3 be given by f(✓,') = (sin ✓cos', sin ✓ sin', cos ✓),
then

df(✓,') =

0

@
cos ✓cos' �sin✓ sin'
cos ✓ sin' sin ✓cos'
� sin ✓ 0

1

A

In terms of di↵erential operators we therefore have that

df(✓,')(@✓) = cos ✓cos'@1+cos ✓ sin'@2�sin ✓@3, df(✓,')(partial') = sin ✓'@1+sin ✓cos'@2

2. Let us calculate the di↵erential of the map f : S2 ! RP
2 given by f(x) =

[x] at (0, 0, 1) 2 US . Let X 2 T(0,0,1)S
2 be a vector in a tangent plane.

Then f(0, 0, 1) = [(0, 0, 1)] 2 U3 = {[(y1, y2, y3)] 2 RP
2 : y3 6= 0}. Now we

want to calculate df(0,0,1)(X). We know that 'S(0, 0, 1) = (0, 0) and for
(x1,2 ) 2 R

2 with |x| < 1,

'3 · f · '�1
S (x1, x2) = '3

✓
2x1

1 + |x|2 ,
2x2

1 + |x|2 ,
1� |x|2

1 + |x|2

◆�
=

✓
2x1

1 + |x|2 ,
2x2

1 + |x|2 ,
◆

Therefore,

d('3 · f · '�1
S )|(0,0) =

2

(1� |x|2)2

✓
1 + x

2
1 � x

2
2 2x1x2

2x1x2 1� x
2
1 + x

2
2

◆
|(0,0) = 2I

Remark. We can use the di↵erential of f at p to detect when f is a local
di↵eomorphism. For a given map f is di�cult to know if it is a local di↵eomorphism
as it is nonlinear in general, but the di↵erential is a linear map and so is easier to
analyse.

Proposition 0.6. A smooth map f : M ! N is a local di↵eomorphism at p if and

only if dfp : TpM ! Tf(p)N is an isomorphism.

Remark: Above, we of course must have equal dimensions.

Proof.
⇥
)
⇤
Suppose that f is a local di↵eomorphism at p. Then by definition there

exist open U 3 p and open V 3 f(p) such that f : U ! V is a di↵eomorphism.
Therefore, d(f�1·f)p = d(f�1)f(p)·df(p) = id and dfp·d(. Hence dfp·d(f�1)f(p) = id

is an isomorphism.⇥
(
⇤
Now suppose that dfp is an isomorphism. Let (U,') and (V, ) be charts

around points p and f(p) respectively so that f(U) ✓ V .
Again by the argument above d'�1

'(p) : R
n ! TpM and d f(p) : T(f(p)N ! R

n are

isomorphisms since 0
'
�1

, are local di↵eomorphisms, so d( · f · '�1)'(p) : R
n! !

R
n is a composition of isomorphisms by the chain rule and thus is an isomorphism:

explicitly,
d( · f · '�1)'(p) = d f(p) · dfp · d('�1)'(p)

Now we can then use the Inverse Function Theorem to give open sets U
0 3 p and

V
0 3 f(p) so that  · f · '�1 : '(U 0) !  (V 0) is a di↵eomorphism (using the
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fact that ', are di↵eomorphisms onto their images). Hence f : U 0 ! V
0 is a

di↵eomorphism. ⇤

Examples.
1. The map f : R2 ! S

2 above has di↵erential with full rank (and is therefore
an isomorphism) except when sin✓ = 0. Hence f is not a local di↵eomorphism, but
it is one restricted to any region where sin ✓ 6= 0.

2. The map f : Rn ! T
n clearly has di↵erential whose image is n-dimensional

and thus is an isomorphism, and hence f is a local di↵eomorphism.
3. The map f : Sn ! RP

n given by f(x) = [x] has dfp = d'3 · 2id · d('�1
S )p, so

f is a local di↵eomorphism. It is not a di↵eomorphism because it is not a bijection.

Definition 0.8. A smooth map f : M ! N is an immersion if dfp : TpM !
Tf(p)N is injective for all p 2 M (so we obviously need dim(N) = dim(M)).

An injective immersion is called an embedding. If f : M ! N is an embedding

then f(M) is a manifold and f : M ! f(M) is a di↵eomorphism.

A smooth map f : M ! N is a submersion if dfp : TpM ! Tf(p)N is surjective

for all p 2 M (so we obviously need dimN  dimM).

A map which is both an immersion and a submersion is a local di↵eomorphism.

Example.
Let C = {(cos ✓, sin ✓, t) 2 R

3 : t 2 R} be the cylinder. Let f : S1 ! C be given
by f(cos ✓, sin ✓, t) = (cos ✓, sin ✓, 0). Then

T(cos ✓,sin ✓)S
1 = {�(� sin ✓@1 + cos ✓@2) : � 2 R}

df(cos ✓,sin ✓)((� sin ✓@1 + cos ✓@2)) = � sin ✓@1 + cos ✓@2

. So f is an immerssion. It is moreover injective and f is an isomorphism.
Now let g : C ! S

1 be a map given f(cos ✓, sin ✓, t) = (cos ✓, sin ✓) then

T(cos ✓,sin ✓,t)C = Span{� sin ✓@1 + cos ✓@2, @3}
and

dg(cos ✓,sin ✓,t)(� sin ✓@1 + cos ✓@2) = sin ✓@1 + cos ✓@2, dg(cos ✓,sin ✓,t)(@3)

Hence g is a submersion.
2. Let F : Sn ! R given by F (x1, ..., xn+1) = xn+1 is not a submersion because

dFp is the zero map at the North and South poles. However, F : Sn \ {N,S}R is a
submersion. This shows the relationship between submersions and regular values.

Let us now discuss geometrical meaning of di↵erential map.

0.10. Tangent bundle. Let M be a manifold of dimension m. If M is an embed-
ded submanifold of Rn, the tangent bundle TM is the subset of R2n = R

n ⇥ R
n

given by
TM = {(p, v) 2 R

n ⇥ R
n|p 2 M, v 2 TpM}

where each TpM is identified as a vector subspace of Rn. It is not hard to see that
TM is, in fact, a smooth embedded submanifold of dimension 2m. Moreover, the
natural map ⇡ : TM ! M, (p, v) 7! p is smooth, and its “fibers” ⇡�1(p) = TpM

carry the structure of vector spaces.
Examples:

0. For Rn: tangent space at point is Rn and tangent bundle is R2n = R
n⇥R

n.
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1. It is straightforward to see that points in TS
1 are given by p = (cos ✓, sin ✓)

and q = �(� sin ✓, cos ✓) since q must be orthogonal to p, for some �, ✓ 2 R.
Hence, there is a natural di↵eomorphism f : S1 ⇥ R ! TS

1 given by

f : (✓,�) 7! �(� sin ✓, cos ✓) 2 T(cos ✓,sin ✓)S
1

It implies that TS1 is di↵eomorphic to S
1⇥R. Moreover, for fixed (✓,�)

the map � ! �(� sin ✓, cos ✓) 2 T(cos ✓,sin ✓)S
1 is an isomorphism of vector

spaces.

Question: Is TM always isomorphic to M ⇥ R
n?

The answer is negative.

3. TS
2 6= S

2 ⇥ R
2. It is the same as the set of all oriented straight lines in

R
3. Indeed, we know that points in TS

2 are given by x 2 S
2 and y 2 R

3

orthogonal to x. Then x defines an oriented straight line through 0. Since
y is orthogonal to x we can use it translate this straight line to get an
oriented straight line through y in the direction x.

Conversely, given an oriented straight line in R
3, there is a unique closest

point from the line to 0, which gives a vector y 2 R
3 orthogonal to the line.

Translating by y gives an oriented straight line through 0, which is uniquely
determined by some x 2 S

2.
Remark. The set of all straight lines in R

3 is a 4-dimensional manifold,
which is TRP 2.

4. The same often happens in the higher dimensions.


