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Lecture 2

In this lecture we will continue discussion of manifolds and will give two ways
how to construct them - regular value theorem and group actions. Then we will
discuss tangent vectors.

0.2. Regular value theorem, cont. Last time we stated the regulat value theo-
rem 0.1.

Proof. (of 0.1) By the Implicit Function Theorem we have that for all p 2 F
�1(c)

there exists a splitting of Rn+m = R
n⇥R

m = KerdFp⇥R
m such that, if p = (a, b)

with respect to this splitting, then there exist open sets a 2 Vp 2 R
n and b 2 Wp 2

R
m and a smooth map Gp : Vp ! Wp with Gp(a) = b such that

F
�1(c) \ (Vp ⇥Wp) = {(q,Gp(q)) : q 2 Vp}

Let Up = F
�1(0) \ (Vp ⇥ Wp) which is an open set and [p2F�1(0)Up = F

�1(0)
(since p 2 Up).

Now we need to define maps, let’s do like that: 'p(q,Gp(q)) = q. Then map 'p

is homeomorphism. The last is check that the transition maps are smooth. Hence,
F

�1(c) satisfies the conditions of 0.1 and it is n-dimensional manifold. ⇤
In the course of Di↵erential Geometry you in particular have studied surfaces.

Simple check analogous to the proof above leads to the following

Proposition 0.1. A surface in R
3
is a 2-dimensional manifold.

0.3. Di↵eomorphisms. One of our goals was to establish di↵erentation on man-
ifolds. Recall that map f : U ! R

n from open subset U 2 R
k is smooth if it is

continuous and all its partial derivatives @fi
@xj

exist and are continuous on U . Now

if X is any subset in R
k if near each point x 2 X it extends to a smooth function

on some open set containing x.

Definition 0.2. Let M and N be manifolds of dimensions m and n respectively.

A map f : M ! N is smooth at p if for some coordinate charts (U,') at p and

(V, ) at f(p) with f(U) ✓ V , the map

 · '�1 : '(U) ✓ R
m !  (V ) ✓ R

n

is smooth. We say f is smooth if it is smooth at all p 2 M .

In a obvious way definition above generalizes the classical one. The only thing
we need to check is that is well-defined, in particular if we take di↵erent open sets
near point p. It follows from the smoothness of transition maps.

Examples (trivial): 1) Take U,' as the coordinate chart for M , (Rn
, id) as

the chart for Rn and ' is smooth map then.
2) Identity map is smooth.
3) Restriction is the smooth map.
4) Multiplication map and the inversion map for matrices are smooth, it makes

them Lie groups.

Definition 0.3. A map f : M ! N is a di↵eomorphism if it is a smooth bijection

with a smooth inverse. The manifolds M and N are then said to be di↵eomorphic.

A map f : M ! N is a local di↵eomorphism at p if there is open U 3 p,open V 3
f(p) such that f : U ! V is a di↵eomorphism. We say f is a local di↵eomorphism

if it is a local di↵eomorphism at all p 2 M .
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There are some simple examples and properties such as identity is di↵eomor-
phism, composition of two di↵eomorphisms is di↵eomorphism, and the opposite
is di↵eomorphism. Therefore, the di↵eomorphisms form a group which we write
Diff(M).

The maps in atlas for manifold are as well di↵eomorphisms. In the discussed
above case of matrix groups A defines a di↵eomorphism on R

n i↵ A 2 GLn(R).
Examples.

1) X = {x2 + y
2 = 1, y = 0} ⇢ R

2
x,y, Y = {t 2 (�1, 1)} ⇢ Rt. Then X and

Y are di↵eomorphic. Indeed, take f : R2 ! R, (x, y) 7! x. It is smooth
and bijection with f

�1 given by the following map t 7! (t,
p
1� t2) which

is smooth for t 2 (�1, 1).
2) Consider the closures of X and Y from the previous example, then the

maps above do not work. So one needs to use a di↵erent f .

Lemma 0.1. If X ! Y is a di↵eomorphism then f is also homeomorphism between

x and Y considered as topological spaces.

Proof. (Sketch)

The lemma follows from the following claim: if f is a smooth map between
subsets in R

n then f is continuous (ie preimages of open sets are open).
⇤

Non-example. Consider X the circle and Y an interval. Then there is no
di↵eomorphism f : X ! Y . Indeed, fix p 2 X, then f would give a homeomorphism
X \{p} ! Y \{f(p)}. However one is connected while the another has 2 connected
components.

This non-example shows that we can not have one chart for the circle as the
manifold.

Non-example 2. Let X be ”angle” on the plane and Y be an interval. There
is no di↵eomorphism in this case too.

Idea: Let f be such di↵eomorphism, then the inverse g = f
�1 would have two

components since X ⇢ R
2. We can assume g1(0) = g2(0) = 0. We claim that either

g
0
1(0) 6= 0 or g02(0) 6= 0. This gives a contradiction (exercise).

0.4. Quotient construction. There is an important way how to construct mani-
folds.

Definition 0.4. We say that a group G acts on M by di↵eomorphisms if there is

a homomorphism G ! Diff(M); i.e. for all g 2 G there exists a di↵eomorphism

fg of M so that fe = id and fgh = fg · fh (any g, h).

Definition 0.5. Let G be a discrete group
4
acting on M by di↵eomorphisms as

above. We say that G acts freely and properly discontinuously if

• 8p 2 M9 open V 3 p with V \ fg(V ) = ;8g 6= e
5
.

• 8p, q 2 M with p 6= fg(q)8g 2 G9 open V 3 p and W 3 q with V \fg(W ) =
;8g 2 G

Now we are ready to construct more manifolds using these actions!

4i.e. a finite group or Z
n or some other countable group

5It essentially says that fg has no fixed points if g 6= e.
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Theorem 0.2. Let M be an n-dimensional manifold and let G be a discrete group

acting freely and properly discontinuosly on M by di↵eomorphisms. Define an equiv-

alence relation ⇠ on M by p ' q , q = fg(p) for some g 2 G. Then the quotient

space M/ ⇠= M/G is an n-dimensional manifold.

Proof. Let {(Vi, i) : i 2 I} be an atlas for M such that Vi \ fg(Vi) = ; (by
properly discontinuous action). Let ⇡ bn the projection, and call by Ui = ⇡(Vi)
and [iUi = M/G. Since ⇡i = ⇡|Vi is di↵eomorphism (by above) then we can define
'i =  i · ⇡�1

i : Ui !  i(Vi) ✓ R
n which is homeomorphism.

Now we need to check that everything works on the intersections.
If Ui \ Uj 6= ; then by definition of 'i:

'(Ui \ Uj) =  · ⇡�1
i (Ui \ Uj) =  i(Vi \ ⇡�1(Uj)) = ⇡i(Vi \ [fg(Vj))

which is a disjoint union of open sets and clearly 'j · '�1
i is a homeomorphism,

so it is enough to show that it and its inverse are smooth.
Let p 2 'i(Ui \ Uj), then there exists unique g 2 G such that p 2 W =

 i(Vi [ fg(Vj)), so 'j ·'�1
i |W =  j ·⇡�1

j ·⇡i · �1
i |W , therefore it is enough to show

that ⇡�1
j · ⇡i is smooth on Vi [ fg(Vj). If q 2 Vi [ fg(Vj) and q

0 = ⇡
�1
j · ⇡i(q) 2 Vj

then ⇡j(q0) = ⇡i(q) so there exists gq 2 G such that fgq (q
0) = q. Therefore q 2

fgq (Vj) \ fg(Vj) so
gq = g and hence ⇡�1

j · ⇡i = fg�1 |V which is smooth. So 'j ·'�1
i is smooth with

the same argument for the inverse. ⇤

Examples.

1. Z2 act on R
n with ±1. Clearly �id is a di↵eomorphism of Rn but it is

not a free action because 0 is fixed. However, if we take any point x 6= 0
in R

n then there exists some coordinate xi 6== 0. Overall, Z acts freely
and properly discontinuously by di↵eomorphisms on R

n\{0}. Hence it acts
freely and properly by di↵eomorphisms on any manifold M ⇢ R

n \{0} such
that �M = M

In particular, if M = S
n, then S

n
/Z is RP

n. If we have cylinder,
C = {(x, y, z) : x2 + y

2 = 1,�1 < z < 1} with �C = C. Hence, C/Z is
called Mobius band.

Proposition 0.2. If a discrete group G acts freely and properly discontinuously on

M then the projection ⇡ : M ! M/G is a surjective local di↵eomorphism.

0.5. Tangent vectors: idea. Let M be a smooth manifold of dimension n. Sup-
pose that we understand the tangent bundle of Rn, and then we can define the
tangent bundle TM by locally pulling back TR

n on coordinate charts, and using
the derivative of the transition function to glue the bundle together on overlaps.

If f is a smooth function on R
n and v is a vector, then it makes sense to take

the partial derivative of f in the direction v. If we fix coordinates xi on R
n, then

we can write v =
P

vi
@

@xi
and then v(f) =

P
vi

@f
@xi

.
So the latter gives the idea of vector field as the derivation.
Using coordinate functions on open charts gives us a way to take the derivative

of a smooth function f on M along a vector field X on M . Note that at each point
p the vector Xp acts as a derivation of the ring of germs of smooth functions at p;
that is, Xp(fg) = Xp(f)g+ fXp(g) (Leibnitz rule). In fact, a vector at a point can
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be defined as a linear derivation of the ring of germs of smooth functions at that

point, and a vector field can be defined as a smoothly varying family of derivations.
We denote the space of smooth vector fields on M by X (M). A smooth map

g : N ! M induces a smooth map dg : TN ! TM satisfying dg(X)(f) = X(f · g)
for any vector fieldX onN and smooth function f onM . Note that the composition
f · g is also written g

⇤
f and called the pullback of f by g.

Okay, this was the outline for what we are going to talk about today. To give
more details first we start with the definition of tangent vector.

0.6. Tangent vector as the derivative. For a curve in the plane � : R ! R
2 (or

into R
n), it is just the line tangent to the curve, which we can calculate by writing

and computing the derivative

�
0(t) = (�1(t), �2(t))

so the tangent vector at �(0) = p say is

�
0(0) = (�1(0), �2(0))

Let M be an n-dimensional manifold in R
n+m. If we look at curves in M through

p then the tangent vectors will form a vector space of dimension n
6
which we denote

by TpM . In particular, we can calculate the tangent space to M at p for manifolds
given by the regular value theorem.

Proposition 0.3. Let F : Rn+m ! R
m

be a smooth map and let c be a regular

value of F , so that M = F
�1(c) is an n-dimensional manifold. Then for all p 2

M,TpM ' KerdFp.

Proof. Let p 2 M = F
�1(c) and let � be a curve in M through p. Then F (�(t)) =

c for all t since �(t) 2 F
�1(c) for all t. Di↵erentiating both sides we see that

dF (�(t))/dt = 0.
Applying the Chain rule at t = 0, we see that

dF�(0)(�
0(0)) = dFp(�

0(0)) = 0.

Hence the derivative �0(0) sits in KerdFp.
We just constructed the (linear) map from tangent space in We thus have a linear

map to KerdFp. This map is clearly injective. Since c is a regular value, we know
by the rank-nullity theorem that dimKerdFp = n +m �m = n, so since TpM is
also n-dimensional the map must be surjective.

⇤
Examples

1. Consider F (x) =
Pn+1

i=1 x
2�1, then S

n = F
�1(0). Then dFx = (2x1, ..., 2xn+1)

so KerdFx = {y 2 R
n+1 : hy, xh = 0} = hxh?, the orthogonal complement

of the line through x. Thus TxS
n ' hxh?, which is geometrically clear.

2. Consider the set SL(n,R) = {A 2 Mn(R) : det(A) = 1} is F
�1(0) where

F : Mn(R) ! R is F (A) = det(A)� 1. Now if A is invertible, then

F (A+B)�F (A) = det(A+B)�det(A) = det(A(I+A
�1

B))�det(A) = det(A)(det(I+A
�1

B)�1)

and by expanding one sees that
det(I +A

�1
B)) = 1 + tr(A�1

B) +O(|B|2).

6Dimension follows from the same argument of linear independence of derivative of ”direc-
tional” curves.
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Hence, dFA(B) = tr(A�1
B)) for A 2 SLn(R), which is not zero since

dFA(A) = n. Hence by 0.1 we have that SL(n,R) is an (n2�1)-dimensional
manifold. Moreover,

TASL(n,R) = {B 2 Mn(R) : tr(A
�1

B) = 0}) ) TISL(n,R) = B 2 Mn(R) : tr(B) = 0

This says that the Lie algebra sl(n,R) = TISL(n,R) of the Lie group
SL(n,R) is the trace-free matrices (as a vector space). In fact the bracket

operation on the Lie algebra is just the matrix commutator
7
, which is true

of all matrix Lie groups with matrix Lie algebras.

0.7. Tangent vector as the directional derivative/operator. For embedded
submanifolds M ⇢ R

n, the tangent space TpM at p 2 M can be defined as the
set of all velocity vectors v = �

0(0), where � : R ! M is a smooth curve with
�(0) = p. Thus TpM becomes a vector subspace of Rn. To extend this idea to
general manifolds, note that the vector v = �(0) defines a “directional derivative”
C

1(M) ! R:

v : f 7! d

dt
|t=0f(�(t)).

Here we formally define TpM as a set of directional derivatives.

Definition 0.6. Let M be a manifold, p 2 M . The tangent space TpM is the

space of all linear maps v : C1(M) ! R of the form v(f) = d|t=0f(�(t)) for some

smooth curve � 2 C
1(M,R) with �(0) = p.

Here @/@xi = (0, ..., 1, ...0) form a basis of tangent space.

Proposition 0.4. Let (U,') be a coordinate chart around p, with '(p) = 0. A

linear map v : C1(M) ! R is in TpM if and only if it has the form,

v(f) =
nX

i=1

ai
@f · '�1

@xi
|x=0

for some a = (a1, ..., am) 2 R
n

Proof. Given a linear map v of this form, let �(t) be any smooth curve with
'(�(t)) = ta for |t| su�ciently small. Then

d

dt
|t=0f(�(t)) =

d

dt
|t=0(f · '�1)(ta) =

nX

i=1

ai
@f · '�1

@xi
|x=0

by the chain rule. Conversely, given any curve � with �(0) = p, let �̃ = ' · � be
the corresponding curve in the image '(U) (defined for small |t|). Then

d

dt
|t=0f(�(t)) =

@

@t
|t=0(f · '�1)(�̃(t)) =

nX

i=1

ai
@f · '�1

@xi
|x=0

where a = d�̃
dt |t=0. Once again by the chain rule.

⇤

7We will discuss commutator later.
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Remark. Hence, using the @
@xi

|x=0 as a basis, we can identify the tangent vector

to the curve �̃ in R
n at '(p) = 0 with the di↵erential operator

Pn
i=1 ai @xi

|x=0 acting

on the function f ·'�1 (which is how we identify functions on M locally with func-
tions on R

n). Notice that @
@xi

|x=0 is the tangent vector to t 7! '
�1(0, ..., 0, t, 0, ..., 0),

which is the image of a straight line, and forms a local basis for the tangent vectors
to curves by the above calculation.

So, in this definition, tangent vectors are essentially di↵erential operators on
locally defined functions on M . We can also think of it as a vector in R

n, using the
given chart (U,') as described above.

To sum up we have the following corollary

Corollary 0.1. If U ⇢ R
n
is an open

8
subset, the tangent space TpU is canonically

identified with R
n
.

Question: How to get rid o↵ charts?
We now describe a third definition of TpM which characterizes “directional

derivatives” in a coordinate-free way, without reference to curves �. As we have
already seen every tangent vector v 2 TpM satisfies a product rule since we have it
in local coordinates (U,'),

v(f1f2) = f1(p)v(f2) + v(f1)f2(p)

for all fj 2 C
1(M).

Proposition 0.5. A linear map v : C1(M) ! R is a tangent vector if and only if

it satisfies the product rule above.

Proof. Let v : C
1(M) ! R be a linear map satisfying the product rule. Let

us show that v 2 TpM . We use the second definition of TpM in terms of local
coordinates.

First, note that by the product rule applied to the constant function 1 = 1 · 1 we
have v(1) = 09. Hence v vanishes on constants.

Now show that v(f) = 0 if f = 0 near p. Choose � 2 C
1(M) with �(p) = 1,

zero outside a small neighborhood of p so that f� = 0. The product rule tells us
that

0 = v(f�) = v(f)�(p) + v(�)f(p) = v(f).

Thus v(f) depends only on the behavior of f in an arbitrarily small neighborhood
of p.

In particular, taking (U,') as a coordinate chart around p such that '(p) = 0,
we may assume that supp(f) ⇢ U . Consider the Taylor expansion of f̃ = nf · '�1

near x = 0:

f̃(x) = f̃(0) +
X

xi
@

@xi
|x=0f̃ + r(x),

where the remainder vanishes at x = 0 with its first derivatives. This means that it
can be written (non-uniquely) in the form r(x) =

P
i xiri(x), where ri are smooth

functions that vanish at 0. (prove the existence of such decomposition).

8For closed ones don’t forget about the boundary.
9It is the standart type argument which you might have seen in the course of Groups.
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By the product rule, v vanishes on r · '�1 (since it is a sum of products of
functions that vanish at p). It also vanishes on the constant f̃(0) = f(p). Thus
applying v to the above we are done.

⇤


