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Lecture 18

0.55. Lie groups and homogeneous spaces.

Definition 0.57. Let G admit both the structure of a group and a smooth manifold.
G is a Lie group if the multiplication map G⇥G ! G and the inverse map G ! G
are smooth. The Lie algebra g is the tangent space to G at the origin.

Example (Myers–Steenrod) IfM is any Riemannian manifold, Myers–Steenrod
showed that the group of isometries Isom(M) is a Lie group. One way to see this
is to observe (e.g. by using the exponential map) that if M is connected, and ⇠ is
any orthonormal frame at any point p 2 M , an isometry of M is determined by
the image of ⇠. So if we fix ⇠, we can identify Isom(M) with a subset of the frame
bundle of M , and see that this gives it the structure of a smooth manifold.

Remark: Most example of Lie groups are matrix groups. An example of a Lie
group that is not isomorphic to a matrix Lie group is the double covering of SL(2,
R).

We often denote the identity element of a Lie group by e 2 G, so that g = TeG.
For every g 2 G there are di↵eomorphisms Lg : G ! G and Rg : G ! G called
(respectively) left and right multiplication, defined by Lg(h) = gh and Rg(h) = hg
for h 2 G. Note that L�1

g
= Lg�1 and R�1

g
= Rg�1 . The maps g ! L and g ! Rg�1

are homomorphisms from G to Diff(G).
A vector field X on G is said to be left invariant if dLg(X) = X for all g 2 G.

Since G acts transitively on itself with trivial stabilizer, the left invariant vector
fields are in bijection with elements of the Lie algebra, where X(e) 2 g = TeG
determines a left- invariant vector field X by X(g) = dLgX(e) for all g, and con-
versely a left-invariant vector field restricts to a vector in TeG. So we may (and
frequently do) identify g with the space of left-invariant vector fields on G.

Remark: We can define the Lie bracket on g = TeG by its identification with
left- invariant vector fields. A second Lie algebra structure on g is defined by
identifying TeG with the space of right-invariant vector fields. How are the two
brackets related? The answer is that they di↵er by sign.

If X and Y are left-invariant vector fields, then so is [X,Y ], since for any smooth
map ' between manifolds, d'([X,Y ]) = [d'(X), d'(Y )]. Thus Lie bracket of vector
fields on G induces a Lie bracket on g, satisfying the usual properties of the Lie
bracket, in particular, Jacobi identity.

Definition 0.58. A smooth map � : R ! G is a 1-parameter subgroup if it is a
homomorphism; i.e. if �(s+ t) = �(s)�(t) for all s, t 2 R.

Proposition 0.39. 1-parameter subgroups � : R ! G are integral curves of left-
invariant vector fields.

Proof. Indeed, suppose we start with 1-parameter subgroup �, and let X(e) =
�0(0) 2 TeG = g. If X is the corresponding left-invariant vector field on G.

Di↵erentiating the defining equation of 1-parameter subgroup with respect to t
at t = 0 we get

�0(s) = d�(s)(X(e)) = X(�(s))

Therefore, � is obtained as the integral curve through e of the left-invariant vector
field X.
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Conversely, if X is a left-invariant vector field, and � is an integral curve of X
through the origin, then � is a 1-parameter subgroup. ⇤

Similar computation shows that
Remark: Thus we see that every X(e) 2 g arises as the tangent vector at e to

a unique 1-parameter subgroup. Moreover, every left-invariant vector field X on G
is complete since the left multiplication permutes the integral curves.

Let �(t) denote the 1-parameter subgroup corresponding to X 2 g. Then the
flow of X is 't(g) = g�(t).

Definition 0.59. For any Lie group G, with Lie algebra g, one defines the expo-
nential map e : g ! G, e(X) := �(1).

Example: Note that this generalizes the exponential map for matrices. Indeed,
suppose G ✓ GL(n,R) is a matrix Lie group, with Lie algebra g ✓ gl(n,R). Then
the flow of the left-invariant vector field corresponding to X 2 gl(n,R) is just
't(g) = ge(tX) (using the exponential map for matrices).

Note that the derivative of this map at 0 is the identity map g ! g, and therefore
exponentiation is a di↵eomorphism from some neighborhood of 0 in g to some
neighborhood of e in G, although it is not typically globally surjective.

Remark: If G is given a Riemannian metric, then there is an exponential map
expe : g ! G in the usual sense of Riemannian geometry. This map is closely
related to exponentiation (as defined above), but the two maps are di↵erent in
general, and we use di↵erent notation exp(X) and eX to distinguish them. For
matrix Lie groups, exp coincides with the exponential map for matrices (hence its
name). The di↵erence is that the geodesics through the identity will not be one-
parameter subgroups for the general Lie group. We will see it later when study
Riemannian metrics on Lie groups.

Example: Consider a nonabelian Lie group and any metric that is not bi-
invariant. The simplest example is

G = {
����
a b
0 a�1

���� |a, b 2 R}

This group acts simply transitively by isometries on the hyperbolic plane H
2,

and admits a (unique) left-invariant Riemannian metric making the orbit map an
isometry. For that metric, the geodesics in G correspond to the geodesics in the
hyperbolic plane.

The curve

c(t) =

����
1 t
0 1

���� · i = t+ i

is a horocycle. So the one-parameter subgroups need not correspond to Riemannian
geodesics.

Lie groups often arise as transformation groups, by some “action” on a manifold
M .

Definition 0.60. An action of a Lie group G on a manifold M is a group ho-
momorphism G ! Diff(M), g 7! �g such that the action map ⇢ : G ⇥ M !
M, (g, p) 7! ⇢g(p) is smooth.
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For each X 2 g and associated 1-parameter subgroup � : R ! G with �0(0) = X
we get a 1-parameter family of di↵eomorphisms 't := ⇢ · �(t) on M .

Define d⇢(X) 2 X (M) to be the vector field tangent to 't; i.e. d⇢(X) :=
d

dt
't|t=0. Then d⇢([X,Y ]) = [d⇢(X), d⇢(Y )].
In the other words, the map d⇢ : g ! X (M) is a homomorphism of Lie algebras.

(it is also called the Lie algebra action on manifold). By exponentiating, we get the
identity

⇢(eX) = ed⇢(X).

Example:

1) Note that an action of the (additive) Lie group G = R is the same thing as
a global flow, while an action of the Lie algebra g = R (with zero bracket)
is the same thing as a vector field.

2) Every matrix Lie group G ⇢ GL(n,R), and every matrix Lie algebra acts
on R

n by multiplication.
3) The rotation action of SO(n) on R

n restricts to an action on the sphere,
Sn�1 ⇢ R

n.
4) Any Lie group G acts on itself by multiplication from the left, La(g) = ag,

multiplication from the right Ra�1(g) = ga�1, and also by the adjoint
(=conjugation) action (we will define it later).

Exponentiation satisfies the formula esX = �(s) so that esXetX = e(s+t)X for
any s, t 2 R. Moreover, if [X,Y ] = 0 then esX and etY commute for any s and t,
by Frobenius’ theorem, and eX+Y = eXeY = eY eX in this case. We have already
observed that exponentiation defines a di↵eomorphism from a neighborhood of 0
in g to a neighborhood of e in G; we denote the inverse by log. And using some
explicit calculation one will have:

Theorem 0.32. (Campbell-Baker-Hausdor↵ Formula)

For X,Y 2 g su�ciently close to 0, if we define eXeY = eZ then there is a
convergent series expansion for Z:

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]� 1

12
[Y, [X,Y ]]� 1

24
[Y, [X, [X,Y ]]]� ...

Remark: An explicit closed formula for the terms involving n-fold brackets was
obtained by Dynkin. Note that if g is a nilpotent Lie algebra — i.e. if there is a
uniform n for which any n-fold bracket vanishes — then the CBH formula becomes
a polynomial, which converges everywhere. The CBH formula shows that the group
operation of a Lie group can be reconstructed at least on a neighborhood of the
identity from its Lie algebra.

Definition 0.61. The group G acts on itself by conjugation; i.e. there is a map
G ! Aut(G) sending g ! Lg · Rg�1 . Conjugation fixes e. The adjoint action
of G on g is the derivative of the conjugation automorphism at e; i.e. the map
Ad : G ! Aut(g) defined by Ad(g)(Y ) = d(Lg ·Rg�1)Y .

The adjoint action of g on g is the map ad : g ! End(g) defined by ad(X)(Y ) =
dAd(etX)(Y )|t=0.

Remark: If we think of g as a smooth manifold, the adjoint action is a homo-
morphism Ad : G ! Diff(g) and its derivative is a homomorphism of Lie algebras
ad : g ! X(g). Thus we obtain the identity ead(X) = Ad(eX). Since all maps and
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manifolds under consideration are real analytic, this identity makes sense when
interpreted as power series expansions of operators.

Remark: The adjoint representation Ad : G ! Aut(g) is an example of a linear
representation.

Example: (SL(2,R))
Unlike the exponential map on complete Riemannian manifolds, exponentiation

is not typically surjective for noncompact Lie groups. The upper half-space model
of hyperbolic 2-space H2 consists of the subset of z 2 C with Im(z) > 0. The group
SL(2,R) acts on hyperbolic 2-space:

✓
a b
c d

◆
· z =

az + b

cz + d

This action is called Möbius transformation, the kernel consists of ±Id and the
image is the group PSL(2,R) which acts transitively and faithfully on H

2 by isome-
tries. There are three kinds of 1-parameter families of isometries of H2:

1. Elliptic subgroups, which are conjugate to

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆
. These ele-

ments fixes i 2 C anc act by rotation through angle 2✓.

2. Parabolic subgroups consisting of elements conjugate to

✓
1 t
0 1

◆
. It fixes

1 and acts by translation by t.

3. Hyperbolic subgroups. These are conjugate to

✓
et 0
�0 e�t

◆
, it fixes 0 and

1, action is by dilation e2t.

Note that SL(2,R) double-covers PSL(2,R), hence, they have isomorphic Lie
algebras, and there is a bijection between 1- parameter subgroups. In particular,
any matrix in SL(2,R) with trace in (�1,�2) is not in the image of exponentiation.

Identifying PSL(2,R) with the unit tangent bundle of H2 shows that it is dif-
feomorphic to an open S1 ⇥D2, and SL(2,R) is isomorphic to it too.

Elliptic subgroups are indicated in red, parabolic subgroups in green, and hyper-
bolic subgroups in blue. The dotted vertical lines are “at infinity”. The white gaps
are matrices with trace ¡ -2 and the slanted dotted lines are matrices with trace -2
which are not in the image of exponentiation.

0.56. Homogeneous spaces. The left and right actions of G on itself induce
actions on the various tensor bundles associated to G as a smooth manifold, so it
makes sense to say that a volume form, or a metric (or some other structure) is
left-invariant, right-invariant, or bi-invariant.
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Remark: Since G acts on itself transitively with trivial point stabilizers, a left-
invariant tensor field is determined by its value at e, and conversely any value of
the field at e can be transported around by the G action to produce a unique
left-invariant field with the given value, the same with right-invariant tensor fields.
The left and right actions commute, giving an action of G ⇥G on itself; but now,
the point stabilizers are conjugates of the (anti-)diagonal copy of G, acting by the
adjoint representation. Therefore, the bi-invariant tensor fields are in bijection with
the tensors at e fixed by the adjoint representation.

Definition 0.62. A Riemannian metric on G is left-invariant if Lh is an isometry
for 8h 2 G:

8h 2 G, 8v, w 2 TgG, g(v, w)g = g((Lh)⇤v, (Lh)⇤w)hg

Similar definition for right-invariant and if both holds then biinvariant.
It is easy to construct such metric following remark above: given an inner product

on g = TeG define
g(v, w)g = g((Lg�1)⇤v, (Lg�1)⇤w)e

Fact: Any compact Lie froup has biinvariant metric(see later).
The natural extension of these concepts to k–forms is that a k- form ! 2 ⌦k(G)

is left–invariant if it coincides with its pullback by left translations, i.e., L⇤
g
! = !

for all g 2 G. Right-invariant and bi-invariant forms are analogously defined.
Once more, given any !e 2 ⇤kTeG, it is possible to define a left-invariant k-form

! 2 ⌦(G) by setting for all g 2 G and Xi 2 TgG,

!g(X1, ..., Xk) = !e(d(Lg�1)gX1, ..., d(Lg�1)gXk),

and the right-invariant case is once more analogous.

Proposition 0.40. There is a bijective correspondence between left-invariant (resp.
right invariant) metrics on a Lie group G, and inner products on the Lie algebra g
of G.

Example: An example of a bi-invariant metric on the group of orthogonal
matrices with positive determinant SO(n) is that inherited from R

n⇥n, namely the
canonical metric g(X,Y ) = tr(XTY ). The same happens in the unitary case, but
changing the transpose for a conjugate transpose g(X,Y ) = tr(X̄TY ).

Remark: If metric is bi-invariant, exponentiation agrees with the exponential
map and is surjective.

Definition 0.63. A smooth manifold M admitting a transitive (smooth) G action
for some Lie group G is said to be a homogeneous space for G.

If G has a left-invariant (resp. right-invariant) metric, since left-invariant (resp.
right-invariant) translations are isometries and act transitively on G, the space G
is a homogeneous Riemannian manifold.

If we pick a basepoint p 2 M the orbit map G ! M sending g ! g(p) is a
fibration of G over M with fibers the conjugates of the point stabilizers, which are
closed subgroups H. Hence, homogeneous spaces for G are simply spaces of the
form G/H for closed Lie subgroups H of G.

Definition 0.64. An action of G on a homogeneous space M = G/H is e↵ective
if the map G ! Diff(G/H) has trivial kernel.
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It is immediate from the definition that the kernel is precisely equal to the nor-
mal subgroup H0 := \ggHg�1, which may be characterized as the biggest normal
subgroup of G contained in H. If H0 is nontrivial, then we may define G0 = G/H0

and H 0 = H/H0, and then G/H = G0/H 0 is a homogeneous space for G0, and
the action of G on G/H factors through an action of G0. Thus when considering
homogeneous spaces one may always restrict attention to homogeneous spaces with
e↵ective actions.

Proposition 0.41. (Invariant metrics on homogeneous spaces)

Let G be a Lie group and let H be a closed Lie subgroup with Lie algebras g and
h respectively.

(1) The G-invariant tensors on the homogeneous space G/H are naturally iso-
morphic with the Ad(H) invariant tensors on g/h.

(2) Suppose G acts e↵ectively on G/H. Then G/H admits a G-invariant metric
if and only if the closure of Ad(H) in Aut(g) is compact.

(3) If G/H admits a G-invariant metric, and G acts e↵ectively on G/H, then
G admits a left-invariant metric which is also right-invariant under H, and
its restriction to H is bi-invariant.

(4) If G is compact, then G admits a bi-invariant metric.

For the proof of this proposition we will use the di↵erential forms discussed in
the beginning of the course.

Proof. (1) Any G-invariant tensor on G/H may be restricted to THG/H = g/h
whose stabilizer is H acting by a suitable representation of Ad(H). Conversely,
any Ad(H)- invariant tensor on g/h can be transported around G/H by the left G
action by choosing coset representatives.

(2) If G acts e↵ectively on G/H, then for any left-invariant metric on G the
group G embeds into the isometry group G⇤ and H embeds into the the isotropy
group H⇤, the subgroup of G⇤ fixing the basepoint H 2 G/H. By example of
Myers-Steenrod (see above) G⇤ and H⇤ are Lie groups, with Lie algebras g and h,
and since G is e↵ective, the natural maps g ! g⇤ and h ! h⇤ are inclusions. Since
H⇤ is a closed subgroup of an orthogonal group of some dimension, it is compact,
and therefore so is its image Ad(H⇤) 2 Aut(g⇤).

A right-invariant metric on compact group gives rise to a right-invariant volume
form36 which can be rescaled to have total volume 1. Denote by ! such a right-
invariant volume form on Ad(H⇤). For any inner product g(·, ·) on g⇤ define a new
inner product g̃(·, ·) by

g̃(X,Y ) :=

Z

Ad(H⇤)
g(Ad(h)(X), Ad(h)Y )!(h)

Note that g̃ is positive definite if g is so.
Then for any z 2 H⇤ we have

g̃(Ad(z)X,Ad(z)Y ) =

Z

Ad(H⇤)
g(Ad(hz)(X), Ad(hz)Y )!(h) =

=

Z

Ad(H⇤)
g(Ad(h)(X), Ad(h)Y )R⇤

z�1!(hz�1) = g̃(X,Y )

36i.e., ! 2 ⌦n(G) is a non zero n-form
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since ! is right-invariant.
Therefore Ad(H⇤) (and hence Ad(H)) acts by isometries on g⇤ for some positive

definite inner-product. Hence the restriction of Ad(H) preserves a positive definite
inner-product on g. It imples that Ad(H) is contained in the orthogonal group
of this inner-product, which is compact, and therefore the closure of Ad(H) is
compact.

Conversely, if the closure of Ad(H) is compact, by averaging any metric under
a right- invariant volume form on Ad(H) as above we obtain an Ad(H)-invariant
metric on g. Let p be the orthogonal complement p = h? of h in this Ad(H)-
invariant metric. Then Ad(H) fixes p and preserves its inner metric. Identifying
p = g/h we get an Ad(H)-invariant metric on mathfrakg/h and a G-invariant
metric on G/H.

(3) If G acts e↵ectively on G/H and G/H admits a G-invariant metric, then by
(2), Ad(H) has compact closure in Aut(g), and preserves a positive-definite inner
product on g. This inner product defines a left-invariant Riemannian metric on G
as in (1), and its restriction to H is Ad(H)-invariant, and is therefore bi-invariant,
since the stabilizer of a point in H under the H ⇥H action coming from left- and
right- multiplication is Ad(H).

(4) Since G is compact, so is Ad(G). Thus Ad(G) admits a right-invariant volume
form, and by averaging any positive-definite inner product on g under the Ad(G)
action (with respect to this volume form) we get an Ad(G)-invariant metric on g,
and a bi-invariant metric on G. ⇤

Remark: Let us present the direct computation of (4) to make it more clear:
Let ! be a right-invariant form on G and g(·, ·) a right-invariant metric. Define for
all X,Y 2 TxG,

g̃(X,Y )x =

Z

G

g(dLgX, dLgY )gx!

Now we check that g̃ is both left- and right-invariant. Indeed,

g̃(dLhX, dLhY )hx =

Z

G

g(dLg(dLhX), dLg(dLhY ))g(hx)! =

Z

G

g(dLghX, dLghY )(gh)x! =

=

Z

G

R⇤
h
(g(dLgX, dLgY )gx!) =

Z

G

g(dLgX, dLgY )gx! = g̃(X,Y )

where we used the right-invariance of the volume form !. So we have g̃ to be
left-invariant.

It is also right-invariant:

g̃(dRhX, dRhY )xh =

Z

G

g(dLg(dRhX), dLg(dRhY ))g(xh)! =

=

Z

G

g(dRhdLgX, dRhdLgY )(gx)h! =

Z

G

g(dLgX, dLgY )gx! = g̃(X,Y )x

Remark: For n-form ! on g let us consider form !g := R⇤
g�1!e. This makes it

into a right-invariant n-form on the manifold, which we call the right Haar measure.
We have this particular case of (1) of the Proposition above, which we will need

soon

Corollary 0.13. If an inner product on g is Ad-invariant then g(Y, adX(Z)) =
�(adX(Y ), Z), 8X,Y, Z 2 g. In other words, the adjoint ad⇤X of the map adX
with respect to the inner product is �adX (it is often called skew-adjoint).
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Proof. We have that, by definition

adX(Y ) =
d

dt
(Adexp(tX)(Y ))|0

so, deriving the equation

g(Adexp(tX)(Y ), Adexp(tX)(Z)) = g(Y, Z)

with respect to t we get the result.
⇤

Remark: If the group is abelian, the construction of metric above is still valid
without the need of the averaging trick, since Ad is the identity map, so every inner
product is automatically Ad-invariant.

Example (Killing form):
The Killing form is the 2-form � on g defined by

g(X,Y ) = tr(ad(X)ad(Y ))

Since the trace of a product is invariant under cyclic permutation of the factors, �
is symmetric. Furthermore, for any Z, we have

(ad(Z)(X), Y ) = tr(ad([Z,X])ad(Y )) = tr([ad(Z), ad(X)]ad(Y )) = tr(ad(Z)ad(X)ad(Y )�
ad(X)ad(Z)ad(Y )) = �tr(ad(X)ad(Z)ad(Y )�ad(X)ad(Y )ad(Z)) = �tr(ad(X)[ad(Z), ad(Y )]) =
�tr(ad(X), ad([Z, Y ])) = ��(X, ad(Z)(Y )).


