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Lecture 17

0.53. Cut locus. We know that if M is complete then expp : TpM ! M is sur-
jective. We want to model M by part of TpM . In particular, for Sn we have
expp : D⇡(0) ! Sn \ {�p} is di↵eomorphism.

For a geodesic �(t) starting at p we know that restriction of � to [0, t] is mini-
mizing geodesic for a small t. Define

I = {t0 � 0|�|[0,t0]is minimizing geodesic}

It means t0 = d(p, �(t0)).
Then I is closed and if t0 not in I and t1 > t0, then t1 is not in I as well.

Therefore, so I = [o, T ] for some T > 0 or I = [0,1).

Definition 0.56. The cut point of p along � is �(T ), if I = [0,1), no cut point.
The cut locus is Cut(p) = cut points over all �.

Example:

• sphere: Cut(p) = {�p}
• R

2/Z2, Cut(p) is in this picture

• By Cartan-Hadamard Theorem we have that complete simply connected
manifold with nonpositive curvature has empty cut locus.

Define T (v) = T if I = [0, T ] and 1 if I = [0,1).
The preimage of the geodesic up to the cut point is the ray to T (v)v.
Define the set U(p) = {tv|v 2 Sn�1, 0  t  T (v)} = {t0v||v| = 1,expp(tv) is

minimizing past t0}
Some properties of U(p): - U(p) is star-shaped

- We can show that T : Sn�1 ! R+ [ {0} is continuous and U(p).

Proposition 0.36. A complete M is the disjoint union exppU(p) t Cut(p).

Proof. For a point q 2 M there is a minimal geodesic from p to q by Hopf-Rinow
theorem. Then either it stops being minimizing past q, then q 2 Cut(p), or not.
Then q 2expp(U(p)).

Now we need to prove that intersection is empty. Indeed, if q 2expp(U(p)) \
Cut(p), then there is two minimizing geodesics from p to q, one of them is mini-
mizing past q, another not. It is impossible by the following lemma.

Lemma 0.13. If there exist two minimizing geodesics between p and q, then neither
of them is minimizing past q.

Proof. Let be �1, �2 those two geodesics with L(�1) = L(�2). Extend �1 past q,
then we can use �2 with cut o↵ then to get a shorter path. ⇤

⇤
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Remark: This argument actually show that expp is an injection U(p) ! M and
a bijection U(p) ! M \ Cut(p)

Proposition 0.37. expp : U(p) ! M \ Cut(p) is a di↵eomorphism.

Proof. v 2 U(p) ⇢ TpM ) �(t) =expp(tv) is minimizing past t = 1. Then � does
not have conjugate points between p and expp((1+✏)v), hence exppv isn’t conjugate
to p. It means that expp is a local di↵eomorphism at v, and hence expp is a local
di↵eomorphism on U(p), which is di↵eomorphism since bijective. ⇤

Recall that the injectivity radius of a Riemannian manifold (M, g) is

inj(M, g) = infinjp(M, g), p 2 M,

where injp(M, g) is the injectivity radius at p, defined by injp(M, g) = sup{r|expp
is di↵eomorphism on Br(0) ⇢ TpM}.

Now we know that expp is a di↵eomorphism onto M \ Cut(p), and Cut(p) is
closed in M . So injp(M, g) = d(p, Cut(p)) and inj(M, g) = infd(p, Cut(p)).

Proposition 0.38. Let p 2 M , and q 2 Cut(p) so that d(p, q) = d(p, Cut(p)).
Then one of the following assertions hold:

(1) q is conjugate to p along a minimizing geodesic � joining p to q,
(2) there exists exactly two normal minimizing geodesics �,� joining p to q.

Moreover, in the second case, we must have �0(l) = ��0(l), where l = d(p, q).

0.54. Sphere theorems. Intuitively, if K is small, then inj is large

Theorem 0.28. If 0 < a  K  Kmax for some a,Kmax, then either there exists
closed geodesic � with inj(M, g) = 1

2L(�) or inj(M, g) � ⇡/
p
Kmax.

Remark: By Myers-Bonnet we know that M is compact in that case.

Theorem 0.29. (Klingenberg)

Let (M, g) be a compact Riemannian manifold whose sectional curvature satisfies
K  C for some constant C. Then either inj(M, g) 

p
⇡/C or there exists a closed

geodesic � in M whose length is minimum among all closed geodesics, such that

inj(M, g) = 1/2L(�).

We are not going to prove Klingenberg theorem in this course, but it follows
from the theorem above and Proposition 0.38.

In 1926 Hopf proved that any compact simply connected Riemannian manifold
with constant curvature 1 must be the standard round sphere Sn. He conjectured
that any compact simply connected Riemannian manifold whose sectional curvature
is close to 1 must be homeomorphic to a sphere.

Theorem 0.30. (Di↵erentiable Sphere Theorem)

Let (M, g) be a compact simply connected n-dimensional Riemannian manifold
with 1/4 < K  1. Then M is di↵eomorphic to Sn.

Example: The complex projective space CPn with the Fubini-Study metric
(suitably scaled) satisfies 1/4  K  1, and it is compact, orientable and therefore
simply connected (by Synge’s theorem) but is not di↵eomorphic to S2n for n > 1.
So the bound is sharp.
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Proof. First by Bonnet-Myers’ theorem, M is compact. So there exists k > 1/4 so
that k  K  1. By Klingenberg’s estimate,

l := diam(M, g) � inj(M, g) � ⇡ >
⇡

2
p
k

Take p, q 2 M such that d(p, q) = diam(M, g). Let q0 2 M be an arbitrary point
such that

l1 := d(p, q0) >
⇡

2
p
k

and let �1 be a minimizing normal geodesic connecting p = �1(0) to q0 = �1(l1).

Lemma 0.14. (Berger)

Let (M, g) be a compact Riemannian manifold, p, q 2 M such that d(p, q) =
diam(M, g). Then for any Xp 2 TpM , there exists a minimizing geodesic � con-
necting p = �(0) to q so that g(�0(0), Xp) � 0.

By this lemma one can find a minimizing normal geodesic �2 from p = �2(0) to
q = �2(l) such that g(�0

1(0), �
0
2(0)) � 0.

Then by some results which we haven’t studied (Toponogov comparison theorem)

we have M = Br(p) [Br(q), where r = 1
2

⇣
inj(M, g) + ⇡

2
p
k

⌘
.

On the other hand since r < inj(M, g), both Br(p) and Br(q) are homeomorphic
to Rn. Then the sphere theorem follows from the following theorem from topology:

Theorem 0.31. (Brown)

Let M be a smooth compact manifold. If M = U1 [ U2, where U1, U2 are open
subsets in M that are homeomorphic to R

n, then M is homeomorphic to the sphere
Sn.

⇤
Remark: It is natural to ask if in the conditions of the sphere theorem manifold

M is di↵eomorphic to Sn?
Note that the problem is totally nontrivial since there exists exotic spheres, i.e.

manifolds that are homeomorphic to a sphere but not di↵eomorphic to a sphere.
Whether an exotic sphere admits a Riemannian metric with K > 0 is still an open
problem.

Remark: Sphere theorem in lower dimensions: For n = 2: let M be an oriented
compact surface with K > 0, then by the Gauss-Bonnet formula

0 <

Z

M

KdA = 2⇡�(M)

Since the sphere is the only oriented smooth compact surface with positive Euler
characteristic (�(S2) = 2), we conclude that M is di↵eomorphic to S2.

For n = 3 Hamilton showed by introducing Ricci flow method that if (M, g)
is a 3-dimensional compact Riemannian manifold with Ric > 0, then (M, g) is
di↵eomorphic to S3.

For n = 4 there is Chang-Gursky-Yang (2003) theorem that M is di↵eomorphic
to S4 or RP 4.


