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Lecture 15

We will study the variation of Energy functional today, in particular, the second
variation formula for the second derivative upon the variation.

0.47. Variation of Energy. While studying Jacobi fields we have learn that they
correspond to variations, in particular, starting with Jacobi field we can construct
a variation. We can do that in general too!

Proposition 0.31. Let V (t) be a smooth vector field along �, then there is variation
F (s, t) such that V is its variational field. Moreover, if V (a) = V (b) = 0, then there
exists a proper variation.

Proof. 1. Using properties of exponentional map we have: for 8t 2 [a, b] there exists
e(t) such that s 7!exp�(t) is defined for |s| < e(t).

2. By compactness there exist an universal e such that F (s, t) =exp�(t)(sV (t))
is defined on (�e, e)⇥ [a, b]

3. It is smooth since the geodesic flow is smooth.
4. @F

@s (0, t) = V (t) since F (·, t) is geodesic through �(t) with initial velocity V (t).
5. If V (a) = 0 then F (s, a) = �(a). ⇤
Our idea now: Consider the map E : P (p, q) ! R, we want to find minimum.

To get this we are going to calculate the first and second derivatives.

Proposition 0.32. (First variation formula)

Let F (s, t) be a variation of � : [a, b] ! M with variational field V (t). Then

d

ds
E(�s)|s=0 = g(V (t), �0(t))|t=b

t=a �
Z b

a
g(V (t),r�0(t)�

0(t))dt

Remark: We don’t require �s to be geodesics so rTT not necessarily zero then.
If it is geodesic then the second term in the equation above vanishes.

Proof. Let us consider two vector fields:

Y (s, t) =
@F

@s
, X(s, t) =

@F

@t
such that Y (0, t) ⌘ V (t), X(0, t) = �0(t), X(s, t) = �0

s(t)

Then by definition of energy functional we have E(s) = 1/2
R b
a g(X,X)dt. Direct

calculation would give E0(s) = 1
2

R b
a

@
@sg(X,X)dt =

R b
a g(rY X,X)dt =

R b
a g(rXY,X)dt

where the last equation follows since X,Y commutes.
Continuing computation we have

E0(s) =

Z b

a

@

@t
g(Y,X)� g(Y,rXX) = g(Y,X)|t=b

t=a �
Z b

a
g(Y,rXX)dt

If we plug s = 0 we get the proposition. ⇤
Corollary 0.7. For proper variations we have

E0(0) = �
Z b

a
g(V (t),r�0(t)�

0(t))dt
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First we have the following corollary.

Corollary 0.8. � is geodesic is equivalent 8 proper variations of � E0(0) = 0.

Proof. The assertion from left to the right follows from the remark above and
Proposition 0.32.

On contrary, if E0(0) = 0 then
R b
a g(V (t),r�0�0)dt = 0. Choose V (t) = f(t)�0(t)

where f(a) = f(b) = 0, f > 0, then
R b
a f(t)|r�0�0|2 = 0 ) r�0�0 = 0, so � is

geodesic! ⇤
Now we know that geodesics are critical points of Energy functional E, to de-

termine if they are minimizing we need second derivative.

0.48. Second variation formula.

Proposition 0.33. (Second variation formula)

Let F (s, t) be a variation of geodesic � : [a, b] ! M . Then

E”(0) = g(rV V (t), �0)|t=b
t=a +

Z b

a
(g(rTV,rTV )�R(V, T, T, V ))

Proof. As in the proof of the first variation:

1

2

@

@s
g(X,X) = g(rXY,X)

Then
1

2

@2

@s2
g(X,X) = g(rY rXY ,X) + g(rXY,rXY )

We have for the red term rY rXY = rXrY Y � R(X,Y )Y and for the blue one
we have rXY = rY X. Hence,

1

2

@2

@s2
g(X,X) = g(rXrY Y,X)�R(X,Y, Y,X) + g(rTV,rTV )

The red term is equal to @
@tg(rY Y,X) � g(rY Y,rXX), the last term vanishes

since � is geodesic.
Therefore,

1

2

@

@s
g(X,X)|s=0 =

@

@t
g(rY Y, �

0)�R(�0, V, V, �0) + g(rTV,rTV )

and integrate from a to b. ⇤

Remark: If we elaborate 1
2

@2

@s2 g(X,X) = g(rXrY Y,X) � R(X,Y, Y,X) +
g(rXY,rXY ) = @

@tg(rY Y,X)�R(Y,X,X, Y ) +�g(rXrXY, Y ) + @
@tg(rXY, Y )

we have for s = 0

E00(0) = (g(rV V, �
0) + g(rTV, V ))|t=b

t=a �
Z b

a
(R(V, �0, �0, V ) + g(rTrTV, V ))dt

Corollary 0.9. If F is proper variation then

E00(0) =

Z b

a
(g(rTV,rTV )�R(V, T, T, V )) dt

Remark: If � is a local minimum for E then E00(0) � 0 for any V .
We can prove the Proposition 0.33 for the 2-parameter variation F (v, w, t). Let

�v,w be a restriction of F (v, w, t) to the
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Proposition 0.34. For |v|, |w| small, let �v,w be a 2-parameter variation of geo-
desic � : [a, b] ! M . We denote �0

v,w by T and let be V,W two vector fields tangent
to the variations. Then there is a formula

d2

dvdw
E(�v,w)|v=w=0 = g(rWV, T )|ba+

Z b

z
g(rTV,rTW )�g(R(W,T )T, V )�Tg(V, T )Tg(W,T )dt

The proof is analogous to the one we had above. If either V or W vanishes
at endpoints (any variation with endpoints fixed can be reparameterized to be
perpendicular) then the first term drops. The resulting formula is the same as in
Corollary 0.9:

d2

dvdw
E(0) =

Z b

a
(g(rTV,rTW )�R(W,T, T, V )) dt

0.49. Index form and conjugate points.

Definition 0.54. (Index form). Let V := V (�) denote the space of smooth vector
fields along � which are everywhere perpendicular to � and V0 the subspace of per-
pendicular vector fields along � that vanish at the endpoints. The index form is the
symmetric bilinear form I on V is defined by

I(V,W ) :=

Z b

a
(g(rTV,rTW )�R(W,T, T, V )) dt

Remark: The index form is symmetric and as in the remark after Proposition
0.33 we have

I(V,W ) = g(rTV,W )|ba �
Z b

a
g(rTrTV �R(T, V )T,W )

From the Second variation formula we have the following

Corollary 0.10. Suppose I is positive definite on V0. Then � is a unique local
minimum for length among smooth curves joining p to q. More generally, the null
space of I on V0 is exactly the set of Jacobi fields along � which vanish at the
endpoints.

Proof. It follows from the Second variation formula using Jacobi equation: � is a
unique local minimum for length among smooth curves joining p to q.

Let V,W both vanish at the endpoints, then V is in the null space of I i↵ V is
a Jacobi vector field. ⇤

Remark: If V is Jacobi vector field with V (a) = V (b) = 0 then points �(a), �(b)
are conjugate along �. In opposite if the endpoints are conjugate then I has a non-
trivial null space. The dimension of it is the dimension of the null space of dexp at
the relevant point.


