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Lecture 14

Example:
We can use this to calculate section curvature for (Sn, round metric).

Fix a point x in a sphere, and two vectors v, w 2 TxSn which form an orthonor-
mal basis. Let use pararametrization v(s) = vcos s+w sin s for the curve in TxSn,
and �(t) = xcos t+ v sin t for the parametrization of the geodesic through x in the
direction of v. Then F (s, t) = �s(t) = xcos t + (vcos s + w sin s) sin t is the family
of geodesics.

Then,

J(t) =
@F

@s
(0, t) = w sin t

Therefore, |J(t)|2 = sin2 t = (t � t3

6 + ...)2 = t2 � t4

3 + .... It means that
K(�(v, w)) = 1. And for the sphere of radius R we have K(�(v, w)) = 1/R2.

Example:
Let us study Jacobi fields on manifolds of constant curvature., let J be a Jacobi

field along the geodesic �, normal to �0. Using proposition 0.25 we have

g(R(�0, J)�0,W ) = K (g(�0,W )g(J, �0)� g(�0, �0)g(J,W )) = �Kg(J,W ) = �g(KJ,W )

for any vector field W .
Therefore, the equation of geodesics is

D2J

dt2
+KJ = 0

where we mean rTrTJ(T ) as
D2J
dt2 .

Now let w(t) be a parallel field along � with g(�0, w(t)) = 0, and |w(t)| = 1, then

(1) J(t) =

8
>><

>>:

sin(t
p
Kp

K
w(t), if K > 0,

tw(t), if K = 0,
sin(t

p
�Kp

�K
w(t), if K < 0

is a solution for Jacobi equation with initial conditions J(0) = 0 and J 0(0) =
w(0). This can be easily verified, for example in the case K > 0 we have

D2J

dt2
+KJ(t) =

D

dt

 
cos (t

p
K)w(t) +

sin(t
p
K)p

K

D

dt
w(t)

!
+K

sin(t
p
K)p

K
w(t) =

= �
p
K sin(t

p
K)w(t) +

p
K sin(t

p
K)w(t) = 0

The red term is zero since w(t) be a parallel field along �.
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Example: Let F (s, t) =expptv(s) be a parametrized surface (we assume ev-
erything is defined) and v(s) is a curve in TpM with |v(s)| = 1, v(0) = v and
v0(0) = w, |w| = 1.

First observation is that the rays t 7! tv(s) starting from the origin 0 2 TpM
deviate from the ray t 7! tv(0) with the velocity

| @
@s

tv(s)(0)| = |t @
@s

v(s)(0)| = |tv0(0)| = |tw| = t

On the other hand Equation (from Proposition 0.30 says that the geodesics
t 7!expp(tv(s)) deviate from the geodesic �(t) =expptv(0) with a velocity that
di↵ers from t by a term of the third order of t given by � 1

6K(p,�)t3.

0.45. Conjugate points and the Cartan-Hadamard Theorem.

Definition 0.44. (Conjugate points). Let p 2 M , and let v 2 TpM . We say
q :=expp(v) is conjugate to p along the geodesic �v if dexpp(v) : TvTpM ! TqM
does not have full rank.

It means that v is a critical point of expp.

Lemma 0.8. Let � : [0, 1] ! M be a geodesic. The points �(0) and �(1) are
conjugate along � if and only if there exists a non-zero Jacobi field J along � which
vanishes at the endpoints.

Remark: We can use this lemma 0.8 as a definition of conjugate points.

Proof. Let w 2 TvTpM be in the kernel of dexpp(v), and by abuse of notation, use w
also to denote the corresponding vector in TpM . Define F (s, t) :=expp((v + sw)t).
Then dF (@s) = d(expp)tv(tw) is a Jacobi field J(t) along �v which vanishes at
p = �v(0) and q = �v(v).

Conversely, suppose J is a nonzero Jacobi field along � with J(0) = J(1) =
0. Then if we define F (s, t) :=exp�(0)((�

0(0) + sJ 0(0))t),then J = dF (@s),and
dexpp(�0(0))(J 0(0)) = J(1) = 0. ⇤

Remark: It follows that the definition of conjugacy is symmetric in p and q.

Definition 0.45. The dimension of the vector space {J(t0) = J(t1) = 0, J Jacobi
vector field } is the multiplicity of the conjugate point.

Example: On a sphere antipodal points are conjugate points along any geodesic
with multiplicity n � 1. Indeed, we know that the sphere has constant sectional
curvature 1. As we have seen in the last example of the previous subsection the
Jacobi equation is then of the form rTrTJ + J = 0 and for every geodesic � of
Sn we know that J(t) = (sin t)w(t) with w(t) being a parallel field along � with
g(�0(t), w(t)) = 0 and |w(t)| = 1 is a Jacobi field along �. Hence, we have

J(0) = (sin 0)w(0) = 0 = (sin⇡)w(⇡) = J(⇡)

As TpSn has dimension n we can choose n � 1 linearly independent parallel fields
w(t) along � satisfying the required conditions. Hence �(⇡) is a conjugate point of
multiplicity n� 1.
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Definition 0.46. The set of (first)31 conjugate points to the point p 2 M for all
geodesics that start at p is called the conjugate locus of p and is denoted by C(p).

Examples:

• The conjugate locus of p 2 Sn is �p.
• For the ellipsoid conjugate locus is bigger

• R
n has no conjugate points since Jacobi fields satisfy J 00(t) = 0

Remark: The Jacobi equation and Lemma 0.8 together let us use curvature
to control the existence and location of conjugate points (and vice versa). One
important example of this interaction is the Cartan-Hadamard Theorem:

Theorem 0.24. Let M be complete and connected, and suppose the sectional cur-
vature satisfies K  0 (nonpositive) everywhere. Then exp is nonsingular, and
therefore expp : TpM ! M is a covering map. Hence (in particular), the universal
cover of M is di↵eomorphic to R

n, and ⇡i(M) = 0 for all i > 1.

Remark:We haven’t defined homotopy groups so we will not go further deep on
it. In the case of simply-connected manifolds we have the map expp : Rn ! M to
be isomorphism.

Definition 0.47. A smooth map f : M ! N is said to be a smooth covering map
if for any q 2 N , there is a neighborhood V of q in N and disjoint open subsets U↵

of M so that f�1(V ) = \↵U↵, and for each ↵, f : U↵ ! V is a di↵eomorphism.

Remark: If f is a covering map, then dimM = dimN and f is surjective.
Before we proceed to the proof, let us give one more definition.

Definition 0.48. Let M be a topological space. A covering space of M is a topo-
logical space M̃ together with a continuous surjective map ⇡ : M̃ ! M such that
for every p 2 M , there exists an open neighborhood U of p, such that ⇡�1(U) is a
union of disjoint open sets in M̃ , each of which is mapped homeomorphically onto
U by ⇡.

The name is inspired by the following property: universal cover (of the space
M) covers any connected cover (of the space M).

Moreover, universal cover exists for any manifold.
Example: R is a universal cover of S1.

Proof. The crucial observation is that the condition K  0 implies that for J a
Jacobi field along a geodesic �, the length squared g(J, J) is convex along �.

Lemma 0.9. Let M be a complete Riemannian with nonpositive sectional curva-
ture. Then

(1) C(p) = ; for 8p 2 M .
(2) expp is a local di↵eomorphism.

Proof. Let us consider the Jacobi field J(t) along � with �(0) = p, �(t0) = q, J(0) =
J(t0) = 0.

31First means no conjugate points before it.
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Then
d

dt
g(J(t), J(t)) = 2g(J 0, J)

d2

dt2
g(J, J) = 2g(J 0, J 0) + 2g(J 00, J) = 2|J 0|2 � 2g(R(J, T )T, J) =

= 2|J 0|2 � 2K(�)|�0 ^ J |2 � 0

where � is 2-plane generated by �0, J . However, if J(t) has two zeros then |J |2 has
a max, where d

dtg(J(t), J(t))  0. That’s a contradiction.
Moreover, it follows that dexp is nonsingular at every point, and expp : TpM !

M is an immersion. ⇤

Lemma 0.10. Let M,N be Riemannian manifolds, M (geodesically) complete and
f : M ! N surjective local isometry (in particular, local di↵eomorphism). Then f
is a covering map.

Proof. Let p 2 N and f�1(p) = {pi} be its preimages., and let Br(p) be a ball in
N such that expp : Vr(0) ! Br(p) is di↵eomorphism.

Denote by U := Br(p) and Ui =exppi(Br(0)) ⇢ M , they exist since M is com-
plete.

We claim that f�1(U) is disjoint union of Ui and f : Ui ! U is di↵eomorphism.
Indeed, first we prove that f(Ui) ⇢ U . For any point q 2 Ui there is geodesic
� which connects pi and q with L(�) < r. Since f is local isometry then f · � is
geodesic from p to f(q), and L(f ·�) < r, it means f(q) 2 U , hence, f(Ui) ⇢ U . For
the second assertion of a claim let us consider the following commuting diagram

exppi

TpiM � Br(0) ! Ui

#f⇤ expp #f
TpN � Br(0) ! U

Since f⇤ and expp are di↵eomorphism, and exppi is injective, therefore it is also bi-
jective, which makes f bijective too. Hence, both exppi and f are di↵eomorphisms.

Now we will prove that f�1(U) is disjoint union of Ui. Suppose q̃ 2 f�1(U), q =
f(q̃). Consider geodesic � from p to q such that we have geodesic �̄ from q to p and
let v = �̄0(0). Then there exists geodesics �̃ with �̃(0) = q̃ and �̃0(0) = (f⇤)�1(v).
Then f · �̃ = �̄. Indeed, since dfq̃TqM ! TqN is a linear isometry, one can find
a unique Xq̃ 2 Tq̃M so that dfq̃(Xq̃) = �̄0(0). By completeness of M there exist
geodesics �̃ with required initial data. Then (We used completeness here!) Then
f · �̃ is a geodesic in N with same initial conditions as �̄, so they coincide. Moreover,
because dfq̃TqM ! TqN is a linear isometry the lift �̃ is unique.

Then the endpoint of geodesic �̃ is pi for some i. Hence, q̃ 2 Ui.
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If there are two geodesics �̃1, �̃2 from point q̃ to some p1, p2, then they must
project to the same geodesics from q to p by its uniqueness property.

⇤
The map expp is well-defined, surjective and by the first lemma it is local di↵eo-

morphism. Then the Riemannian metric on M pulls back to a Riemannian metric
on TpM , i.e. expp is a local isometry. So radial lines tv through the origin are
geodesics since they map to geodesics. Thus, by the Hopf-Rinow Theorem 0.19 the
metric on TpM is complete, and therefore expp is a covering map by the second
lemma. ⇤

Remark: The second lemma is known as Ambrose theorem.

Corollary 0.6. Let (M, g) be a complete simply connected flat manifold. Then
(M, g) is isometric to (Rn, g0).

Proof. Choose any p. Identify TpM with R
n as usual and let ḡ =exp⇤pg on R

n. We
have already proved that the map expp : (Rn, ḡ) ! (M, g) is both a di↵eomorphism
and a local isometry. So it is a global isometry. Since g is flat, ḡ is then a flat
metric on R

n. But two flat metrics on R
n di↵er only by a linear isomorphism So

the conclusion follows. ⇤
Definition 0.49. A complete simply-connected Riemannian manifold with non-
positive curvature is called a Cartan-Hadamard manifold, or an Hadamard mani-
fold.

0.46. Energy and variations (recap). First recall about the energy.
Consider p, q 2 M and let P (p, q) be piecewise di↵erentiable paths from p to q,

length gives a map L : P (p, q) ! R�0 given by

L(�) =

Z b

a
g(�0(t), �0(t))1/2dt

Minimizing geodesic is a global minimum of L, i.e. critical point of map L.
Let us recall and also summarized few thing we have proved before:

• if � is length-minimizing curve from p to q then L(�)  L(�̃), 8�̃ 2 P (p, q),
and equation holds only if � is reparametrization of a geodesic.

• We can introduce another functional:

E(�) =
1

2

Z b

a
g(�0, �0)dt

as we did in the Lecture 8 (subsection 0.31).
• Proposition 0.17 says that for length-minimizing geodesic � E(�)  E(�̃)
for any �̃ and equation holds i↵ �̃ is length-minimizing (i.e. L(�) = L(�̃)
and �̃ has constant speed).

Types of variations:

• 2-parameter variation

Definition 0.50. A 2-parameter variation of � : [a, b] ! M is a smooth
map F (v, w, t) : (�✏, ✏)⇥(��, �)⇥[a, b] ! M for some ✏ > 0 with F (0, 0, t) =
�(t).

• Variation
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Definition 0.51. A variation of � : [a, b] ! M is a smooth map F :
(�✏, ✏)⇥ [a, b] ! M for some ✏ > 0 with F (0, t) = �(t).

• Geodesic variation

Definition 0.52. A geodesic variation F (s, t) is a variation such that
�s(t) := F (s, t) is a geodesics for any s.

• Proper variation

Definition 0.53. A proper variation is a variation with F (s, a) = �(a), F (s, b) =
�(b)

For any given variation we have associated vector field:

F (s, t) V (t) =
@F

@s
(0, t) ⌘ dF (@s)

which is called variational field.
We have another field which is tangential to �: T := dF (@t). Both are vector

fields near �.
Remark: If we have 2-parameter variation F (v, w, t) of � then we denote T :=

dF (@t), V := dF (@v),W := dF (@w) (we have named coordinates here accordingly
to vector fields).

We will usually work with variation F (s, t).

Remark: Proper variation means that variational field has V (a) = V (b) = 0.

Remark: Jacobi field is a variation field for the geodesic variation.


