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Lecture 12

We will discuss properties of sectional curvature and spaces of constant curvature.
After this we will start applying curvature to the deformations of geodesics.

0.40. Sectional curvature (properties). In more details the statement that full
tensor R can be recovered from the sectional curvature is revealed by the proposition
below.

Proposition 0.23. The sectional curvature determines the Riemann curvature.

Proof. Suppose that for all p 2 M and for all 2-dimensional subspaces � = Span{X,Y } ⇢
TpM we have that K = K̃, we need to show that R = R̃. The condition K = K̃ is
exactly another way to say R(X,Y, Y,X) = R̃(X,Y, Y,X).

Then R(X + Z, Y, Y,X + Z) = R̃(X + Z, Y, Y,X + Z) forX,Y, Z so

R(X,Y, Y,X)+R(Z, Y, Y, Z)+2R(X,Y, Y, Z) = R̃(X,Y, Y,X)+R̃(Z, Y, Y, Z)+2R̃(X,Y, Y, Z)

, using the fact that R̃(Z, Y, Y,X) = R̃(Y,X,Z, Y ) = R̃(X,Y, Y, Z) and the same
is true for R. Thus

R(X,Y, Y, Z) = R̃(X,Y, Y, Z)

for all X,Y, Z.
Therefore, using R(X,Y +W,Y +W,Z) = R̃(X,Y +W,Y +W,Z) we have

R(X,Y,W,Z) +R(X,W, Y, Z) = R̃(X,Y,W,Z) + R̃(X,W, Y, Z) (⇤)
and thus using the symmetry properties of R, R̃ we can see that (⇤) is left invariant
under the cyclic permutations of X,Y, Z.

So,

(R� R̃)(X,Y, Z,W ) = (R� R̃)(Y, Z,X,W ) = (R� R̃)(Z,X, Y,W )

Then Bianchi identity means that 2(R � R̃)(X,Y, Z,W ) = (R � R̃)(Y, Z,X,W ) +
(R� R̃)(Z,X, Y,W ) = �(R� R̃)(X,Y, Z,W ). Q.e.d ⇤

Examples:

1. For any flat manifold sectional curvature is 0.
2. For S2, we that TpS2 = Span{X1, X2} where g(X1, X1) = 1 and g(X2, X2) =

sin2 ✓ and g(X1, X2) = 0 so that K(X1, X2) = 1.
3. For H2 all sectional curvatures are �1.

Now let us connect what we are doing with the Curves and Surfaces course.

Proposition 0.24. Let M be an oriented surface in R
3
. Then the sectional cur-

vature K(TpM) = K(p), the Gaussian curvature of M at p.

Recall that the eigenvalues of the second fundamental form are called principal

curvature and Gaussian curvature is their product.
Example: For surfaces in R

3, we see that K(p) = K(TpM) = Ric(E1, E1) =
Ric(E2, E2) and thus s(p) = Ric(E1, E1) + Ric(E2, E2) = 2K(p), i.e. the scalar
curvature is just twice the sectional (or Gaussian) curvature.

Remark: If X 2 TpM is unit vector, then Ricci curvature Ric(X,X) :=P
i R(X,Ei, X,Ei) isn � 1 times average sectional curvature of planes through

X. Indeed, consider X,E1, ..., En, where Ei are orthonormal basis, and denote
�i = hX,Eii.

Then K(�i) = R(X, ei, X, ei).
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Let us parametrize planes through X by v 2 unit vectors perpendicular to X,
what is Sn�2. With the usual measure on Sn�2 we have the statement.

Definition 0.40. We say that (M, g) has constant curvature if K(�) = K for any

point p 2 M and plane � ⇢ TpM .

0.41. Spaces of constant curvature. We have seen that R
n is flat, sphere has

positive curvature and hyperbolic space has negative. In fact, this gives all basic
constant curvature spaces. More generally, if M is constant curvature space and G
is the group of isometries, then the quotient M/G is constant curvature space.

Proposition 0.25. The space has constant curvature K0 i↵

R(X,Y, Z,W ) = K0 · (g(X,W )g(Z, Y )� g(X,Z)g(W,Y ))

Proof. It follows from the fact that the Riemann curvature is determined by the
sectional. ⇤

We can also describe the Ricci and scalar curvatures of Riemannian manifolds
with constant sectional curvature.

Proposition 0.26. If (M, g) has constant sectional curvature K0 then Ric = (n�
1)K0g and S = n(n� 1)K0.

Proof. By the Proposition 0.25 we see that in orthonormal basis

Ric(X,Y ) =
X

k

R(X,Ek, Ek, Y ) = K0

X

k

(g(X,Y )g(Ek, Ek)�g(X,Ek)g(Y,Ek)) = K(n�1)g(X,Y )

Hence,

s =
X

i,j

Rijji = K0

X

ij

(g(Ei, Ei)g(Ej , Ej)� g(Ei, Ej)
2) = K0(n

2 � n)

⇤

Remark: Riemannian manifolds with constant sectional curvature are Einstein
manifolds and have constant scalar curvature.

Examples:

1. R
n has constant sectional curvature 0. The same is true of Rn/Zn ' Tn.

So their Ricci and scalar curvatures are also 0.
2. We saw that S2 has constant sectional curvature 1. The same is also true

of RP 2. Their Ricci curvature tensors are Ric = g and scalar curvature
s = 2.

3. Hyperbolic space has curvature -1.
Indeed, consider H2 as example. It is the set of points with x2

1+x2
2�x2

3 =
�1, x3 > 0 with the Riemann metric given by the restriction g of dx2

1+dx2
2�

dx2
3. Let us parametrize H

2 by f(✓,') = (sinh ✓cos', sinh ✓ sin', cosh ✓)
and fix two fields X1 = f⇤@✓, X2 = f⇤@'. Then

g(·, ·) =
✓
1 0
0 sinh2 ✓

◆

For the Levi-Civita connection we have
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rX1X1 = 0, rX2X2 = � sinh ✓ cosh ✓X1, rX2X1 = rX1X2 = coth ✓X2

Using [X1, X2] = 0 we have

R(X1, X2)X2 = rX1(� sinh ✓ cosh ✓X1)�rX2(coth ✓X2) = (� cosh2 ✓�sinh2 ✓)X1+cosh2 ✓X1 = � sinh2 ✓X1

Therefore, R1221 = � sinh2 ✓. With orthonormal basis we will have the
curvature equal to -1.

Remark: If (M, g) has constant sectional curvature K, we can always rescale
the metric so that K 2 {1, 0, 1}.

In particular, if we multiply the metric byt then the sectional curvature changes
by a factor of t�1. So, a 2-sphere of radius r has constant sectional curvature 1/r2.

We know that isometries of Rn are given by O(n) together with translations.
The question is how the isometries of Sn and H

n look like.
In the case of sphere the following holds

Theorem 0.20. The unit sphere Sn
with the induced metric g is complete, its

geodesics are the great circles, it has constant sectional curvature 1, the set of

isometries is the group O(n+ 1).

We know first by Hopf-Rinow theorem, as well as we described geodesics. We
know that O(n+ 1) defines isometries of Rn+1, and these are the only linear maps
in R

n+1 that preserve Sn.

It extends in a natural way to the case of K = �1.

Theorem 0.21. The unit sphere H
n

with the induced metric g is complete, its

geodesics are given by ⇧ \ H
n
for 2-planes ⇧ through the origin which meet H

n30

(they are called Lorentz planes), it has constant sectional curvature -1, the set of

isometries is the group O+(n, 1) = {A 2 Mn+1(R) : AT gA = g, an+1,n+1 > 0},
where

g =

����
I 0
0 �1

����

Proof. The proof is very similar to the one for Sn. Clearly, the isometries are
as stated because O+(n, 1) preserves g on R

n+1 by definition and preserves H
n.

Given p = (0, ..., 0, 1) 2 H
n and X 2 TpH

n, let � be the unique geodesic through
p with tangent vector X. If we define ⇢ 2 O(n, 1) to be the reflection in the plane
⇧ = Span{p,X}, since ⇢ is an isometry we see that ⇢ · � is another geodesic with
the same properties as �.

Thus, by uniqueness of geodesics, we have � 2 ⇧ \H
n.

Concretely, for p = (0, ..., 0, 1), if we takeX = (0, 0, ..., 1, 0) then �(t) = (0, ..., 0, sinh t, cosh t).
Clearly, these geodesics are defined for all t 2 R so H

n is complete and uniqueness
implies that these are all the geodesics as claimed.

We can restrict to calculating the sectional curvature of H2, which we know is
-1, so the result follows. ⇤

There are several models of hyberbolic n-space. The model we have been using
is called the hyperboloid model.

30In the case of sphere great circles are also given by analogous intersections.
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Example: There is an isometry f : (Hn, g) ! (Bn, h), where Bn is the interior
of a unit ball in R

n and

h =
X

i

4dy2i
(1�

P
i y

2
i )

2

given by

f(x1, ..., xn+1) =
(x1, ..., xn)

1 + xn+1

(Bn, h) is called the Poincare disk model.
Another model is given by isometry f : (Hn, g) ! (Hn, h), where Hn is the

upper half-plane and

h =
X

i

dz2i
z2n

given by

f(x1, ..., xn+1) =
(x1, ..., xn�1, 1)

xn + xn+1

This (Hn, h) is called upper-half plane model of hyperbolic n-space.
Remark: The metric on upper half-plane is not the standard Riemannian met-

ric.

We finish this section with this easy-to-state-hard-to-prove result

Theorem 0.22. Let (M, g) be a complete n-dimensional Riemannian manifold

with constant sectional curvature K 2-1,0,1. Then there exists a discrete group G
acting freely and properly discontinuous by isometries such that (M, g) is isometric

to

• Sn/G if K = 1
• R

n/G if K = 0
• H

n/G if K = �1.

As a corollary we have

Proposition 0.27. Let M be a complete 2n-dimensional Riemannian manifold

with constant sectional curvature 1. Then M is isometric to S2n
or RP 2n

with

their standard Riemannian metrics.

Question: What about the odd dimensions?
It fails. There are Lens spaces, given by the quotient of S3 by any cyclic group

Zk. Also tetrahedral and other more complicated subgroups of O(4) act on S3 in
the appropriate way.

Let us proposition above.

Proof. By theorem 0.22 we have that it is S2n/G for some G acting freely and
properly discontinuous. If fx is the isometry corresponding x 2 G, then detfx = ±1.

If it is 1, then all eigenvalues are 1 (they are real since non0real comes in pairs
and we are in the case of O(2n+1)). Therefore, fx has a fixed point, contradiction
with the assumption the action is free, so fx = id.

If detfx = �1, then fx = ±id. Hence, S2n/G is either sphere or the projective
space. ⇤
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0.42. Mean curvature. Let N be a smooth submanifold of M . It is instructive
to compare the sectional curvature of a 2-plane � contained in TpN in N and in
M . Choose (commuting) vector fields X and Y in X (N).

Evidently ||X ^Y ||2 = ||X||2||Y ||2 is the same whether computed in M or in N .
We compute

KM (�) · ||X ^ Y ||2 = KN (�) · ||X ^ Y ||2 + g(rXr?
Y Y �rY r?

XY,X)

On the other hand, g(r?
XY, Z) = 0 for any X,Y, Z and therefore g(rXr?

Y Y,X) =
�g(r?

Y Y,r?
XX). Similarly for the other term.

Using the symmetry of the second fundamental form, we obtain the so-called
Gauss equation:

KN (�) · ||X ^ Y ||2 = KM (�) · ||X ^ Y ||2 + g(II(X,X), II(Y, Y ))� ||II(X,Y )||2

In the special case that N is codimension one and co-orientable, the normal bundle
µN may be identified with the trivial line bundle R ⇥ N over N , and II may
be thought of as an ordinary symmetric inner product on N . Using the metric
inner product on N , we may express II as a symmetric matrix, by the formula
II(X,Y ) = g(II(X), Y ).

Definition 0.41. Let N be a codimension one co-orientable submanifold of M . If

we express II as a symmetric matrix by using the metric inner product, the eigen-

values of II are the principal curvatures, the eigenvectors of II are the directions

of principal curvature, and the average of the eigenvectors (i.e. 1/dim(N) times

the trace) is the mean curvature, and is denoted H.

Definition 0.42. Let N be a codimension 1 co-oriented smooth submanifold of E
n
.

The Gauss map is the smooth map g : N ! Sn�1
, the unit sphere in E

n
, determined

uniquely by the property that the oriented tangent space TpN and Tg(p)S
n�1

are

parallel for each p 2 N .

Remark: For a surface S in E
3, the sectional curvature can be derived in a

straightforward way from the geometry of the Gauss map.
Remark: Another way to think of the Gauss map is in terms of unit normals. If

N is codimension 1 and co-oriented, the normal bundle µN is canonically identified
with R⇥N and has a section whose value at every point is the positive unit normal.
On the other hand, µN is a subbundle of TEn|N , and the fiber at every point is
canonically identified with a line through the origin in En. So the unit normal
section � can be thought of as taking values in the unit sphere; the map taking a
point on N to its unit normal (in Sn�1) is the Gauss map, so by abuse of notation
we can write � = g (in Euclidean coordinates).

Lemma 0.7. For vectors u, v 2 TpN we have II(u, v) = �hdg(u), vi.
Proof. Let us first extend u, v to vector fields U, V near p. Then h�, V i = 0, where
� is the unit normal field.

Then
hrU�, V i+ h�,rUV i = 0

Also, h�,rUV i = r?
UV = II(U, V ) (via identifying µN with R⇥N).

Furthemore, rU� = d�(U) = dg(U). ⇤
Corollary 0.4. For a smooth surface S in E

3
the form K · darea = g⇤darea; i.e.

the pullback of the area form on S under g⇤ is K times the area form on S, where
K is the sectional curvature (thought of as a function on S).
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Proof. At each point p 2 S we can choose an orthonormal basis e1, e2 for TpS which
are eigenvectors for II. If the eigenvalues (i.e. the principal curvatures) are k1, k2
then dg(ei) = �kiei and therefore the Gauss equation implies that KS = k1k2 at
each point. But this is the determinant of dg (thought of as a map from TpS to
Tg(p)S

2 = TpS). ⇤

0.43. Jacobi fields. To get a sense of the geometric meaning of curvature it is
useful to evaluate our formulas in geodesic normal coordinates. It can then be
seen that the curvature measures the second order deviation of the metric from
Euclidean space.

Fix some point p 2 M and let v, w be two vectors in TpM . Consider for small s
the 1-parameter family of rays through the origin in TpM defined by

⇢s(t) = (v + sw)t

Note that exp·⇢s is a geodesic through p with tangent vector at zero equal to v+sw.
We denote it �s(t).

It gives us a 1-parameter family of geodesics �s(t), s 2 (�✏, ✏).
Let us define F (s, t) := �s(t), the map from [0, 1]⇥ (�✏, ✏) ! M .
Remark: We could have started with the 1-parameter of geodesics �s(t), not

necessary intersecting at a point p.

Note that the infinitesimal change in geodesics is exactly @
@sF (s, t), at s = 0 this

is a vector field along �0.
Let us define T and J (at least locally inM) to be dF (@t) and dF (@s) respectively,

thought of as vector fields along (the image of) F . The vector field J(t) = @
@s (0, t)

measures the ”spread” of the geodesics.

For each fixed s the image F : [0, 1]⇥ s ! M is a radial geodesic through p, so
rTT = 0 throughout the image.

Since T and J commute, we have [T, J ] = 0 and rTJ = rJT and we obtain the
identity R(T, J)T = rTrV T = rTrTJ .

Definition 0.43. (Jacobi equation). Let J be a vector field along a geodesic �, and
let �0 = T along �. The Jacobi equation is the equation

R(T, J)T = rTrTJ (Jacobi equation)

for J , and a solution is called a Jacobi field.

The existence of Jacobi fields with fixed initial data follows from the theory of
ODEs (as it often happens).

Proposition 0.28. If � : [0, a] ! M is geodesic. Then there exists an unique

Jacobi field for su�ciently small a and specified initial conditions J(0), J 0(0) =
@
@tJ(0) 2 Tp(M).
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Proof. If we let ei be a parallel orthonormal frame along a geodesic � with tangent
field T , and let t parametrize � proportional to arclength, and J =

P
i viei, then

rTrTJ =
X

i

v00i ei

while R(T, J)T =
P

j vjR(T, ej)T so the Jacobi equations may be expressed as a
system of second order linear ODEs:

v00i =
X

j

vjhR(T, ei, T, eii

and therefore there is a unique Jacobi field J along T with a given value of J(0)
and J 0(0) := rTJ |t=0. ⇤
Corollary 0.5. The vector space of Jacobi vector fields along geodesics is 2n-
dimensional.

Example: There are some natural Jacobi fields:

• J1(t) = �0(t), then rT �0 = 0, J1(0) = �0(0), J 0
1(0) = 0. This corresponds

to the variation F (s, t) = �s(t) = �(s+ t).
• J2(t) = t�0(t), then rTrT (J2(t)) = 0 with J2(0) = 0, J 0

2(0) = �0(0). This
field corresponds to F (s, t) = �s(t) = �((s+ 1)t).

Note: There is map from Jacobi fields along �(t) ! R
2, given by J(t) 7!

(hJ(0), �0(0)i, hJ 0(0), �0(0)i). This map is surjective linear map because of J1, J2.
The kernel is Jacobi fields with J(0), J 0(0) ? �0(0), that is (2n � 2)-dimensional
vector space.


