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Lecture 10

Today we will prove Hopf-Rinow theorem and discus curvature tensor.

0.35. Hopf-Rinow (continuation). Now we are ready to study completeness.

Question: When is there always a minimal geodesic betwen two points?
Look first on a punctured plane.

Proposition 0.19. Let M be connected, p 2 M . If expp is defined on all of TpM ,

then 8q 2 U there exists geodesic � joining p to q with l(�) = d(p, q).

Proof. Proof is based on a lemma that for any p, q 2 M there exists p0 2 S�(p) for
a su�ciently small � with the property d(p, p0) + d(p0, q) = d(p, q).

Indeed, let us choose p0 2 S�(p) minimizing d(p0, q) (since the distance is con-
tinuous it exists). Therefore if � joining p and q and p0 2 � \ S�(p), we have
l(�) = d(p, q) � d(p, p0) + d(p0, q) � d(p, p0) + d(p0, q) � d(p, q).

Suppose d(p, q) = r and choose �, p0 as above, write p0 =expp(�v). Let � be the
geodesic. Then �(r) = q.

Define I = {t 2 [0, r]|d(�(t), q) = r � t}. Note that � 2 I. Also I is closed,
call �  T = max I  r, T 2 I. If T = r we are done. So T < r and apply
the lemma for �(T ), q there exist �0, p1 2 S�0(�(T )) with d(�(T ), p1) = �0, then
d(p1, q) = r � T � �0.

Therefore, r = d(p, q)  d(p, p1)+d(p1, q). It means d(p, p1) � r� (r�T � �0) =
T + �0. Now the path p1 = �(T + �0) has length T + �0 and T is not maximal.

⇤

Theorem 0.19. (Hopf–Rinow Theorem). Let (M, g) be a connected Riemann-

ian manifold. The following are equivalent:

(a) (M, g) is (geodesically) complete;

(b) expp is defined on all of TpM for some p 2 M ;

(c) closed bounded subsets of M are compact;

(d) (M,d) is a complete metric space. Moreover, if (M, g) is complete then for

all p, q 2 M there exists a geodesic � from p to q such that d(p, q) = L(�).

Proof. (a) ) (d)

Suppose expp : TpM ! M is globally defined, and let q 2 M be arbitrary.
There is some v 2 TpM with |v| = 1 so that dist(p,expp(sv)) + dist(expp(sv), q) =
dist(p, q) for some s > 0.

Let � : [0,1) ! M be the geodesic with �(0) = p and �0(0) = v,so that
�(t) =expp(tv). The set of t such that dist(p, �(t)) + dist(�(t), q) = dist(p, q)
is closed, so let t be maximal with this property. We claim �(t) = q and |t| =
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dist(p, q). For if not, there is some small r and some point q0 2 @Br(�(t)) so that
dist(�(t), q0) + dist(q0, q) = dist(�(t), q).

Let � : [0, r] ! M be the unit speed geodesic with �(0) = �(t) and �(r) = q0.
Then dist(p, q0) = length(�([0, t]) \ �([0, r])), and therefore these two paths fit
together at �(0) to form a smooth geodesic, contrary to the definition of t.

In particular, it follows that expp is surjective, and for every q there is a geodesic
of length dist(p, q) from p to q. Now if qi is a Cauchy sequence, we can find
vi 2 TpM with expp(vi) = qi and |vi| = dist(p, qi). By compactness, the vi have a
subsequence converging to some v, and expp(v) = q is a limit of the qi. This shows
that (b) implies (d).

Now suppose M is complete with respect to dist. We will deduce geodesically
completeness (a). Fix v 2 TpM . Then expp(sv) = �v(s) is defined on some
maximal connected subset of R+ containing 0. This interval is open, irrespective
of completeness.

Suppose there is a finite t so that the maximal domain of definition is [0, t).
Then �v(s) is a Cauchy sequence as s ! t, and therefore limits to some point q. By
Lemma 0.4 there is an open neighborhood U of q and a positive ✏ so that for every
point x 2 U the exponential map expx is defined on the ball of radius ✏ in TxM .

Then for all s su�ciently close to t the point �v(s) is in U and therefore we
can find a geodesic � of length ✏ beginning at �v(s) and with initial tangent vector
�v0(s). Then � fits together with �v([0, s]) to define �v[0, s + ✏]. But if we choose
such an s with |t� s| < ✏ this violates the definition of t.

Therefore, by opposite it follows that expp is globally defined for any p. This
shows that (d) implies (a). The implication (a) implies (b) is obvious.

We can show that (c) implies (d). Let (pn) be a Cauchy sequence in M with
respect to dist. Then (pn) is bounded so C = {pn : n 2 N} is closed and bounded
and thus C is compact by assumption. We deduce by metric space theory that (pn)
has a convergent subsequence and thus (M,dist) is complete by definition.

The last implication of (b) to (c) is left without a complete proof. The idea is
the following: if C ✓ M is closed and bounded then C ✓ Bd

R(p) ✓ expp(BR0(0)) for
some R,R0 > 0. Then we can connect p by a radial geodesic to any point q 2 C so
that dist(p, q) is the length of that geodesic. Since BR0(0) is compact and expp is

continuous we see that expp(BR0(0)) is compact and thus C is compact as desired.
The final conclusion is obvious given that (b) implies the existence of a minimizing

geodesic of length dist(p, q) from p to any point q. ⇤

Remark: The minimizing geodesic is not necessarily unique: if we take the
North and South poles N,S 2 S2, then there are infinitely many minimizing
geodesics between them given by the lines of longitude.

Moreover, we see that the upper half-space or the upper hemisphere has the
property that there is a minimizing geodesic between any two points, but these
manifolds are not complete.

Examples: Any compact M , any closed submanifold of a geodesically complete
manifold, and any homogeneous manifold are geodesically complete.

0.36. Riemann curvature. The failure of holonomy transport along commuting
vector fields to commute itself is measured by curvature. Informally, curvature
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measures the infinitesimal extent to which parallel transport depends on the path
joining two endpoints.

Definition 0.34. Let E be a smooth bundle with a connection r. The curvature

(associated to r) is a trilinear map R : X (M) ⇥ X (M) ⇥ �(E) ! �(E) which we

write R(X,Y )Z 2 �(E), defined by the formula

R(X,Y )Z := rXrY Z �rY rXZ �r[X,Y ]Z

Operaror R(X,Y ) is called the Riemann curvature operator.

Remark: Although a priori it appears to depend on the second order variation
of Z near each point, it turns out that the curvature is a tensor. The following
proposition summarizes some elementary algebraic properties of R.

Proposition 0.20. For any connection r on a bundle E the curvature satisfies

the following properties:

(1) (tensor): R(fX, gY )(hZ) = (fgh)R(X,Y )Z for any smooth functions f, g, h,
(2) (antisymmetry): R(X,Y )Z = �R(Y,X)Z,

(3) (metric): if r is a metric connection, then hR(X,Y )Z,W i = �hR(X,Y )W,Zi
Thus we can think of R(·, ·) as a section of ⌦2(M)⌦�(End(E)) with coe�cients

in the Lie algebra of the orthogonal group of the fibers.

Remark: We can informally think about this as pushing the vector Z around
a parallelogram determined by the vector fields X and Y . The outcome of this
procedure is a new tangent vector which may be di↵erent from Z. The limit of
this procedure as the sides of the parallelogram goes to 0 is the operator R(X,Y )
(when [X,Y ] = 0).

Proof. Antisymmetry follows directly from the definition.
Now let us prove the tensor property. We compute: rfXrY Z = frXrY Z

whereas
rY rfXZ = rY (frXZ) = frY rXZ + Y (f)rXZ

on the other hand [fX, Y ] = f [X,Y ]� Y (f)X so

r[fX,Y ]Z = fr[X,Y ]Z � Y (f)rXZ

so R is tensorial in the first term. By antisymmetry it is tensorial in the second
term as well.

Now let us show that R is tensorial in the third term too:

rXrY (fZ) = rXfrY Z+rXY (f)Z = frXrY Z+X(f)rY Z+Y (f)rXZ+X(Y (f))Z

and there is an analogous formula for rY rX(fZ) with X and Y reversed, whereas

r[X,Y ](fZ) = fr[X,Y ]Z + (X(Y (f))� Y (X(f)))Z

Therefore, we conclude that R is tensorial in the third term too.
To prove the metric identity, first replace X and Y by commuting vector fields

with the same value at some given point. We are able to do that because of
tensoriality of R. Then,

hrXrY Z,W i = X hrY Z,W i�hrY Z,rXW i = X(Y hZ,W i)�X hZ,rY W i�hrY Z,rXW i =
= X(Y hZ,W i)� hrXZ,rY W i � hrY Z,rXW i � hZ,rXrY W i

Subtracting o↵ hrXrY Z,W i expanded similarly, the first terms cancel because
X,Y commute, the second and third terms cancel identically. The only thing left
is �hZ,R(X,Y )W i. ⇤
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As usual we pay most of attention to TM as the bundle E.

Corollary 0.3. The curvature R is bilinear in its arguments, R(X,Y ) is a linear

operator and R(X,Y )Z(p) 2 TpM only depends on X(p), Y (p), Z(p) 2 TpM .

Proof. If we let X1, ..., Xn be a coordinate frame field in a chart (U,') at p and
write decompositions for X,Y, Z with coe�cients ai, bi, ci respectively then a direct
computation shows that

R(X,Y )Z =
nX

i,j,k=1

aibjckR(Xi, Xj)Xk

and since R(Xi, Xj)Xk is independent of X,Y, Z, this shows that R(X,Y )Z(p) only
depends on X(p), Y (p) and Z(p). ⇤

Examples:

1. For Rn with the Euclidean metric, we know that [@i, @j ] = 0 and r@i@j = 0
so R(@i, @j)@k = 0.

2. Since rXiXj = [Xi, Xj ] = 0 for the standard vector fields on Tn ⇢ R
2n we

see that R = 0.

Definition 0.35. We call Riemannian manifolds for which R = 0 flat.

Example: On S2 we have R(X1, X2)X1 = �X2, R(X1, X2)X2 = sin2 ✓X1.
Therefore, R(X1, X2, X1, X1) = 0, R(X1, X2, X1, X2) = � sin2 ✓, R(X1, X2, X2, X1) =
sin2 ✓, R(X1, X2, X2, X2) = 0.

If we let E1 = X1, E2 = X2/ sin
2 ✓, then E1, E2 are orthonormal and we have

R(E1, E2, E1, E2) = 1, this is something we expected.

Proposition 0.21. If E = TM and r is torsion-free, then it satisfies the so-called

Jacobi identity:

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0

Consequently, the Levi-Civita connection on TM satisfies the following symmetry:

hR(X,Y )Z,W i = hR(Z,W )X,Y i

Proof. We again use tensoriality to reduce to the case of commuting vector fields.
Then the term rXrY Z in R(X,Y )Z can be rewritten as rXrZY which cancels
a term in R(Z,X)Y and so on:

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = rXrY Z �rY rXZ �r[X,Y ]Z+

+rY rZX �rZrY X �r[Y,Z]X +rZrXY �rXrZY �r[Z,X]Y =

= rX [Y, Z]�r[Y,Z]X +rY [Z,X]�r[Z,X]Y +rZ [X,Y ]�r[X,Y ]Z =

= [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

The last symmetry (under interchanging (X,Y ) with (Z,W )) follows formally from
the metric property, the antisymmetry of R under interchanging X and Y , and the
Jacobi identity. ⇤

Remark: The symmetry/antisymmetry identities, and the fact that R is a ten-
sor, means that if we defineR(X,Y, Z,W ) := hR(X,Y )Z,W i thenR 2 �(S2⇤2(T ⇤M)).
Such R is well-defined because at p 2 M it only depends on gp and the values of
X,Y, Z,W at p. We call R the Riemann curvature tensor.

To sum up, we have the following identities for the Riemann curvature tensor.


