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Lecture 1

I will introduce (and remind for ones who knows) the notion of smooth manifolds.
The lectures 1 to 3 are about basic notions we need everywhere during the course.

Briefly Riemannian geometry is devoted to the study of smooth curved objects,
which play a role in analysis, engineering (like imaging), group theory, number
theory, physics (especially gravity) and topology. The smooth curved objects in
question are called Riemannian manifolds and the basic examples come from sur-
faces. There are three key examples:

• the flat plane R2 (which is flat or zero curvature);
• the sphere S2 (which is positively curved);
• the hyperbolic space H2 (which is negatively curved).
These three examples give the basic models for what objects with zero, positive

and negative curvature look like even in higher dimensions. (Another way to think
about areas of negative curvature is a saddle, like near points on the inner circle of
a torus in R3.)

0.1. Manifolds. We will start with definition and basic examples.

0.1.1. Mechanical systems. Consider the motion of a classic mechanical system -
the pendulum. It has a fixed point connected by the straight rod to the free point
with some mass which moves subject to gravity.

To specify the system at a given moment one must know:

• the position of endpoint, p ∈ S2 ∈ R3

• the velocity, q ∈ TpS2 (”tangent plane”)

The ”configuration space” of the system is therefore the union of the tangent
planes to the sphere.

This is an example of a manifold, and the evolution of the system is given by
the flow of a vector field on it. We are going to discuss these notions in the first
lectures.

In fact, the configuration space of the pendulum can be reduced toM = ∪p∈S2S1
p ,

where S1
p is the unit circle in the tangent plane.

It turns out that M is diffeomorphic to S3, the 3-sphere. The vector field on 3-
sphere defining the pendulum motion has two equilibria, ie points where the vector
field is zero.

Question: Can there be a vector field on 3-sphere with no equlilibria?
Answer is yes. But for some manifolds , no! The answer to this question depends

on the topology (global structure) of the manifold.

First guess: A manifold is the natural notion of a smooth object.
Although this definition is fake, it is useful in the sense that everything that you

would imagine to be a smooth object (and thus a manifold) is manifold. Basically
everything that you have encountered so far in geometry is a manifold: surfaces
in R3 (from the course of Differential Geometry), like the sphere and torus, and
manifolds in Rn (from Multivariable Analysis).

Moreover, the actual definition is not very enlightening. We need it, so that all
of the theory makes sense, but once we have it we then very rarely need to use it.

0.1.2. Basic examples.
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Example. R2 is a 2-dimensional manifold and in general Rn is an n-dimensional
manifold. 1

Example. The upper-half plane H2 = {(x1, x2) ∈ R2 : x2 > 0} is a 2-
dimensional manifold. Similarly, the n-dimensional upper half-space

Hn = {(x1, ..., xn) ∈ Rn : xn > 0}

is an n-dimensional manifold.
Example. The unit disk

B2 = {(x1, x2) ∈ R2 : x21 + x22 < 1}

is a 2-dimensional manifold. Similarly, the unit ball in Rn

Bn = {x = (x1, ..., xn) ∈ Rn : |x|2 =
∑
i=1

x2i < 1}

is an n-dimensional manifold.
Example. The n-dimensional sphere

Sn = {x = (x1, ..., xn+1) ∈ Rn+1 : |x|2 =
∑
i=1

x2i < 1}

.
Example. The torus in R3 is a 2-dimensional manifold.
Example. The n-dimensional torus Tn ∈ R2n given by

Tn = {(cos θ1, sin θ1, ..., cos θn, sinθn) ∈ R2n; θi ∈ R}

is an n-dimensional manifold.
The previous two examples give two possible realisations of the 2-dimensional

torus: either in R3 or in R4. Are these the same? If not, how are they different?
This is one of the questions we shall study, since it turns out they are the same
manifold but different Riemannian manifolds: i.e. they have different curvature. is
an n-dimensional manifold.

0.1.3. About non-examples. So what is a manifold? We have already seen that the
simplest example of n-dimensional manifold is just Rn and this is the local model
for all manifolds.

Second fake definition: An n-dimensional manifold is something which locally
“looks like” Rn (but globally can be much more interesting).

Remark: What does it mean locally ”looks like”? In particular, if you take a
sphere in R3, it is clearly not just flat R2, but if you look near any given point you
can define coordinates so it looks like a piece of R2.

The same trick can be done for all of the examples we have seen so far. With
this second fake definition we may ask the question: what is not a manifold?

Example. A cube is not a manifold. It is not smooth at the edges and at
the corners. It looks like R2 on the faces, but not at the edges or at the corners.
Similarly, any polyhedron is not a manifold.

Example. The closed disk in R2 is not quite a 2-dimensional manifold because
it looks like R2 in the interior where |x| < 1, but when |x| = 1 we have the circle
S1.

Remark. However, it is what is called a 2-dimensional manifold with boundary.

1We are using the word ”dimension” which is going to be discussed later.
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Example. The hyperboloid of one sheet

{(x1, x2, x3) ∈ R3 : x21 + x22 − x23 = 1}

and the hyperboloid of two sheets

{(x1, x2, x3) ∈ R3 : x21 + x22 − x23 = −1}

are 2-dimensional manifolds, but

{(x1, x2, x3) ∈ R3 : h = 0}

is a cone and so is not a manifold, because it is not smooth at 0, or it does not look
like R2 there.

0.1.4. Abstract examples. We will see that examples below are manifolds later to-
day.

Example. Let Mn(R) be the n × n real matrices. Then the general linear
group is GL(n,R) = {A ∈ Mn(R) : detA 6= 0} and the special linear group is
SL(n,R) = {A ∈ Mn(R) : detA = 1}. These are indeed groups by multiplication
as the determinant multiplicative. Then GL(n,R) is an n2-dimensional manifold
and SL(n,R) is an n2 − 1-dimensional manifold.

Example. Let I be the identity matrix in Mn(R). Then O(n) = {A ∈Mn(R) :
ATA = I} and SO(n) = {A ∈ O(n) : det(A) = 1} are the orthogonal and special
orthogonal group. Then O(n) and SO(n) are n(n− 1)-dimensional manifolds.

Example. Let SU(2) = {
(
a b
−b̄ ā

)
: a, b ∈ C, |a|2 + |b|2 = 1}. This is again

a group and is a 3-dimensional manifold. In general, if we let Mn(C) be the n× n
complex matrices, then the special unitary group

SU(n) = {A ∈Mn(C) : ATA = I, detA = 1}

is an n2 − 1-dimensional manifold and the unitary group

U(n) = {A ∈Mn(C) : ATA = I

is an n2-dimensional manifold.2

Remark. The examples just given in terms of matrices are all examples of
manifolds which are groups: in fact, this is almost the definition of a Lie group,
and these examples are all Lie groups.

Even more abstract examples.
1. Let RPn be the set of straight lines in Rn+1 through 0. Then RPn is the

real projective n-space and is an n-dimensional manifold. We can equivalently say
that RPn is the quotient of Rn+1 \ {0} by the equivalence relation x ∼ y if x = λy
for some real number λ. So we usually denote points in RPn by their equivalence
classes.

2. In the analogous way one can define a 2n-dimensional manifold, called complex
projective n-space.

Both the real and complex projective spaces play an important role in the theory
of Riemannian geometry.

2These are, sort of, complex analogues of the special orthogonal and orthogonal groups.
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0.1.5. Formal definition. As we have seen the formal definition should look in a
way so lots of object are somehow ”the same” and some are conidered as ”bad”
(with corners, angles, cusps) and these objects should be smooth enough to measure
distance and define differentation.

Definition 0.1. An n-dimensional manifold is a (separable3/second countable)
metric space M such that there exists a family A = {(Ui, ϕi) : i ∈ I} where:

• Ui is an open set in M and ∪i∈IUi = M ;
• ϕi : Ui → Rn is a continuous bijection onto an open set ϕi(Ui) with con-

tinuous inverse (i.e. a homeomorphism);
• whenever Ui∩Uj 6= ∅, the transition map ϕj ·ϕ−1i : ϕi(Ui∩Uj)→ ϕj(Ui∩Uj)

is a smooth (infinitely differentiable) bijection with smooth inverse (i.e. a
diffeomorphism).

This family A is called atlas and each pair (Ui, ϕi) is called chart.
Now we can re-consider examples above in respect with this definition:

1. Rn (and any open subset): take U = Rn, ϕ = id.
2. Sn: take US = Sn \ {S}, where S = (0, ..., 0,−1) is the South pole. The

same way we define UN . Functions ϕk : Uk → Rn, k = N,S are given by

ϕN (x) =
(x1, ..., xn)

1− xn+1
, ϕS(x) =

(x1, ..., xn)

1 + xn+1

We have explicit inverse maps (exercise!), maps ϕS , ϕN are called stere-
ographic projections. The gluing of charts is given by inversion map ϕS ·
ϕ−1N (y) = y

|y|2 , which is a diffeomorphism because it is smooth as y 6= 0 and

it is its own inverse.
3. RPn: For i = 1, ..., n+ 1 we let Ui = {(x1, ..., xn+1)] ∈ RPn : xi 6= 0}, and

define ϕi : Ui → Rn by ϕi([x]) = (x1

xi
, ..., xn+1

xi
).

Absolutely the same works for the CPn.

Remark. We could have chosen different atlases which could give different
manifold structures.However, if atlases are equivalent they give the same manifold
structure, and an equivalence class of atlases is called a smooth structure. Two
atlases are equivalent the union of the two atlases is still an atlas.

0.1.6. Regular value theorem. Now we give a general technique for constructing
manifolds which is very helpful.

Theorem 0.1. (Regular value theorem) Let F : Rn+m → Rm be a smooth map and
suppose that for all p ∈ F−1(c), where F−1(c) 6= ∅ the derivative dFp : Rn+m → Rm

is surjective. Then F−1(c) is an n-dimensional manifold.

. Before we give the proof, let us consider some applications of 0.1.

1. Let F (x1, ..., x2n) = (x21+x22−1, ..., x22n−1+x22n−1. Simple check gives that
the matrix of dFx has rank n. Therefore F−1(0) = Tn is n-dimensional
manifold.

2. Let F : Mn(R) → Mn(R) given by F (A) = ATA − I, the image of F is in
symmetric matrices since F (A)T = F (A). As the exercise compute the
the derivative of smooth map F . It is BTA + ATB. If C ∈ Symn(R) and

3Separable means there is a countable dense subset: for Rn just take Qn as the countable
dense subset
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A ∈ F−1(0) then dFA( 1
2AC) = C so dFA is surjective. By the 0.1 we see

that O(n) = F−1(0) is an 1
2n(n− 1)-dimensional manifold.

Remark. Being a regular value of a function is a sufficient condition to ensure
that the level set is a manifold, it is not necessary. In particular, let F (x, y) = x3−
y3. Then dF (x, y) = (32, 3y2) so 0 is not a regular value of F because dF (0, 0) = 0.
However F−1(0) = {(x, y) ∈ R2 : x3 = y3} = {(x, x) ∈ R2} which is a 1-dimensional
manifold (just a diagonal line in the plane).

Remark. Moreover, in general, if you look at the zero set of a system of poly-
nomials you will get a manifold if the system has a root. This is the entrance to
the world of Algebraic Geometry.


