LTCC: Hodge Theory

Dr. Nikon Kurnosov (UCL)

Problem set 2-3.

You are welcome to discuss solutions with me and your classmates. If you have any questions email me at n.kurnosov@ucl.ac.uk. See you next week!

- 1. ow that the upper half-plane \mathfrak{H}_g can be written as $Sp(g,\mathbb{Z})/U(g)$.
- **2.** Let g = 2 and determine the isotropy group Γ of iId_g .
- **3.** Show that for Kähler manifold X we have $\Delta_d = 2\Delta_{\bar{\partial}}$.
- 4. Consider the lattice $\Lambda_0, q_0 = \left(\mathbb{Z}^{2g}, \begin{pmatrix} 0 & -D \\ D & 0 \end{pmatrix}\right)$, where *D* is the diagonal matrix with elements $d_1|...|d_g$. The matrix *D* is called *principal polarization*. What is the space of weight one Hodge structures on Λ_0 polarized by q_0 ?
- **5.** Show that the natural pairing of A and A^{\vee} defines a morphism $A \otimes A^{\vee} \to \mathbb{Z}$ of Hodge structures, where \mathbb{Z} is the trivial Hodge structure.
- **6.** Check that $Sp(g,\mathbb{Z})$ preserves row space.
- 7. Show the Hodge diamond of a quintic in $X \subset \mathbb{P}^4$ is