Nikon Kurnosov University College London

December 7th, 2020

outline of course

- 1. Legendre families, period map
- 2. Hodge structure of curves and abelian varieties
- 3. Hodge decomposition, Kähler manifolds
- 4. Period domains, mixed Hodge structures
- 5. Deformation theory intro and variations of the Hodge structure, *p*-adic Hodge structures

Before

- Elliptic curves = genus 1 Riemann surfaces, parametrized by $\lambda \in \mathbb{C} \setminus \{0, 1\}$
- ▶ $H^1(E_{\lambda}) = \mathbb{C}[\omega = \frac{dx}{y}] \oplus \mathbb{C}[\overline{\omega}]$ Hodge structure of weight one
- local period map P : P¹ \ {0,1,∞} → ℍ given by ratio of periods (integrals of ω on the basis of cycles)
- monodromy representation $\rho: \pi_1((\mathbb{P}^1 \setminus \{0, 1, \infty\}), \lambda_0) \to Sl_2(\mathbb{Z})$ (bc we can change the basis)
- ▶ global period map $ilde{P} : \mathbb{P}^1 \setminus \{0, 1, \infty\} \to img \rho ackslash \mathbb{H}$
- A real (rational, integer) Hodge structure of weight k is a real vector space H_ℝ (H_Q, free Z-module H_Z) together with a decomposition:

$$H_{\mathbb{C}} := H_{\mathbb{R}} \otimes \mathbb{C} = \bigoplus_{p+q=k} H^{p,q}$$

for $\mathbb C$ -subspaces $H^{p,q} \subset H_{\mathbb C}$ st $H^{p,q} = \overline{H}^{q,p}$

 Hodge structure might be defined by filtration (Lecture 2) or as real algebraic representation (Lecture 3)

- There is notion of polarization (which is generalization of the intersection form for elliptic curve). it is a quadratic form on H_ℝ which is symmetric (anti-symmetric) if k even (odd) and satisfies Q(H^{p,q}, H^{p',q}) = 0 unless p = q', q = p', and i^{p-q}Q(x, x̄) > 0 for any 0 ≠ x ∈ H^{p,q}
- Analogously to the elliptic curve curves of genus g have Hodge structure of weight one given by H^{1,0} – closed holomorphic forms
- The period map $ilde{P}: ilde{U} o \mathfrak{H}_g$ to Siegel upper half-space
- ▶ there is a quotient map $P: U \to Sp(g, \mathbb{Z}) \setminus \mathfrak{H}_g$ which is holomorphic map of analytic spaces
- there is correspondence between weight one HS and complex tori
- Hodge decomposition for complex torus via translational-invariant forms
- ► Hodge decomposition in a Kähler case $H^n_{dR}(X, \mathbb{C}) = \bigoplus_{p+q=n} H^{p,q}_{\overline{\partial}}(X)$
- Lefschetz decomposition gives $H^n_{dR}(X, \mathbb{C}) = \bigoplus_i L^i H^{m-2i}_{prim}(X)$

Before

- ► The map $[\omega]^k \cup (-) : H^k_{dR} \to H^{m-2k}_{dR}$ is an isomorphism (Hard Lefschetz theorem)
- ► Hodge numbers for hypersurfaces in P^N differ from P^N only in a middle line (Lefschetz hyperplane theorem)
- The Hodge diamond for K3 has been computed as an example. The middle line is 1, 20, 1.
- Weight two Hodge structures of the type (1, x, 1) are called K3-type HS.
- Kuga-Satake construction assignes complex torus (that means HS of weight one) via Clifford algebras using the view of HS as the real algebraic representation
- Period domain is homogeneous space
- The Hodge structure might be defined for singular varieties as well via MHS
- Weight filtration via Gysin spectral sequence

Splitting of MHS

Mixed Hodge structure: more examples Tate twist

Let $H = (H_{\mathbb{Z}}, F, W)$ be a mixed Hodge structure. We define $H(m)_{\mathbb{Z}} := (2\pi i)2m \cdot H_{\mathbb{Z}}, W_k(H(m)) := W_{k+2m}H, F^p(H(m)) := F^{p+m}H$

Then H(m) is also a mixed Hodge structure, the *m*-th Tate twist of *H*.

Cohomology of Kähler manifold

Deformation theory: intro

Let $B = \Delta^s$ and $\mathcal{X} \to B$ be a smooth projective map, so L on \mathcal{X} s.t. $L|_{X_s}$ ample, and X_0 is the fiber over $0 \in B$. We set $H_{\mathbb{Z}} = H^*_{prim}(X_0, \mathbb{Z})$, $Q_{\mathbb{Z}}$ polynomial coming from $c_1(L|_{X_0}), h^{p,q} = dim H^{p,q}_{prim}(X_0)$. Hence we have a map $P: B \rightarrow D = \{ \text{Hodge structures on } H_{\mathbb{Z}} \text{ plarized by } Q_{\mathbb{Z}} \text{ with } \}$ Hodge numbers $h^{p,q}$ holomorphic. Now, we are generalizing this picture: let S be a smooth complex manifold with $\mathcal{X} \xrightarrow{\pi} S$ with the fiber X_0 over s_0 . After considering minimal cover \tilde{S} of S we have analytic continuation, holomorphic map, $\tilde{P}: \tilde{S} \to D$ of $P: S \to \Gamma \setminus D$, where $\Gamma = img(\pi_1(S, s_0) \rightarrow G(\mathbb{Z}) = Aut(H_{\mathbb{Z}}, Q_{\mathbb{Z}})).$

Let $F, G \in \mathbb{C}[x_0, ..., x_N]$ be a degree d homogeneous polynomials cutting out smooth hypersurfaces. Conside $\mathcal{X} = V(tF + sG) \in \mathbb{P}^n \times \mathbb{P}^1_{t,s}$ with map $\pi : \mathcal{X} \to \mathbb{P}^1$. Note: The map π might have singular fibers along the divisor $\Delta \subset \mathbb{P}^1$ so $\mathcal{X}_U = \pi^{-1}(u) \xrightarrow{\pi} U = \mathbb{P}^1 \setminus \Delta$. As we have seen any intersecting Hodge structure is in weight N - 1.

Another example

Degree d homogeneous polynomials in $\mathbb{C}[x_0, ..., x_N]$ Consider all degree d polynomials in $\mathbb{C}[x_0, ..., x_N]$. Then $\mathbb{X} \xrightarrow{\pi} \mathbb{P} := \mathbb{P}H^0(\mathbb{P}^N, \mathcal{O}(d))^{\vee}$, where $\mathcal{X} = V(\sum_{|I|=d} a_I x^I) \subset P^N \times \mathbb{P}$. The dimension of ¶ is $C_{N+d}^d - 1$. Then, for the divisor $\Delta \subset \mathbb{P}$ where fiber is singular we have $\mathcal{X}_{U} \to U = \mathbb{P} \setminus \Delta$. **Example**: Degree 4 in \mathbb{P}^3 (K3 surface). Then $dim U = C_7^4 - 1 = 34$. It gives map $P: U \to \Gamma \setminus D$, where D - polarized Hodge structures on $\Lambda^4_{\kappa_3}$ with Hodge numbers (1, 19, 1) (it is open set in \hat{D} , which is quadric in $\mathbb{P}(\Lambda_{K3}^4 \otimes \mathbb{C})$. In particular, dimD = 19. Note: $PGL_4(\mathbb{C}) \bigcirc U$, i.e. g acts in a way that X and gX have isomorphic polarized Hodge structures. Hence, P factors via $\hat{P}: PGL_4(\mathbb{C}) \setminus U \to \Gamma \setminus D$. The $dimPGL_4(\mathbb{C}) \setminus U = 34 - 15 = 19$. And \hat{P} is close to \simeq .

Kodaira-Spencer

liftability of the field to family

Let $\mathcal{X} \xrightarrow{\pi} \Delta$ be a smooth projective family and ξ tangent field on *Delta*, then the lift $\tilde{\xi}$ to the family \mathcal{X} if

- 1. locally π is projective free product
- 2. path with partition of unity

There is a flow φ_t trivializing \mathcal{X} in direction of ξ . If ξ is holomorphic, we can take $\tilde{\xi}$ of type (1,0) if we can take $\tilde{\xi}$ holomorphic, then we will have holomorphic trivialization φ_t , which is not the case in general since (2) fails. But (1) still holds so local holomorphic lifts $(U_i, \tilde{\xi}_i)$ exist. Therefore, obstruction to holomorphically trivializing π in the direction of ξ is measured by $(U_i \cap U_j, \tilde{\xi}_i - \tilde{\xi}_j) \in H^1(\mathcal{X}, T_{\mathcal{X}/\Delta} = Ker(T_{\mathcal{X}} \to \pi^* T_{\Delta}))$

Kodaira-Spencer map

For family
$$\mathcal{X} \xrightarrow{\pi} S$$
 at $s_0 \in S$ the KS map is $\kappa : T_{S,s_0} \to H^1(X_0, T_{X_0}).$

Remark: It measures whether family is trivializable to 1st order.

Deformations

Definition

A deformation of a smooth projective X_0 is a map $\pi : \mathcal{X} \to S$ with π smooth projective and X_0 as the fiber over s_0 .

Definition

The deformation is called

▶ complete if for any other deformation $\mathcal{X}' \xrightarrow{\pi'} \mathcal{T}$ there is a polydisc $t_o \in B \subset \mathcal{T}$ and a map $B \xrightarrow{f} S, t_0 \mapsto s_0$ such that $\mathcal{X}'|_B \simeq f^* \mathcal{X}$.

universal if it is complete and f is unique

versal if it is complete and f is unique to first order

Fact

- If $\kappa : T_{S,s_0} \twoheadrightarrow H^1(X_0, T_{X_0})$ then π is complete
- If κ is \simeq then π is versal
- If $H^2(X_0, T_{X_0}) = 0$ then a versal deformation exists with KS map an isomorphism
- If further $H^0(X_0, T_{X_0}) = 0$ then that deformation is universal

Deformations

Notations:

 $Def(X_0) = H^1(X_0, T_{X_0})$ measures first order deformations of X_0 , $Obs(X_0) = H^2(X_0, T_{X_0})$ measures obstruction to constructing with a given first order behavior $H^0(X_0, T_{X_0})$ – holomorphic vector fields, ie infinitesimal automorphisms of X_0

Example:

If X is Calabi-Yau (for instance, K3), then $\omega_X = \Omega_X^{dimX} \simeq \mathcal{O}_X$. Then $T_X \simeq \Omega_X^{dimX-1}$. So, $H^i(X, T_X) \simeq H^i(X, \Omega_X^{dimX-1}) \simeq H^{dimX-1,i}(X)$ A few more words on K3 surfaces

Deformations

For any K3 surface there is an unobstructed 20-dimensional universal deformation

local Torelli

The map $S \rightarrow D$ is a local isomorphism.

Period map in terms of deformation theory

Consider a smooth projective family \mathcal{X} over a disk B: Shrinking B we make π trivial as a C^{∞} -family. Hence, there is a smooth family of diffeomorphisms $\varphi_t : X_0 \xrightarrow{\simeq} X_t$. It induces $\varphi_t^* : H^k(X_t, \mathbb{Z}) \xrightarrow{\simeq} H^k(X_0, \mathbb{Z})$.

Note: This preserves polarizing form q_t (induced by $h_t = c_1(L|_{X_t})$, where *L* is given by restricting $\mathcal{O}(1)$).

Period map

 $P: B \to D$ with $t \mapsto [\varphi_t^* H_{prim}^*(X_t, \mathbb{Q})]$ (in terms of filtrations: $P^{\bullet}(t) := \varphi_t^* F^{\bullet} H_{prim}^k(X_t, \mathbb{C}))$

Proposition

- The map *P* is holomorphic: $\frac{\partial}{\partial \overline{z}} P^{\bullet}(z)|_{z=0} = 0$
- (Griffiths transversality) $\frac{\partial}{\partial z} P^i(z)|_{z=0} \subset P^{i-1}(0) = F_0^{i-1}$

Deformation theory

Nontriviality of a family vs nontriviality of one of its period maps

Setup: D – Hodge structures on $H_{\mathbb{Z}}$ polarized by $Q_{\mathbb{Z}}$ with given Hodge numbers, there is an action of $G(\mathbb{R})$ on D (last lecture), and D is open in \hat{D} (where $G(\mathbb{C})$ acts). Denote the Lie algebra of $G(\mathbb{R})$ as $\mathfrak{g}_{\mathbb{R}} \subset End(H_{\mathbb{R}})$ ($\mathfrak{g}_{\mathbb{C}}$ respectively for $G(\mathbb{C})$)

weight 0 HS on $\mathfrak{g}_{\mathbb{R}}$

For $x \in D$ one have $\mathfrak{g}_x^{p,-p} = \{\xi \in \mathfrak{g}_{\mathbb{R}} | \xi(\mathcal{H}_x^{r,s}) \subset \mathcal{H}_x^{r+p,s-p} \}, \mathfrak{g}_x^{\geqslant 0} = \bigoplus_{p \geqslant 0} \mathfrak{g}_x^{p,-p}.$

Gauss-Manin connection

From the last diagram we have a natural map: $T_X^{hor}D \xrightarrow{\oplus_p \sigma^p} \bigoplus_p Hom(F_x^p/F_x^{p+1}, F_x^{p-1}/F_x^p)$ Definition $\mathcal{H}_{\mathbb{C}} := R_{prim}^k \pi_* \mathbb{C}$ – sheaf whose sections over $U \subset B$ are families $\alpha_z \in H_{prim}^k(X_z, \mathbb{C})$ with $\varphi_z^* \alpha_z$ constant. $A^0(\mathcal{H}_{\mathbb{C}}) :=$ sheaf whose sections are all smooth families $\alpha_z \in H_{prim}^k(X_z, \mathbb{C}).$

Definition (Gauss-Manin connection)

For a given α_z lift it to $\alpha_z = [\omega|_{X_z}]$ for ω on \mathcal{X} closed on fibers, lift ξ to $\tilde{\xi}$ on \mathcal{X} , $\nabla_{\xi} \alpha = [(L_{\tilde{\xi}} \omega)|_{X_z}]$ is a section of $A^0(\mathcal{H}_z)$.

Lemma

Gauss-Manin connection satisfies the Leibnitz rule: $\nabla_{\xi}(f\alpha_z) = df(\xi)\alpha_z + f\nabla_{\xi}\alpha_z.$

Proof of Leibnitz rule

Griffiths transversality

Definition

Let \mathcal{F}^p is a sheaf whose sections are $\alpha_z \in F^p H^k_{prim}(X_z, \mathbb{C})$ s.t. $\varphi_z^* \alpha_z$ is holomorphic. It could be described as the sheaf of sections of holomorphic vector bundle because such sections are pulled-back from \hat{D} (*P* is holomorphic).

Griffiths transversality

If ξ is a holomorphic vector bundle on B, then we can take $\tilde{\xi}$ of type (1,0) and we have Griffiths transversality: $\nabla_{\xi} \mathcal{F}^{p} \subset \mathcal{F}^{p-1}$. Hence, we obtain \mathcal{O} -linear map:

$$T_B \xrightarrow{\nabla^p} Hom(Gr_{\mathcal{F}}^p, Gr_{\mathcal{F}}^{p-1})$$

Indeed,

Property of ∇^p

map i_{κ}^{p}

There is a natural map:

 $i_{\kappa}^{p}: H^{1}(X_{0}, T_{\chi_{0}}) \rightarrow Hom(H^{q}(X_{0}, \Omega_{\chi_{0}}^{p}), H^{q+1}(X_{0}, \Omega_{\chi_{0}}^{p+1}))$

which is defined by taking cup-product with $\kappa(\xi)$ and contracting.

Proposition

 $i^p_\kappa = \nabla^p$

Period map: revision

Definition The map $P: B \to D$ is **horizontal** if dP factors through $T^{hor}D$.

Examples

Consider curve *C* of genus $g \ge 2$. Then $H^2(T_C) = 0$. Therefore, there is versal $\mathcal{C} \to Def(C)$ with $\kappa : T_0 Def(C) \xrightarrow{\simeq} H^1(T_C)$. Let us consider the period map: $P : Def(C) \to D = \mathfrak{H}_g \subset Gr(g, H^1(C, \mathbb{C}))$ with $dP = i_{\kappa} : T_0 Def(C) \simeq H^1(T_C) \simeq H^0(\omega_C^{\otimes 2})^{\vee} \to$ $Hom(H^0(\omega_C), H^1(\omega_t)) \simeq H^0(\omega_C)^{\vee} \otimes H^0(\omega_C)^{\vee}$

Proposition

The map i_{κ} is dual to multiplication: $m: H^0(\omega_C) \otimes H^0(\omega_C) \to H^0(\omega_C^{\otimes 2})$

Bunch of classical theorems

Theorems

- ▶ (Noether) If C is non-hyperelliptic, m is surjective
- (Petri) If C is non-hyperelliptic, non-trigonal, not a plane quintic, it is determined by Ker(m).
- (infinitesimal Torelli) If C is non-hyperelliptic, then $P: Def(C) \rightarrow \mathfrak{H}_g$ is immersive at 0.
- (generic Torelli) If C is non-hyperelliptic, non-trigonal, not a plane quintic, it is determined by dP₀.

Deformations of CYs

Variations of HS, local systems

Let X be a manifold, R is $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, or \mathbb{C} , denote by R_X sheaf of locally constant functions into R, and analogously Λ_X is the sheaf of functions into module.

Definition

An *R*-local system/*X* is a sheaf \mathcal{L} of *R*_{*X*}-modules locally isomorphic to Λ_X .

Note:

For $R = \mathbb{C}$: it is equivalent to \mathbb{C} -vector bundles whose transition functions can be chosen to be constant.

It is also equivalent to representation $\pi_1(X, x) \to GL(L_x)$. Hence, we can define $A^0(\mathcal{L}) = \mathcal{L} \otimes_{R_X} \mathcal{C}_R^{\infty}$ – sheaf of sections $\sum f_i e_i$ with e_i sections of \mathcal{L} and f_i *R*-valued functions. And $\Omega^0(\mathcal{L}) = \mathcal{L} \otimes_{R_X} \mathcal{O}$ – the same with f_i holomorphic. Remark: $A^0(\mathcal{L})$ comes with an unique connection $\nabla : A^0(\mathcal{L}) \to A^1(\mathcal{L}) = \mathcal{L} \otimes A^1_X$ such that $\nabla e = 0$ for $\forall e \in \mathcal{L}$. Moreover, there is connection on $\Omega^0(\mathcal{L})$ Example: For $\mathcal{X} \xrightarrow{\pi} S$ smooth, ∇ associated to $R^k \pi_* \mathbb{C}$ is Gauss-Manin connection

Variations of HS

Definition

An *R*-variation of Hodge structure/S is $(\mathcal{H}_R, \mathcal{F}^{\bullet})$, where

- \mathcal{H}_R is an *R*-local system
- *F*[•] is a descending filtration of Ω⁰(*L*) in the category of
 O-modules such that ((*H_R*)_s, *F*[•]_s) is an *R*-Hodge structure for each *S* ∈ *S* and ∇(*F*[•]) ⊂ Ω¹(*F*^{•−1}) = *F*[•] ⊗ Ω¹_S

Examples:

- ► (R^{*}π_{*}ℤ, F[•]R^{*}π_{*}ℂ) is a ℤ-variation of Hodge structure.
- ► Given two variations V, V' of hodge structure over S of weights k and k', there is a natural structure if variation of Hodge structure on the local systems of V ⊗ V' and Hom(V, V') of weights k + k' and k - k' respectively
- Let V be a Hodge structure of weight k and s₀ ∈ S. Suppose we have a representation ρ : π₁(S, s₀) → Aut(V). Then the local system V(ρ) associated to ρ gives a locally constant variation of HS.

VHS

Theorem

Let \mathcal{V} be a variation of HS of weight k on a complex manifold S which is Zariski open in a compact complex manifold. Then $H^0(S, \mathcal{V})$ admits a HS of weight k. The evaluation map at a point $s \in S$ gives an isomorphism of $H^0(S, \mathcal{V})$ with the subspace of \mathcal{V}_s left fixed by the action of $\pi_1(S, s)$. The inclusion of this subset into \mathcal{V}_s is a morphism of HS. In other words, the variation of HS on \mathcal{V} restricts to a constant variation of HS on its maximal constant local system.

Corollary

If $a \in H^0(S, \mathcal{V})$ has Hodge type (p, q) at some point $s \in S$, it has Hodge type (p, q) everywhere.

Fact

A variation of HS \mathcal{V} over S with $img(\pi_1(S,s) \to GL(\mathcal{V}_s)) \subset \Gamma$ is equivalent to a locally liftable horizontal holomorphic map $X \to \Gamma \backslash D$, where D is associated period domain.

Hodge numbers

Theorem

The Hodge numbers $h^{p,q}(X_t) = \dim_{\mathbb{C}} H^{p,q}(X_t)$ are constant.

Gauss-Manin connection for curves

Short review for elliptic curves

A few words on *p*-adic Hodge Theory

Thanks!