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outline of course

1. Legendre families, period map
2. Hodge structure of curves and abelian varieties
3. Hodge decomposition, Kähler manifolds
4. Period domains, mixed Hodge structures
5. Deformation theory intro and variations of the Hodge structure,
p-adic Hodge structures



Before

I Elliptic curves = genus 1 Riemann surfaces, parametrized by
λ ∈ C \ {0, 1}

I H1(Eλ) = C[ω = dx
y ]⊕ C[ω] - Hodge structure of weight one

I local period map P : P1 \ {0, 1,∞} → H given by ratio of
periods (integrals of ω on the basis of cycles)

I monodromy representation
ρ : π1((P1 \ {0, 1,∞}), λ0)→ Sl2(Z) (bc we can change the
basis)

I global period map P̃ : P1 \ {0, 1,∞} → imgρ\H
I A real (rational, integer) Hodge structure of weight k is a real

vector space HR (HQ, free Z-module HZ) together with a
decomposition:

HC := HR ⊗ C =
⊕

p+q=k Hp,q

for C-subspaces Hp,q ⊂ HC st Hp,q = H
q,p

I Hodge structure might be defined by filtration (Lecture 2)
or as real algebraic representation (Lecture 3)



I There is notion of polarization (which is generalization of the
intersection form for elliptic curve). it is a quadratic form on
HR which is symmetric (anti-symmetric) if k even (odd) and
satisfies Q(Hp,q,Hp′,q) = 0 unless p = q′, q = p′, and
ip−qQ(x , x) > 0 for any 0 6= x ∈ Hp,q

I Analogously to the elliptic curve curves of genus g have
Hodge structure of weight one given by H1,0 – closed
holomorphic forms

I The period map P̃ : Ũ → Hg to Siegel upper half-space
I there is a quotient map P : U → Sp(g ,Z)\Hg which is

holomorphic map of analytic spaces
I there is correspondence between weight one HS and complex

tori
I Hodge decomposition for complex torus via

translational-invariant forms
I Hodge decomposition in a Kähler case

Hn
dR(X ,C) =

⊕
p+q=n Hp,q

∂
(X )

I Lefschetz decomposition gives Hn
dR(X ,C) =

⊕
i LiHm−2i

prim (X )



Before

I The map [ω]k ∪ (−) : Hk
dR → Hm−2k

dR is an isomorphism (Hard
Lefschetz theorem)

I Hodge numbers for hypersurfaces in PN differ from PN only in
a middle line (Lefschetz hyperplane theorem)

I The Hodge diamond for K3 has been computed as an
example. The middle line is 1, 20, 1.

I Weight two Hodge structures of the type (1, x , 1) are called
K3-type HS.

I Kuga-Satake construction assignes complex torus (that means
HS of weight one) via Clifford algebras using the view of HS
as the real algebraic representation



More on the HS of K3
Last time we get the Hodge diamond for smooth degree 4 surface in P3, and
h = c1(OX (1)):

1
0 0

1 20 1
0 0

1

Any projective surface with this Hodge diamond is called K3 surface.
Note: H2(X ,Z) has Z-pairing q(α, β) =

∫
X α ∪ β

This pairing is

I unimodular bc of Poincare duality

I even (ie 2|q(α, α)). For α = c1(L), where L is the line bundle it follows from
Riemann-Roch formula χ(L) = 1

2
c1(L)2 + 2. In general, it follows from Wu’s

formula.

I signature (3, 19). It follows from the Index Theorem that
τ = b+

2 − b−2 = 1
8
p1(X ) = 1

3
(c2

1 − 2c2) = −16. In detail,

H2(X ,Q) = H2
prim(X ,Q)⊕ Qh, where

∫
h2 > 0. Also (H2,0 ⊕ H0,2)R is

2-dimensional and H1,1
R is 19-dimensional.

I lattice ΛK3 is determined uniquely by these data: H2(X ,Z), q) ' U3 ⊕ E8(−1)2,
where U is hyperbolic matrix and the second factor is the minus Cartan matrix
of E8 root diagram.



Period domain for K3 surface

I Aut(ΛK3) act transitively on primitive h ∈ ΛK3 with h2 = 2d

I If X has ample class h with h2 = 2d :
H2
prim(X ,Z) ' Λ2d

K3 := (−2d)⊕ U2 ⊕ E8(−1)2

Period domain
D = { Hodge structures on Λ2d

K3 polarized by q with Hodge
numbers (h2,0, h1,1, h0,2) = (1, 19, 1)} = {Cσ ⊂ Λ2d

K3 ⊗C|q(σ, σ) =

0, q(σ, σ) > 0}D̂ = {Cσ ⊂ Λ2d
K3 ⊗ C|q(σ, σ) = 0} ⊂ P(Λ2d

K3 ⊗ C)

Remark: D̂ is smooth quadric. Hence, period domain is analtically
open set in a projective variety D̂. In particular it is a complex
manifold.

Period map

P : { marked K3 surfaces/ isomorphism } → D, where marking is
isometry between H2(X ,Z) and lattice ΛK3.



Torelli theorems

Let A and A′ be free Z-modules of finite rank, endowed with
Hodge structures and bilinear forms. A Hodge isometry A→ A′ is
an isomorphism that respects both the Hodge structures and the
bilinear forms.

Torelli for K3
Two complex K3 surfaces X and X ′ are isomorphic if and only if
there is a Hodge isometry H2(X ,Z) ' H2(X ′,Z).

Remark: Theorem was proved by Shapiro-Shafarevich (algebraic
case) and Burns-Rapoport (analytic case). It is named for its
analogy to the original Torelli theorem for curves: two complex
curves X and X ′ are isomorphic if and only if their Jacobians
Jac(X ) and Jac(X ′) are isomorphic as polarized abelian varieties.
Remark: Next time we will discuss the deformation theory and
formulate local Torelli theorem.



Deformation theory: Intro
A deformation of X is a proper smooth family X → S with a
distinguished point 0 ∈ S and a given isomorphism X0 ' X .
Remark: In fact we are only interested in the germ of the family
around 0. A deformation X → S is universal if any other
deformation X ′ → S ′ is (on germs) the pullback of X → S along a
unique map S ′ → S .
Usually people ask about the existence of universal deformation,
and if deformation theory is unobstructed
Example: K3 surfaces (Kodaira-Spencer). Let X be a K3
surface. Then it has a universal deformation X → Def (X ). It is a
universal deformation for each of its fibers. The deformation space
Def (X ) is a smooth complex manifold of dimension 20.
Indeed,the dimension 20 originates from isomorphisms
T0Def (X ) = H1(X ,TX ) ' H1(X ,Ω1X ).
The deformation space Def (X ) is simply connected, so given a
marking of X we have a period map Def (X )→ D
(local Torelli) Let (X , ϕ) be a marked K3 surface. The period
map Def (X )→ D is a local isomorphism on Def (X ).



Quintic 3-folds

What if we have quintic 3-fold in P4 instead of K3 surface? When
the middle line of Hodge diamond is (1, 101, 101, 1).

And (H3(X ,Z), q) =

(
Z204,

[
0 Id
−Id 0

])
=: (ΛCY 3, q)

Question: What is period domain in that case?

Answer: It appears that in this (and a lot of other cases) period
domains are better phrased in terms of Hodge filtration.
So, recap of filtrations...



Filtrations recap
Suppose H has a weight k Hodge structure. Then

F iHC =
⊕

p+q=k,p>i

Hp,q

gives descending filtration (Hodge filtration)

HC = F 0HC ⊃ F 1HC ⊃ ... ⊃ F kHC ⊃ F k+1HC

Hodge structure could be recovered from the filtration as follows:
HC = F pHC ⊕ F k−p+1HC ,H

p,q = F pHC ∩ F qHC.

Motivation (Griffiths): The Hodge filtration exists naturally on the
cohomology of a smooth compact complex algebraic variety X and
it is defined by a natural filtration on the algebraic de Rham
complex.

Also, GrpFHC := F pHC/F p+1HC ' Hp,q is the object of quotient
complex with the induced filtration.



Period domain for quintic 3-fold

Let X ⊂ P4 is quintic 3-fold

Recall (H3(X ,Z), q) =

(
Z204,

[
0 Id
−Id 0

])
=: (ΛCY 3, q)

Period domain
D = { flags ΛCY 3 ⊗ C = F 0 ⊃ F 1 ⊃ F 2 ⊃ F 3 ⊃ 0, dimF 0/F 1 =
dimF 3 = 1, dimF 1/F 2 = dimF 2/F 3 = 101|F • is isotropic, h is
postive-definite } ⊂ D̂ = { flags F •|F • is isotropic }.
Remark: The latter one is the projective variety!



Hodge filtration for cohomology
WARNING: We are over the field of characteristic zero. Namely, if
X is nonsingular over a field k,Ω•X/k (note that this is a complex
of coherent sheaves although the differential is of course not
OX -linear). The cohomology of this complex, Hm

dR(X ) is a vector
space over k and in char p differentiating can get very tricky.

Deligne theorem

Let X be a smooth compact complex algebraic variety, then the
filtration F by subcomplexes (truncation) of the de Rham
complex: F pΩ∗X := Ω∗>pX = 0→ 0→ ...→ 0→ ΩpX →
Ωp+1X → ...→ ΩnX → 0 induces a Hodge filtration of a Hodge
structure on the cohomology of X

This is the ”stupid” filtration.



Filtration on cohomology

The filtration on de Rham complex induces the one on the
cohomology.

Filtration on de Rham cohomology

The Hodge filtration F is defined on de Rham cohomology as
follows: F pH i (X ,C) = F pH i (X ,Ω∗X ) := Im(H i (X ,F pΩ∗X )→
H i (X ,Ω∗X )).

Remark: The first isomorphism is defined by holomorphic Poincare
lemma on the resolution of the constant sheaf C by the analytic de
Rham complex Ω∗.

isomorphism

If X is a nonsingular over C, then Hm(X ;C) = Hm(X ,Ω•X/C)

Remark: The beauty of the theorem is that the group on the LHS
is the singular cohomology of X , which is all about the (classical)
topology of X , where as you can compute the group on the RHS
purely from the Zariski topology of X .



Spectral sequence as the Hodge filtration

Hodge-to-de Rham spectral sequence

The proof of Deligne theorem is based on the degeneration at rank
one of the spectral sequence with respect to F which is defined as
follows:

FE 1
p,q := Hp+q(X ,GrpFΩ∗X ) ' Hq(X ,ΩpX )⇒

GrpFHp+q(X ,Ω∗X ) = Hp+q
dR (X )

When X is complex projective (or compact Kähler) you can
interpret Hodge theory as saying that for all r > 1 E1 = Er – that
is, the spectral sequence degenerates on the first page. The reason
for this degeneration is deep and it is the most crucial way in
which topological spaces underlying algebraic varieties are special.



Weil operator

Descending filtration F • on HC is isotropic with respect with
quadratic form q if the following condition applies
q(F p,F q+1) = 0, ∀p + q = k.

Condition
F •HC is isotropic iff q(Hp,q,Hp′,q′) = 0 unless (p, q) = (q′, p′).

Weil operator

The Weil operator C ∈ End(HR) is defined by
C |Hp,q = ip−q, C =

⊕
C |Hp,q

Hodge metric

The Hodge metric is the hermitian form: h(x , y) := q(x ,C y)

Remark: C is defined over reals. Indeed, for x ∈ Hp,q we have
C x = iq−px = Cx
Remark: HQ is polarized by q iff h is positive-definite.



Period domains via filtrations
Let HZ be free Z-module of a finite rank, qZ a (−1)k alternating
form, and hp,q is the set of Hodge numbers with the condition
hp,q = hq,p such that

∑
hp,q = rkHZ.

This gives integral Hodge structure polarized by qZ.

Period domain
D = {F • descending length k filtrations on HC with
dimGrpFHC = hp,q|F • is isotropic, q(x ,C y) is positive-definite

} ⊂ D̂ = {F •|F • is isotropic }
In particular, for a point x0 ∈ D gives HC =

⊕
Hp,q

0 ,F •0 HC,C0, h0.

Group action on D

Let G (R) = Aut(HR, qR) be an automorphism group. Then it acts
transitively on D, so D ' G (R)/StabG(R)(x0). And for Weil
operator and metric we have Cgx0 = gC0g−1 and
hgx0(x , y) = h0(g−1x , g−1y).

What is the action?
Consider g ∈ G (R), x ∈ D, then Hp,q

gx = gHp,q
x (the same for

filtration)



Group action on D

Let G (R) = Aut(HR, qR) be an automorphism group. Then it acts
transitively on D, so D ' G (R)/StabG(R)(x0). And for Weil
operator and metric we have Cgx0 = gC0g−1 and
hgx0(x , y) = h0(g−1x , g−1y).

This gives D the structure of a manifold. A useful equivalent
set-theoretic identification is D = { set of conjugacy classes
g−1Hx0g of Hx0 in G (R)}



Period domains as homogeneous spaces

The action on Weil operator and metric follow from the direct
computation.
Remark: If g ∈ G (C) and it is not real, then gx0 may no longer be
a Hodge structure, but we still have the analogous result.

Group action on D̂

Group G (C) acts transitively on D̂, so D̂ ' G (C)/StabG(C)x0 with
the action defined on filtration as follows: F • 7→ gF •

Examples:

I For weight 1 structures with Hodge decomposition
H = H1,0 ⊕ H0,1 the period domain is D = Sp(g ,R)/U(g),
where g = dimH1,0. This is Siegel’s upper half-space Hg

I For weight 2 structures with Hodge decomposition
H2 = H2,0 ⊕ H1,1 ⊕ H0,2 we have
D = SO(2a, b)/U(a)× SO(b), where a = dimH2,0 and
b = dimH1,1.



Period domains

As homogeneous spaces

The resulting parameter space of Hodge structures D can be
represented as a complex homogeneous space G/V , where G is a
Lie group and V is a compact subgroup.

Remark: However, V is rarely a maximal compact subgroup, and
so D is rarely hermitian symmetric. In some special cases D
nonetheless hermitian symmetric. In particular, in the cases of K3
surfaces and of the cyclic cubic threefolds associated to cubic
surfaces.



More on the period domains

Fact
The D is a homogeneous complex manifold.

Indeed, consider the compact dual D̂. We have seen that D̂ is
acted on transitively by G (C) with stability group of F ∈ D̂ be a
parabolic subgroup P. Hence, D̂ = G (C)/P is a compact, complex
manifold.
Remark: It is a rational, projective variety defined over Q, since as
may be seen from the G (C)-equivariant embeddings

D̂ ⊂
∏[η/2]

p=n Grass(f p,VC) ⊂
∏[η/2]

p=n P(ΛfpVC), where

fp = hn,0 + ...+ hp,n−p, and where the second inclusion is the
Plücker embedding.
Then we have D ⊂ D̂ as an open G (R)-orbit of a fixed point
x0 ∈ D, and as such has an induced complex structure.

Remark: It is very important and of the independent interest to
consider Mumford-Tate domains.



Singular case?
Let us consider y 2 = (x − a1)...(x − a5)(x − t) and assume a1 = 0.
We are studying the behaviour of the Hodge structure of a surface
when t is approaching 0.
Degeneration

Normalization

Question: Whether it makes sense to take a limit of the Hodge
structure H1(St), and whether it is possible to define a Hodge
structure forthe singular variety S0.



Note: Meromorphic differential ω2(0) = dx√
(x−a)(x−b)(x−c)(x−d)

makes sense as meromorphic differentials on the elliptic curve E
defined by y 2 = (x − a)(x − b)(x − c)(x − d). The Riemann
surface Ẽ is the normalization of the algebraic curve E = S0

defined by y 2 = x2(x − a)(x − b)(x − c)(x − d).

I Since the cohomology of S0 has rank 3, it cannot carry a
Hodge structure of weight 1

I To understand the topology,consider the normalization map
p : S̃0 → S0 and its induced map on cohomology,
p∗ : H1(S0)→ H1(S̃0)

I p∗ is surjective. Indeed, the corresponding map p∗ on
homology is injective

I there is an exact sequence 0→ K → H1(S0)→ H1(S̃0)→ 0,
where the kernel K is the Z-module generated by γ1.

Note: The quotient by K is isomorphic to H1(S̃0), which carries a
Hodge structure.



MHS makes its first appearance
Let F 1 be the span of the meromorphic differential ω2(0), viewed
as a subspace of either H1(S0) or H1(S̃0).
Hence, we now have the following data:

(a) a subspace F 1 ⊂ H1(S0,C) defined by the complex structure
of the central fiber,

(b) a subspace K ⊂ H1(S0,Z) defined by the topology of the
normalization map.

with the properties

(c) the subspace which F 1 defines on H1(S0)/K ' H1(S̃0) is the
natural subspace F 1H1(S̃0),

(d) F 1 ∩ K = 0.

Property (c) asserts that the data (K ,F 1) define a Hodge
structure of weight 1 on H1(S̃0). It is the natural one with
H1,0 = F 1,H0,1 = F 1.
Then property (d) says that if the pullback of a holomorphic
1-form is 0 as a cohomology class on S̃0, then it is 0 as a
cohomology class on S0.



MHS, motivation

Filtrations on H1(S̃0)

The filtration on H1(S0) induces filtration on the quotient
H1(S0)/K ' H1(S̃0), which is isomorhic to the natural one on
H1(S̃0).

Filtration on the kernel
On K , the filtration is F 1 ∩ K = 0,F 0 ∩ K = K . Hence, K carries
a Hodge structure of weight 0, where KC = K 0,0. Thus the data
(K ,F 1) define two Hodge structures, one of weight 0, the other of
weight 1.



Mixed Hodge structure

Definition (Deligne, ’71)

A mixed Hodge structure consists of a triple (HZ,F
•,W •), where

(i) HZ is a Z-module of finite rank,

(ii) F • is a finite decreasing filtration on HC = HZ ⊗Z ZC, the
Hodge filtration,

(iii) W • is a finite increasing filtration on HQ = HZ ⊗Z Q, the
weight filtration, satisfying in addition the requirement that
the graded quotients for the weight filtration,
GrWk H = W k/W k−1, together with the filtration induced by
F •, form a (pure) Hodge structure of weight k .

Example: The Hodge filtration on singular Riemannian surface is
already defined and the weight filtration is given by
W 1 = H1(S0,Q),W 0 = K . By construction, F • defines a Hodge
structure of weight 1 on W 1/W 0 ' H1(S̃0) and a Hodge structure
of weight 0 on W0.



Mixed Hodge Structures

Remark: The induced filtration on W m/W m−1 = GrWm is
F pGrWm HC = F p ∩W m + W m/W m−1.
Remark: In general, one may assume that HZ is free. Indeed, we
can replace H∗(X .Z) by its image in H(X ,R).
Remark: For mixed Hodge structures, the notion of Hodge number
still makes sense: hp,q is the dimension of the (p, q)-component of
the pure Hodge structure on the graded quotient GrWp+q. In
particular, in the case of a Riemann surface of genus 2 that has
acquired a node, h1,0 = h0,1 = 1 and h0,0 = 1.



Weight filtration and spectral sequences
Now we are going to discuss particular example of the weight
filtration following Deligne.
Let X be a smooth complex algebraic variety of dimension n and
j : X ↪→ X be a smooth compactification of X such that
D = X \ X is a normal crossings divisor (locally isomorphic to the
union of hyperplanes). We may write D = D1 ∪ ... ∪ DN as the
union of irreducible smooth divisors meeting transversally.
Let D(0) = X and for 0 < p 6 N let D(p) be the disjoint union of
all p-fold intersections Di1 ∩ ... ∩ Dip with {i1, ..., ip} ⊂ {1, ...,N}.
Since D is a ncd, each D(p) is a smooth projective variety of
dimension n − p.

Definition
The weight spectral sequence is given by
E−p,q1 (X ) = Hq−2p(D(p);Q)⇒ Hq−p(X ;Q).

The differential d1 : E−p,q1 (X )→ E−p+1,q
1 (X ) is defined by the

sum of Gysin morphisms
i∗(j) : Hq(Di1 ∩ ... ∩ Dip)→ Hq+2(Di1 ∩ ... ∩ D̂ij ∩ ... ∩ Dip .



Weight filtration and spectral sequences

This spectral sequence degenerates at the second page, and it
induces a filtration on the cohomology of X . The weight
filtration W is defined by a shift of this filtration:
GrWp Hp+q(X ,Q) ' Ep,q

2 (X ). For all n > 0 the weight filtration
satisfies 0 = Wn−1Hn(X ,Q) ⊂WnHn(X ,Q) ⊂ ... ⊂
W2nHn(X ,Q) = Hn(X ,Q)



Weight filtration, example

Let X = C∗ ↪→ X = P1
C.

Then D = {∗∗}.
So

E ∗,∗1 (X ) =
2 1
0 0
0 1

⇒ H1(X ) =
1 0
0 0
0 1

Because E ∗,∗2 (X ) is the cohomology of X ' S1, the only non-trivial
Gysin map of E ∗,∗1 (X ) must be onto. We find GrW2 H1(X ,Q) = Q.



Next lecture

I Deformation theory

I Variations of Hodge structures

I p-adic Hodge structures



Thanks!
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