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Hodge decomposition: forms

One of the main applications of Hodge structures is to the study of
the cohomology of Kahler manifolds, via the Hodge
decomposition. This decomposition will be described now.

Basics: Let X be C*-manifold. If X is a complex manifold, then
the space of smooth R-valued n-forms on X C¢ =, ,_,CP7
((p, g)-forms which locally have form >" f; ;dz; A dz for
holomorphic coordinates z;).

We have exterior derivative d (determined on functions and

9,0
1-forms): CP9 — cpPtla g cpatl,

R=P=5=0



Hodge decomposition: forms

One of the main applications of Hodge structures is to the study of
the cohomology of Kahler manifolds, via the Hodge
decomposition. This decomposition will be described now.

Basics: Let X be C°-manifold. If X is a complex manifold, then
the space of smooth R-valued n-forms on X C¢ = @p+q:n cPa
((p, g)-forms which locally have form > f; ydz; A dZz for
holomorphic coordinates z;).

We have exterior derivative d (determined on functions and

1-forms): CP-9 99, epria g cpatl,

P=P =5 =0

Chain complexes

(C2.d) ((C2*.D)) and (F(X.C8).d) ((T(X.CE*),D)) are chain
complexes. The cohomology complexes of the latter two:
Hgr(X,R) := H*(T(X,Cg), d) de Rham cohomology and
HE®(X) := H*(T(X,Cg"*), 0) Dolbeault cohomology.



de Rham vs Dolbeault

Remark: There is no obvious map between Hjjg(X,C) and H5' in
either direction:
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either direction:

- if a is d-closed form its (p, g)-part may not be O-closed
- a O-closed (p, q)-form may not be d-closed



de Rham vs Dolbeault

Remark: There is no obvious map between HJ;(X,C) and Hg’q in
either direction:

- if ais d-closed form its (p, g)-part may not be d-closed

- a O-closed (p, g)-form may not be d-closed
However, both are true in some cases. Later we will study Hodge
decomposition in Kahler case, now let us consider complex tori as
a an example when we have Hodge structure
Hodge decomposition for tori

Let T = V//A be a complex torus, where V is n-dimensional vector
space and A C V is a lattice isomorphic to Z?". Then

H"(T,Z) carries a Hodge structure of weight n



Hodge decomposition for tori



Decomposition

Hig(T,C)~ @ HEU(T
p+q=n



Hodge decomposition

Remark: We do not have such decomposition in general, bu we do
have for Kahler manifolds.

X be a complex manifold

TrX O | where [ is endomorphism with /2 = —Id (like
multiplication by /). Then complexification T¢cX decomposes as
T1OX @ TO1X with the first subspace having the eigenvalue i and
the second eigenvalue —i.

A real 2-form w of type (1,1) is positive if
Vx #0 € THOX, we(x,X) € iRso.

Example: X =C"w = iZJ- dzj N\ dz; is positive. Indeed, for
X = Zaja%j we have w(x,X) =i |a;|%.



Kahler manifolds

Definition
A Kahler manifold is a complex manifold which possesses a global
closed positive real (1,1)-form. Such form is a Kahler form

Examples:

» i) dj A dzj descends to X = V/ /A so any complex torus is

Kahler
» X =PL A form wgs = (ff(\TIQZ)Q is called the Fubini-Study
form.

» X =P" has a Fubini-Study form wgs making it Kahler
» X C PP" any projective variety is Kahler by retracting wrs.

Note: A hermitian metric h on T10X is a g(C,@—biIinear form such
that h(x,y) = h(y, x), h(x,x) > 0Vx € TA°X (any p)

Using the action of / on TrX one can write h = Reh — i(—Imh).
We denote Reh by g and (—/mh) by w.

Remark: g is Riemannian metric and w is a non-degenerate 2-form,
h is determined by (and vice versa) w since g(x,y) = w(/x,y).



Laplacian

Let X be a compact complex n-dimensional manifold with
hermitian metric h. Then we have metrics on AP»9T*X and
A" T*X, so in fact:
Scalar product

= [ g(a, B)volg, where volg = w"/n! (the canonical volume
form) and «, 8 are n-forms

(o, B) = [ h(e, B)volg, where voly = w"/n! (the canonical volume
form) and «, 3 are (p, g)-forms

d,0,0

We can define the adjoint operators d*, 9*,9" in a way that
(da, Bo = (o, d*B)

Definition

Define Laplace operators as follows

Ay = dd* +d*d, Ny = d0* + 9*0, A5 =00 + 0 0



Laplace operators

Proposition

A n-form « is Ag-harmonic if equivalently:

(1) Agaa=0

(2) da=d*a=0

(3) da=0and ||a|]? = (a, @) is minimal in [o] € HIR(X,R)

Proof.

(1) <> (2): one direction is obvious, the opposite can be seen as
follows: 0 = (o, Aga) = ||dal|? + ||d*al|?

(1) < (3): |Ja + tdB||? = ||a||> + 2t{a, dB) + O(t?). Hence it is
minimal iff (o, dB) = (d*a, B) = 0 (for any (). That is equivalent
to d*a = 0. O
Remark: Same true for Ay- and Agz-harmonic.



Harmonic decomposition

Theorem
Any class in Hge and HE'? is uniquely represented by a Ag-,
Az-harmonic class.

Denote ”Hg’q(X) — the space of d-harmonic (p, q)-forms.
Indeed, CP9(X) = ’Hg’q(x) @ Im(Ag : CP9 — CPI) =
HEY(X) @ D(CPI 1) @ 9" (CPHh).

Moreover,

ker(9 : CP9 — CPITLY = 1P9 g (CPI1)

So, in conclusion the Dolbeaux cohomology group is isomorphic to

HEI(X)



Kahler case

In the case of Kahler manifold one have Ay = 2Ay5

In particular, it follows that Az-harmonic (p, g)-form is

A 4-harmonic, and (p, g)-part of Az. Moreover, the conjugate of a
Agz-harmonic form.

decomposition

Pa( HP9 — TP
Hir(X,C) = € H? HE9 = HI
p+q=n
So that gives a Hodge structure of weight n on H"(X,Z).

Note: HZ9(X) = HI(X, Q%) via the natural map.

Corollary

Every global holomorphic p-form is d-closed and de Rham
cohomologous holomorphic p-forms are equal.

» If nis odd, then H"(X,Z) has even rank.



non-Kahler manifolds

Sure, there are non-Kahler manifolds. Among them are Hopf
surface:

C?\ {(0,0)}

(Zl, 22) ~ (221, 222)

M =

One can check that M is diffeomorphic to S3 x S! and Kiinneth
formula shows that b3(M) =1 so M is not Kahler.

and

Kodaira surface, which is (nilmanifold) elliptic fibration over an
elliptic curve E. Namely, for a line bundle L with ¢;(L) > 0 we can
consider the complement L* to the zero loci, there is natural action

of C* there. The quotient S := L*/Z is the Kodaira surface with

fibration S M E. It has by = 3 and it is also non-Kahler.



Harmonic forms on complex torus

Example: Complex torus X = V/ /A where V ~ C8.
dzi A...Adzj, Ndzj....\dzZj;
9% i N2 i ;
Form.s dzj j = ST are o/n basis.
In this case we can write explicitly

0*gdz j = Z:e/ 8 g (—1)/I<'\/2dz_; ; and

0'gdzi y = Yie) SE(-D)IHV<IV2dz .

Note: This is the dlrect computation.

In the case of torus it is also not that hard to compute the laplace
operator Agz:

99" gdz;,; = 0 (ZJGJ SE(—1)lH<ildz, )

2
et ke 7@?,-3%(— )|/|+|J<J|(—]_)“|+|(J—J)<kdzl,J_j+1

After the same calculation for 8*8gdz/,J we have that the term
with j # k appear with opposite sign, so
Asgdz ;= (3 2L ) d

58dz1,y = (Z azjazj-> 2
Harmonic function on a compact manifold are constant, so
harmonic functions are exactly the translation-invariant ones




Lefschetz operators on Kahler manifolds

Let X be a manifold of dimension m with Kahler class w.
Consider L : [(X,CP9 — I(X,CPT19+1) operator acting
a— wAaand L* with respect to (,).

Example: Let X = V//A be torus:

Ldz) 3 =i Y g0y 9z i (DI Lo dzy =
—i Y ieiny dzi—ig—i(=1)HH<i(—1)l'<il and L, L* preserve
harmonicity, [L*, L] = m — degree

<LL*dZ/’_/, dZ[/7J/> = <L*dZ[7J, L*dZ//7J/> =
ZieIﬂJ,jeI’ﬂJ’,I’fj:Ifi,J’fj:J—j(_1)|I|+|l<i|+“<i‘(_1)|II|+HI<J"+IJ/<J-|'
<L*LdZ/’_/, dZ[/7J/> =

D igIud eI od 1 it i ied+i(— 1)
After cancelling terms with i # j (when i = j we have
I'=1,J =J):

(L7, Ldz1 5, dz1,0) = 2 igius 1+ Xieins(=1) = m = 1| = [J]

\’\+|J<J'|+|/<J'|(_]_)|//\+“'<J'|+|J/<J'|.



Primitive forms
A k-form « is primitive if L™ %t1o, = 0. We write PrimC¥ for
primitive k-forms.

Remark: Since L is real, the form « is primitive if and only if & is
primitive. Since L has bidegree (1, 1), the form « is primitive if
and only if all of its (p, g)-components are primitive.

Lefschetz for forms

CK = @j>o L'Prim(C*2) for 0 < k < m.

The proof follows by the induction.

Remark: A k-form « is primitive iff L*a = 0.

Definition

HJ (X, C) = lowest weights in Hjp (X, C) = ker(L* : Hji " —
H5=2) = ker(LK+t : HIK — HIEFT2)  the set of primitive
cohomology classes

Remark: The primitive part of H(M) is the piece not accounted
for by lower degree cohomology:

dimH%. (M) = b (M) — bx_»(M)

prim



Lefschetz decomposition

L preserves harmonicity

We have [A, L] =0

Indeed, A = Ay then [Ag, L] = 9[0", L] + [0, L]. Using 9L = L
we have [Ag, L] = 0id0 4 i00 = 0.

Hard Lefschetz

For k < m, the map [w]K U (=) : HAs — HT=2% is an isomorphism.
Remark: The fact that the spaces are isomorphic follows from
Poincare duality as well, but Hard Lefschetz is a much more useful

statement. For example, it implies for k < m — 2 that
br(M) < bgso(M).

Then we have the Lefschetz decomposition for cohomology

Hie = @0 L'HY2" (for k < m) which is a decomposition into

polarized sub-Hodge structures (since L preserves harmonic forms).



Hodge-Riemann bilinear relations
Since w is a real (1,1)-form, the Lefschetz decomposition is
compatible with the real structure and the decomposition into
(p, q)-subspaces.

Polarization: Q(a, ) = (—1)k(k;1) m=k on HX. for

k< m.

Q polarizes H[’;nm for k < mand Q(n ) polarizes L’H,’;”m

Remark: @ does not give a polarization directly on H¥, because for
w we have Q(w,w) = — [w™ < 0). That's why we have (—1)'Q
on L’Hli‘”m

Hodge-Riemann bilinear relations

For k < m and (p, q) with p+ g = k the form /P~9Q is positive
definite on H?7 (M).

prim
Remark: If w € H25(X,Z), then Q is defined over Q and
sly-spliting given by L is defined over Q so

k—2i k—2
HdR - @L Hprlml = @Hpr/ml X Q _I)

decombosition of nolarized O-Hodgoe strictires



First of all,

H(X,Q) = Q, HY(X,Q) = H;”-m, H?(X,Q) = Qh & Hgn-m, where
h = ci(L) = [H] th class of ample line bundle L on smooth
projective X.

We need to check: Q(HP9, HP>9') = 0 unless
(p+p,9+7q)=(k k') and iP"9Q(x,Xx) > 0 for x € HP9
Indeed, the first is automatic,and the second is the straightforward
computation.

Note: Q does not polarize H?(X, Q) since 0 < [ h%.



Computation

Him(X,Q) = Q(a, 8) = [ B A h, locally
h = idz A\ dz + idw AW, = dz € HYO(X) so
0<ifdzAdZAh= [i(dzAdZ)Ai(dw A dw)

H2im(X, Q) g(a, ) = — [ @A B, a € Hyp (X) = HX(X),
locally a = dz A dw, then
0 < i? [(dz A dw) A (dZ A dw = [(idz A dZ) A (dZ A dw)
If o € H-L (X) = ker(hU —), locally

prim
h = idzANdZ+idwAw, o« = adzAdz+bdzN\dw+cdwAdZ+ddwAdw.
Because « lies in kernel we have a = —d.

So0< —i® [ana=(2a®+ |b?+ |c[?)(dz A dZ)(dw A dw).



Hypersurfaces in P™*! of degree d

The Hodge diamond of a smooth Kahler manifold X (with all
symmetries) looks like

h0,0
hl,O hO,l
h20 hl,l h02
hm,O
m,m— m—1,m—1 m—2,m
hmsm=2 h hm=2
hm,m—l hm—l,m
pm,m

where red alternative sum is x(Q2%), and sum is dimHémfz(X,Q).
Note: hP:d — h9:P — pm—P.m—q
Example: X = V//A abelian surface has the Hodge diamond

hO,m



Lefschetz hyperplane

For Pm+1.
1
0 0
0 1 0
0 0o 1 0 0
0 1 0
0 0
1

Lefschetz hyperplane

Let X C P™*1 smooth hypersurface. Then i* : HX(P™+1 Q) =5 HX(X,Q), k< m
is am isomorphism of Hodge structures.

As a corollary of that we have the following look of the Hodge diamond of X C Pm+1:

1
0 0
0 1 0
* * *
0 1 0
0 0



middle Hodge numbers of hypersurfaces
Idea: Enough to compute x(X,Q%). To do this we have powerful
instrument — Grothendieck-Riemann-Roch theorem:

(X, E) = /X ch(E) - td(Tx)

Recall: for0 - E/ — E — E” — 0. Then

ch(E) = ch(E") + ch(E"). Also

ch(E @ E') = ch(E) U ch(E"), ch(f*E) = f*ch(E), ch(L) = e(F)
for a line bundle L.

for0 > E' - E—E"—0

Then td(E) = td(E") U td(E"). Also

td(f*E) = f*td(E), td(L) = —E); for a line bundle L.

Example: We have 0 — Q1 (1) = O — Opn(1) — 0

Hence, td(Tpn) = (tdOpn(1)VF1), ch(Qpn) = (N +1)e™" — 1,
where h is the first Chern class of H — PV, the hyperplane line
bundle. Its sections can be identified with linear maps CN*! — C.
As is known we have the equality (hV,[PV]) = [5, AV =1 and an
icomorphieme of rinos H® (PN 7Y ~ 7[h1/( AN+T1)




middle Hodge numbers of hypersurfaces

In particular, for hypersurface X of degree d:

0— Ox(—d) — Qﬂlm,\,|x — Q}< — 0. We have the natural
epimorphism Q%DN]X — Q}< given by the restriction of 1-forms. Let
f be a defining polynomial of X, and let M = F*(Qﬁl,),\,) and

M =T.(Q%). We embed M as a submodule of Qs(—1) (where

S = k[x1, ..., xn]. In particular, the symbols dx; have degree 1.Then
ker[M/fM — M] is a free S/(f)-module generated by

df =) ;0f/0x;dx;. Thus it is isomorphic to S/(f)(—d).

ta(Tx) = ragtolahy = 1 “otay - ) =

i*ch(Qpn) — i*ch(O(—d)) = (N + 1)e " — 1 — e~

where i : X — PN is inclusion.

Example: Quartic X in P3

We have td(Tx) =1+ 2(i*h?), ch(Q%) = 2 — 6(i* h?).

Hence, x(Ox) = [ ch(Ox)td(Tx) = [td(Tx) =2

and x(Q%) = [(1 —6/*h?*)(1+1/2i*h?) = =5 [ i*h* = =20
Then, 20 = p02 =1 pt1 =20

Such quartic is called K3 surface.




Kuga-Satake construction

Last time we have noticed the correspondence between integral
Hodge structures of weight one and complex tori. There is some
way to construct tori from the Hodge structure of weight 2 of
specific type.

K3-type Hodge structure

We call V a Hodge structure of K3-type if V is a (rational or
integral) Hodge structure of weight two with dim¢(V??) =1 and
VP9 =0 for |p— q| > 2.

The motivation for this definition is, of course, that H?(X, Q) and
H?(X,Z) of a complex K3 surfaces (or a two-dimensional complex
torus) X are rational resp. integral Hodge structures of K3-type.

There is the Kuga-Satake torus associated with the each K3-type



Hodge structures as algebraic representations

Any rational Hodge structure of weight n gives a real
representation of C*, namely the group homomorphism

p:C" = GL(WR),z— p(z): v (2PZ9) - v

for v € VP9, This representation is real. Indeed, take v € VR and
consider its decomposition v = > vP9 with vP.9 = y9P,

Then p(z)(v) = (zPZ9)vP9 is still real, as

(zPz9)vP9 = (zPZ9)vP9.

Note that the induced representation p|j is given by

p(H)(v) = t7 - v.

There is a natural bijection between rational Hodge structures of
weight n on a rational vector space V and algebraic GL(Vg) with
R* acting by representations p : C*p(t)(v) = t" - v.

Let us denote the C-linear extension of p by pc : C* — GL(V¢)
and let

VP9 .= {v e V¢|pc(2)(v) = (zPZ9) - v,Vz € C*}

Then pc splits into a sum of one-dimensional representations
\.(7) — P59 fAr come DL A — n



Algebraic representations: converse

To construct \j(z) we use algebraicity of p:

As an R-linear algebraic representation
* _ X =y
C*={z= <y « )} C GLy(R)
Hence, \j(z) must be polynomial in z,Z, (zZ). Therefore, it is of
the form zPZ9 for some p, g with p+ g = n.
Remark: It is easier to say in terms of the Deligne torus.



Algebraic representations: examples

Examples:

» If Vo =@ VP9 is a Hodge structure given by
p: C* — GL(WR) then the dual Hodge structure V' defined
earlier corresponds to the dual representation
p: C* — GL(VE) which is explicitly given by
pH(2)(F) v F(p(2)7Tv).

» A polarization is in this language described by a bilinear map
V:V®V—Qwith W(p(z)v,p(z)w) = (z2)"V¥(v,w) and
such that W(v, p(/)w) defines a positive definite symmetric
form on V.

» iii) The Tate Hodge structure Q(1) corresponds to
C* — R*,z — (zz)~!. Thus if a Hodge structure on V
corresponds to a representation py, then the Tate twist V/(1)
corresponds to py(1) : z — (22) " pV(2)



Clifford algebra

> Tensor algebra: T(V) =@;5, V& with V&0 = K is a
graded non-commutative K-algebra.

» Clifford algebra: CI(V,q) = T(V)/I(q), where I(q) is the
two-sided ideal generated by the even elements v ® v — g(v).

Remark: Clifford algebra no longer has Z-grading. However, since
I(q) is generated by even elements, it still has a natural
7./27-grading and we write CI/(V,q) = CIT (V) @ CI— (V).

From weight 2 to weight 1

The Hodge structure V' of K3-type induces a decomposition of the
real vector space: Vg = (V31N Wg) @ (V20 VO2) N Vg)

If we pick a generator o = e; + ie; € V20 with g(e;) = 1, then
q(o) = 0 gives g(e1, e2) = 0,q(e2) = 1 so that ey, e is o/n basis
of (V20 @ V02) N V. Hence, e1 - &2 = —er - € in CI(VR).
Therefore, multiplication by J := eje; induces a complex structure
on the real vector space C/(Vg), that means J? = —Id



Kuga-Satake torus
Remark: J is independent on the choice of the basis e, e;. And it
preserves odd and even parts of Clifford algebra.
KS Hodge structure

The Kuga-Satake Hodge structure is the Hodge structure of weight
one on C/™(V) given by

p:C* = GI(CIT(V)R),x +yi — x+ Jy

It gives the Hodge structure of weight one on the full C/(V).

KS variety

The Kuga-Satake variety associated with the integral Hodge
structure V of K3-type is the complex torus

KS(V) := CIT(WR)/CIT(V)

Note: dimKS(V) = 272 for dim¢(V¢) = n.

Remark: There is the generalization of Kuga-Satake to higher
dimensional analogs of K3 surfaces (hyperkahler manifolds)
described by Soldatenkov, Verbitsky and myself.



Next lecture



Thanks!
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