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outline of course

1. Legendre families, period map
2. Hodge structure of curves and abelian varieties
3. Hodge decomposition, Kähler manifolds, mixed Hodge
structures
4. Hodge structures for hypersurfaces, K3, Kuga-Satake, period
domains
5. Deformation theory intro and variations of the Hodge structure,
p-adic Hodge structures



Hodge decomposition: forms
One of the main applications of Hodge structures is to the study of
the cohomology of Kähler manifolds, via the Hodge
decomposition. This decomposition will be described now.

Basics: Let X be C∞-manifold. If X is a complex manifold, then
the space of smooth R-valued n-forms on X CnC =

⊕
p+q=n Cp,q

((p, q)-forms which locally have form
∑

fI ,JdzI ∧ dzJ for
holomorphic coordinates zi ).
We have exterior derivative d (determined on functions and

1-forms): Cp,q ∂,∂−−→ Cp+1,q ⊕ Cp,q+1.

d2 = ∂2 = ∂
2

= 0
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Chain complexes

(C•R, d) ((Cp,•R , ∂)) and (Γ(X , C•R), d) ((Γ(X , Cp,•R ), ∂)) are chain
complexes. The cohomology complexes of the latter two:
H•dR(X ,R) := H•(Γ(X , C•R), d) de Rham cohomology and
Hp,•
∂

(X ) := H•(Γ(X , Cp,•R ), ∂) Dolbeault cohomology.
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de Rham vs Dolbeault

Remark: There is no obvious map between Hn
dR(X ,C) and Hp,q

∂
in

either direction:

- if α is d-closed form its (p, q)-part may not be ∂-closed

- a ∂-closed (p, q)-form may not be d-closed

However, both are true in some cases. Later we will study Hodge
decomposition in Kähler case, now let us consider complex tori as
a an example when we have Hodge structure

Hodge decomposition for tori

Let T = V /Λ be a complex torus, where V is n-dimensional vector
space and Λ ⊂ V is a lattice isomorphic to Z2n. Then

Hn(T ,Z) carries a Hodge structure of weight n



Hodge decomposition for tori



Decomposition

Hn
dR(T ,C) '

⊕
p+q=n

Hp,q

∂
(T )



Hodge decomposition

Remark: We do not have such decomposition in general, bu we do
have for Kähler manifolds.
X be a complex manifold
TRX 	 I where I is endomorphism with I 2 = −Id (like
multiplication by i). Then complexification TCX decomposes as
T 1,0X ⊕ T 0,1X with the first subspace having the eigenvalue i and
the second eigenvalue −i .

A real 2-form ω of type (1, 1) is positive if
∀x 6= 0 ∈ T 1,0X , ωC(x , x) ∈ iR>0.

Example: X = Cn, ω = i
∑

j dzj ∧ dz j is positive. Indeed, for

x =
∑

aj
∂
∂zj

we have ω(x , x) = i
∑
|ai |2.



Kähler manifolds

Definition
A Kähler manifold is a complex manifold which possesses a global
closed positive real (1,1)-form. Such form is a Kähler form

Examples:

I i
∑

dj ∧ dz j descends to X = V /Λ so any complex torus is
Kähler

I X = P1. A form ωFS := idz∧dz
(1+|z|2)2 is called the Fubini-Study

form.

I X = Pn has a Fubini-Study form ωFS making it Kähler

I X ⊂ Pn any projective variety is Kähler by retracting ωFS .

Note: A hermitian metric h on T 1,0X is a (C,C-bilinear form such
that h(x , y) = h(y , x), h(x , x) > 0∀x ∈ T 1,0

p X (any p)
Using the action of I on TRX one can write h = Reh − i(−Imh).
We denote Reh by g and (−Imh) by ω.
Remark: g is Riemannian metric and ω is a non-degenerate 2-form,
h is determined by (and vice versa) ω since g(x , y) = ω(Ix , y).



Laplacian

Let X be a compact complex n-dimensional manifold with
hermitian metric h. Then we have metrics on Λp,qT ∗X and
ΛnT ∗X , so in fact:

Scalar product

〈α, β〉 =
∫

g(α, β)volg , where volg = ωn/n! (the canonical volume
form) and α, β are n-forms
〈α, β〉 =

∫
h(α, β)volg , where volg = ωn/n! (the canonical volume

form) and α, β are (p, q)-forms

d , ∂, ∂

We can define the adjoint operators d∗, ∂∗, ∂
∗

in a way that
〈dα, βα = 〈α, d∗β〉

Definition
Define Laplace operators as follows
∆d = dd∗ + d∗d ,∆∂ = ∂∂∗ + ∂∗∂,∆∂ = ∂∂

∗
+ ∂

∗
∂



Laplace operators

Proposition

A n-form α is ∆d -harmonic if equivalently:

(1) ∆dα = 0

(2) dα = d∗α = 0

(3) dα = 0 and ||α||2 = 〈α, α〉 is minimal in [α] ∈ Hn
dR(X ,R)

Proof.
(1)↔ (2): one direction is obvious, the opposite can be seen as
follows: 0 = 〈α,∆dα〉 = ||dα||2 + ||d∗α||2
(1)↔ (3): ||α + tdβ||2 = ||α||2 + 2t〈α, dβ〉+ O(t2). Hence it is
minimal iff 〈α, dβ〉 = 〈d∗α, β〉 = 0 (for any β). That is equivalent
to d∗α = 0.

Remark: Same true for ∆∂- and ∆∂-harmonic.



Harmonic decomposition

Theorem
Any class in Hn

dR and Hp,q

∂
is uniquely represented by a ∆d -,

∆∂-harmonic class.

Denote Hp,q

∂
(X ) – the space of ∂-harmonic (p, q)-forms.

Indeed, Cp,q(X ) = Hp,q

∂
(X )⊕ Im(∆∂ : Cp,q → Cp,q) =

Hp,q

∂
(X )⊕ ∂(Cp,q−1)⊕ ∂∗(Cp,q+1).

Moreover,

ker(∂ : Cp,q → Cp,q+1) = Hp,q ⊕ ∂(Cp,q−1)

So, in conclusion the Dolbeaux cohomology group is isomorphic to
Hp,q

∂
(X )



Kähler case

In the case of Kähler manifold one have ∆d = 2∆∂

In particular, it follows that ∆∂-harmonic (p, q)-form is
∆d -harmonic, and (p, q)-part of ∆∂ . Moreover, the conjugate of a
∆∂-harmonic form.

decomposition

Hn
dR(X ,C) =

⊕
p+q=n

Hp,q

∂
(X ), Hp,q

∂
= Hq,p

∂

So that gives a Hodge structure of weight n on Hn(X ,Z).

Note: Hp,q

∂
(X ) = Hq(X ,Ωp

X ) via the natural map.

Corollary

Every global holomorphic p-form is d-closed and de Rham
cohomologous holomorphic p-forms are equal.

I If n is odd, then Hn(X ,Z) has even rank.



non-Kähler manifolds

Sure, there are non-Kähler manifolds. Among them are Hopf
surface:

M =
C2 \ {(0, 0)}

(z1, z2) ∼ (2z1, 2z2)

One can check that M is diffeomorphic to S3 × S1 and Künneth
formula shows that b3(M) = 1 so M is not Kähler.
and
Kodaira surface, which is (nilmanifold) elliptic fibration over an
elliptic curve E . Namely, for a line bundle L with c1(L) > 0 we can
consider the complement L∗ to the zero loci, there is natural action
of C∗ there. The quotient S := L∗/Z is the Kodaira surface with

fibration S
EL=C∗/Z−−−−−−→ E . It has b1 = 3 and it is also non-Kähler.



Harmonic forms on complex torus

Example: Complex torus X = V /Λ where V ' Cg .

Forms dzI ,J :=
dzi1∧...∧dzik∧dzj1 ...∧dzjl

2(|I |+|J|)/2 are o/n basis.
In this case we can write explicitly
∂∗gdzI ,J =

∑
i∈I

∂g
∂zi

(−1)|I |<i
√

2dzI−i ,J and

∂
∗
gdzI ,J =

∑
i∈I

∂g
∂zi

(−1)|I |+|J<j |√2dzI ,J−j .
Note: This is the direct computation.
In the case of torus it is also not that hard to compute the laplace
operator ∆∂ :

∂∂
∗
gdzI ,J = ∂

(∑
j∈J

∂g
∂zj

(−1)|I |+|J<j |dzI ,J−j

)
=∑

j∈J,k 6∈J−j
∂2g
∂zj∂zk

(−1)|I |+|J<j |(−1)|I |+|(J−j)<kdzI ,J−j+1

After the same calculation for ∂
∗
∂gdzI ,J we have that the term

with j 6= k appear with opposite sign, so

∆∂gdzI ,J =
(∑ ∂2g

∂zj∂zj

)
dzI ,J

Harmonic function on a compact manifold are constant, so
harmonic functions are exactly the translation-invariant ones



Lefschetz operators on Kähler manifolds

Let X be a manifold of dimension m with Kähler class ω.
Consider L : Γ(X , Cp,q → Γ(X , Cp+1,q+1) operator acting
α 7→ ω ∧ α and L∗ with respect to 〈, 〉.
Example: Let X = V /Λ be torus:
LdzI ,J = i

∑
i 6∈I∪J dzI+i ,J+i (−1)|I |+|J<i |(−1)|I<i |, L∗dzI ,J =

−i
∑

i∈I∩J dzI−i ,J−i (−1)|I |+|J<i |(−1)|I<i | and L, L∗ preserve
harmonicity, [L∗, L] = m − degree
〈LL∗dzI ,J , dzI ′,J′〉 = 〈L∗dzI ,J , L

∗dzI ′,J′〉 =∑
i∈I∩J,j∈I ′∩J′,I ′−j=I−i ,J′−j=J−j(−1)|I |+|I<i |+|J<i |(−1)|I

′|+|I ′<j |+|J′<j |,
〈L∗LdzI ,J , dzI ′,J′〉 =∑

i 6∈I∪J,j 6∈I ′∪J′,I ′+i=I+i ,J′+i=J+i (−1)|I |+|J<j |+|I<j |(−1)|I
′|+|I ′<j |+|J′<j |.

After cancelling terms with i 6= j (when i = j we have
I ′ = I , J ′ = J):
〈[L∗, L]dzI ,J , dzI ,J〉 =

∑
i 6∈I∪J 1 +

∑
i∈I∩J(−1) = m − |I | − |J|



Primitive forms
A k-form α is primitive if Lm−k+1α = 0. We write PrimCk for
primitive k-forms.

Remark: Since L is real, the form α is primitive if and only if α is
primitive. Since L has bidegree (1, 1), the form α is primitive if
and only if all of its (p, q)-components are primitive.

Lefschetz for forms
Ck =

⊕
i>0 LiPrim(Ck−2i ) for 0 6 k 6 m.

The proof follows by the induction.
Remark: A k-form α is primitive iff L∗α = 0.

Definition
Hm−k
prim (X ,C) = lowest weights in Hm−k

dR (X ,C) = ker(L∗ : Hm−k
dR →

Hm−k−2
dR ) = ker(Lk+1 : Hm−k

dR → Hm+k+2
dR ) - the set of primitive

cohomology classes

Remark: The primitive part of Hk(M) is the piece not accounted
for by lower degree cohomology:
dimHk

prim(M) = bk(M)− bk−2(M)



Lefschetz decomposition

L preserves harmonicity

We have [∆, L] = 0

Indeed, ∆ = ∆∂ then [∆∂ , L] = ∂[∂
∗
, L] + [∂

∗
, L]∂. Using ∂L = L∂

we have [∆∂ , L] = ∂i∂ + i∂∂ = 0.

Hard Lefschetz
For k 6 m, the map [ω]k ∪ (−) : Hk

dR → Hm−2k
dR is an isomorphism.

Remark: The fact that the spaces are isomorphic follows from
Poincare duality as well, but Hard Lefschetz is a much more useful
statement. For example, it implies for k 6 m − 2 that
bk(M) 6 bk+2(M).

Then we have the Lefschetz decomposition for cohomology
Hk
dR =

⊕
i>0 LiHk−2i

prim (for k 6 m) which is a decomposition into
polarized sub-Hodge structures (since L preserves harmonic forms).



Hodge-Riemann bilinear relations
Since ω is a real (1, 1)-form, the Lefschetz decomposition is
compatible with the real structure and the decomposition into
(p, q)-subspaces.

Polarization: Q(α, β) = (−1)
k(k−1)

2

∫
α ∧ βωm−k on Hk

dR for
k 6 m.
Q polarizes Hk

prim for k 6 m and Q(n)i polarizes LiHk
prim

Remark: Q does not give a polarization directly on Hk , because for
ω we have Q(ω, ω) = −

∫
ωm < 0). That’s why we have (−1)iQ

on LiHk
prim.

Hodge-Riemann bilinear relations

For k 6 m and (p, q) with p + q = k the form ip−qQ is positive
definite on Hp,q

prim(M).

Remark: If ω ∈ H2
dR(X ,Z), then Q is defined over Q and

sl2-spliting given by L is defined over Q so

Hk
dR =

⊕
LiHk−2i

prim '
⊕

Hk−2i
prim (X ,Q)(−i)

decomposition of polarized Q-Hodge structures.



m = 2

First of all,
H0(X ,Q) = Q,H1(X ,Q) = H1

prim,H
2(X ,Q) = Qh ⊕ H2

prim, where
h = c1(L) = [H] th class of ample line bundle L on smooth
projective X .
We need to check: Q(Hp,q,Hp′,q′) = 0 unless
(p + p′, q + q′) = (k , k ′) and ip−qQ(x , x) > 0 for x ∈ Hp,q

Indeed, the first is automatic,and the second is the straightforward
computation.
Note: Q does not polarize H2(X ,Q) since 0 <

∫
h2.



Computation

H1
prim(X ,Q) : Q(α, β) =

∫
α ∧ β ∧ h, locally

h = idz ∧ dz + idω ∧ ω, α = dz ∈ H1,0(X ) so
0 < i

∫
dz ∧ dz ∧ h =

∫
i(dz ∧ dz) ∧ i(dω ∧ dω)

H2
prim(X ,Q) : q(α, β) = −

∫
α ∧ β, α ∈ H2,0

prim(X ) = H2,0(X ),
locally α = dz ∧ dω, then
0 < i2

∫
(dz ∧ dω) ∧ (dz ∧ dω =

∫
(idz ∧ dz) ∧ (dz ∧ dω)

If α ∈ H1,1
prim(X ) = ker(h ∪ −), locally

h = idz∧dz+idω∧ω, α = adz∧dz+bdz∧dω+cdω∧dz+ddω∧dω.
Because α lies in kernel we have a = −d .
So 0 < −i0

∫
α ∧ α = (2|a|2 + |b|2 + |c|2)(dz ∧ dz)(dω ∧ dω).



Hypersurfaces in Pm+1 of degree d
The Hodge diamond of a smooth Kähler manifold X (with all
symmetries) looks like

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

.. .. .. ..
hm,0 h0,m

.. .. .. ..
hm,m−2 hm−1,m−1 hm−2,m

hm,m−1 hm−1,m

hm,m

where red alternative sum is χ(Ω1
X ), and sum is dimH2m−2

Q (X ,Q).

Note: hp,q = hq,p = hm−p,m−q

Example: X = V /Λ abelian surface has the Hodge diamond

1
2 2

1 4 1
2 2

1



Lefschetz hyperplane
For Pm+1:

1
0 0

0 1 0
.. .. ..

0 0 1 0 0
.. .. ..

0 1 0
0 0

1

Lefschetz hyperplane
Let X ⊂ Pm+1 smooth hypersurface. Then i∗ : Hk (Pm+1,Q)

'−→ Hk (X ,Q), k < m
is am isomorphism of Hodge structures.

As a corollary of that we have the following look of the Hodge diamond of X ⊂ Pm+1:

1
0 0

0 1 0
.. .. ..

* .. * .. *
.. .. ..

0 1 0
0 0

1



middle Hodge numbers of hypersurfaces
Idea: Enough to compute χ(X ,Ωp

X ). To do this we have powerful
instrument – Grothendieck-Riemann-Roch theorem:

χ(X ,E ) =

∫
X

ch(E ) · td(TX )

Recall: for 0→ E ′ → E → E ′′ → 0. Then
ch(E ) = ch(E ′) + ch(E ′′). Also
ch(E ⊗ E ′) = ch(E ) ∪ ch(E ′), ch(f ∗E ) = f ∗ch(E ), ch(L) = ec1(E)

for a line bundle L.
for 0→ E ′ → E → E ′′ → 0
Then td(E ) = td(E ′) ∪ td(E ′′). Also

td(f ∗E ) = f ∗td(E ), td(L) = c1(L)

1−e−c1(L) for a line bundle L.

Example: We have 0→ Ω1
PN(1)→ ON+1

PN → OPN (1)→ 0

Hence, td(TPN ) = (tdOPN (1)N+1), ch(Ω1
PN ) = (N + 1)e−h − 1,

where h is the first Chern class of H → PN , the hyperplane line
bundle. Its sections can be identified with linear maps CN+1 → C.
As is known we have the equality 〈hN , [PN ]〉 =

∫
PN hN = 1 and an

isomorphisms of rings H•(PN ,Z) ' Z[h]/(hN+1).



middle Hodge numbers of hypersurfaces
In particular, for hypersurface X of degree d :
0→ OX (−d)→ Ω1

PN |X → Ω1
X → 0. We have the natural

epimorphism Ω1
PN |X → Ω1

X given by the restriction of 1-forms. Let
f be a defining polynomial of X , and let M = Γ∗(Ω1

PN ) and

M = Γ∗(Ω1
X ). We embed M as a submodule of ΩS(−1) (where

S = k[x1, ..., xn]. In particular, the symbols dxi have degree 1.Then
ker [M/fM → M] is a free S/(f )-module generated by
df =

∑
i ∂f /∂xidxi .Thus it is isomorphic to S/(f )(−d).

td(TX ) =
i∗td(TPN
i∗td(O(d)) = i∗ tdO(1)N+1

tdO(d) , ch(Ω1
X ) =

i∗ch(Ω1
PN )− i∗ch(O(−d)) = (N + 1)e−h − 1− e−dh.

where i : X → PN is inclusion.
Example: Quartic X in P3

We have td(TX ) = 1 + 1
2 (i∗h2), ch(Ω1

X ) = 2− 6(i∗h2).
Hence, χ(OX ) =

∫
ch(OX )td(TX ) =

∫
td(TX ) = 2

and χ(Ω1
X ) =

∫
(1− 6i∗h2)(1 + 1/2i∗h2) = −5

∫
i∗h2 = −20

Then, h2,0 = h0,2 = 1, h1,1 = 20
Such quartic is called K3 surface.



Kuga-Satake construction

Last time we have noticed the correspondence between integral
Hodge structures of weight one and complex tori. There is some
way to construct tori from the Hodge structure of weight 2 of
specific type.

K3-type Hodge structure

We call V a Hodge structure of K3-type if V is a (rational or
integral) Hodge structure of weight two with dimC(V 2,0) = 1 and
V p,q = 0 for |p − q| > 2.
The motivation for this definition is, of course, that H2(X ,Q) and
H2(X ,Z) of a complex K3 surfaces (or a two-dimensional complex
torus) X are rational resp. integral Hodge structures of K3-type.

There is the Kuga-Satake torus associated with the each K3-type



Hodge structures as algebraic representations
Any rational Hodge structure of weight n gives a real
representation of C∗, namely the group homomorphism

ρ : C∗ → GL(VR), z 7→ ρ(z) : v 7→ (zpzq) · v
for v ∈ V p,q. This representation is real. Indeed, take v ∈ VR and
consider its decomposition v =

∑
vp,q with vp,q = vq,p.

Then ρ(z)(v) = (zpzq)vp,q is still real, as
(zpzq)vp,q = (zpzq)vp,q.
Note that the induced representation ρ|∗R is given by
ρ(t)(v) = tn · v .
There is a natural bijection between rational Hodge structures of
weight n on a rational vector space V and algebraic GL(VR) with
R∗ acting by representations ρ : C∗ρ(t)(v) = tn · v .
Let us denote the C-linear extension of ρ by ρC : C∗ → GL(VC)
and let

V p,q := {v ∈ VC|ρC(z)(v) = (zpzq) · v , ∀z ∈ C∗}
Then ρC splits into a sum of one-dimensional representations
λi (z) = zpzq for some p + q = n.



Algebraic representations: converse

To construct λi (z) we use algebraicity of ρ:
As an R-linear algebraic representation

C∗ = {z =

(
x −y
y x

)
} ⊂ GL2(R)

Hence, λi (z) must be polynomial in z , z , (zz). Therefore, it is of
the form zpzq for some p, q with p + q = n.
Remark: It is easier to say in terms of the Deligne torus.



Algebraic representations: examples
Examples:

I If VC =
⊕

V p,q is a Hodge structure given by
ρ : C∗ → GL(VR) then the dual Hodge structure V defined
earlier corresponds to the dual representation
ρ : C∗ → GL(V ∗R) which is explicitly given by
ρ∗(z)(f ) : v 7→ f (ρ(z)−1v).

I A polarization is in this language described by a bilinear map
Ψ : V ⊗ V → Q with Ψ(ρ(z)v , ρ(z)w) = (zz)nΨ(v ,w) and
such that Ψ(v , ρ(i)w) defines a positive definite symmetric
form on VR.

I iii) The Tate Hodge structure Q(1) corresponds to
C∗ → R∗, z 7→ (zz)−1. Thus if a Hodge structure on V
corresponds to a representation ρV , then the Tate twist V (1)
corresponds to ρV (1) : z 7→ (zz)−1ρV (z)



Clifford algebra

I Tensor algebra: T (V ) =
⊕

i>0 V⊗i with V⊗0 = K is a
graded non-commutative K -algebra.

I Clifford algebra: Cl(V , q) = T (V )/I (q), where I (q) is the
two-sided ideal generated by the even elements v ⊗ v − q(v).

Remark: Clifford algebra no longer has Z-grading. However, since
I (q) is generated by even elements, it still has a natural
Z/2Z-grading and we write Cl(V , q) = Cl+(V )⊕ Cl−(V ).

From weight 2 to weight 1

The Hodge structure V of K3-type induces a decomposition of the
real vector space: VR = (V 1,1 ∩ VR)⊕

(
(V 2,0 ⊕ V 0,2) ∩ VR

)
If we pick a generator σ = e1 + ie2 ∈ V 2,0 with q(e1) = 1, then
q(σ) = 0 gives q(e1, e2) = 0, q(e2) = 1 so that e1, e2 is o/n basis
of (V 2,0 ⊕ V 0,2) ∩ VR. Hence, e1 · e2 = −e2 · e1 in Cl(VR).
Therefore, multiplication by J := e1e2 induces a complex structure
on the real vector space Cl(VR), that means J2 = −Id



Kuga-Satake torus
Remark: J is independent on the choice of the basis e1, e2. And it
preserves odd and even parts of Clifford algebra.

KS Hodge structure

The Kuga-Satake Hodge structure is the Hodge structure of weight
one on Cl+(V ) given by

ρ : C∗ → Gl(Cl+(V )R), x + yi 7→ x + Jy

It gives the Hodge structure of weight one on the full Cl(V ).

KS variety

The Kuga-Satake variety associated with the integral Hodge
structure V of K3-type is the complex torus
KS(V ) := Cl+(VR)/Cl+(V )

Note: dimKS(V ) = 2n−2 for dimC(VC) = n.
Remark: There is the generalization of Kuga-Satake to higher
dimensional analogs of K3 surfaces (hyperkähler manifolds)
described by Soldatenkov, Verbitsky and myself.



Next lecture

I



Thanks!
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