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outline of course

1. Legendre families, period map
2. Hodge structure of curves and abelian varieties
3. Hodge decomposition, Kähler manifolds, mixed Hodge
structures
4. Hodge structures for hypersurfaces, K3, Kuga-Satake, period
domains
5. Deformation theory intro and variations of the Hodge structure,
p-adic Hodge structures



Last time

I Elliptic curves = genus 1 Riemann surfaces, parametrized by
λ ∈ C \ {0, 1}

I H1(Eλ) = C[ω = dx
y ]⊕ C[ω] - Hodge structure of weight one

I local period map P : P1 \ {0, 1,∞} → H given by ratio of
periods (integrals of ω on the basis of cycles)

I monodromy representation
ρ : π1((P1 \ {0, 1,∞}), λ0)→ Sl2(Z) (bc we can change the
basis)

I global period map P̃ : P1 \ {0, 1,∞} → imgρ\H



Hodge structure

Definition
A real (rational, integer) Hodge structure of weight k is a real
vector space HR (HQ, free Z-module HZ) together with a
decomposition:

HC := HR ⊗ C =
⊕

p+q=k H
p,q

for C-subspaces Hp,q ⊂ HC st Hp,q = H
q,p

Definition
A Hodge structure is effective if Hp,q = 0 unless p, q > 0.

Remark:
We may also consider the Hodge filtration i.e., the descending
filtration of HC given by F iHC =

⊕
p+q=n,p>i H

p,q. Hodge
structure could be recovered from the filtration as follows:
HC = F pHC ⊕ F k−p+1HC ,H

p,q = F pHC ∩ F qHC.
Remark: There is also a way to describe Hodge structures as
algebraic representation. We will need it later to define
Kuga-Satake torus.



Examples
trivial
Z ⊂ R, then C = C0,0 is trivial Hodge structure of weight 0. Also
it corresponds to the cohomology of a point.

Elliptic curve
Consider the elliptic curve y2 = x(x − 1)(x − λ), ω = dx

y .

Recall, we have H1(Eλ,Z) has weight 1 Hodge structure given by
form ω.

Tate Hodge structure Z(k)
Consider HZ = (2πi)kZ ⊂ C,HC = H−k,−k .
We need this (2πi)k -factor above because we have an algebraically
defined cycle class map and a topological one into H1

dR . They differ
by this factor. We can shift any Hodge structure by Tate shift:

H2k(X ,Z)(k) := H2k(X ,Z)⊗ Z(k)

It has weight 0.
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Geometry of Tate Hodge structure

Z might be viewed as the Hodge structure on H0({x}).
Likewise, one can think of Z(−1) as the Hodge structure on
H1({C \ {0}}).
Indeed, the motivation is that the cohomology is spanned by dz/z
which has integral 2πi on a loop that makes one counterclockwise
turn around the origin.
Note that dz/z is a holomorphic differential on C \ {0} and so
(counting dz ’s) has Hodge level 1. Namely, it lies in F 1. Hence,
Z(−1) has type (1, 1).



Hodge structure of Eλ as filtration

Recall that the first cohomology H1(E ,Z) has Hodge numbers
h1,0 = h0,1 = 1. The Hodge filtration is H = F0 ⊃ F1 ⊃ {0},
where F1 = H1,0.



Morphisms

Morphism of Hodge structure of type (r , r)

If V and W are (pure) Hodge structures of weights m and
n = m + 2r , then a morphism of pure Hodge structures of
type (r , r) is a morphism of abelian groups f : V →W such that

fC(V p,q) ⊂W p+r ,q+r

Note: Map f : V →W of Hodge structures of weights m, n
(n = m + 2r) which sends V p,q to W p+r ,q+r is not a morphism of
Hodge structures. We can make it so with the Tate twist:

(2πi)r · f : V →W (r)

Categorification

The category of R-Hodge structures is an abelian tensor category.



Hodge decomposition
For a compact Kähler manifold X the torsion free part of the
singular cohomology Hn(X ,Z) comes with a natural Hodge
structure of weight n given by the standard Hodge decomposition:

Hn(X ,Z)⊗ C = Hn(X ,C) =
⊕

Hp,q(X )

We are going to study it a bit later!

The even part H2n(X ,Q) contains all algebraic classes (classes
obtained as fundamental classes of subvarieties in X ). These
classes are integral and they are contained in Hk,k(X ). The Hodge
conjecture asserts that the space spanned by those is determined
entirely by the Hodge structure itself.

Hodge conjecture

For a smooth projective variety X over C the subspace of
H2k(X ,Q) spanned by all algebraic classes [Z ] coincides with the
space of Hodge classes, ie H2k(X ,Q) ∩ Hk,k(X ) = 〈[Z ]|Z ⊂ X 〉Q.



Polarization

Definition
Let Q be a quadratic form on HR which is symmetric
(anti-symmetric) if k even (odd). We say that Q polarizes a
Hodge structure if
(a) Q(Hp,q,Hp′,q) = 0 unless p = q′, q = p′

(b) ip−qQ(x , x) > 0 for any 0 6= x ∈ Hp,q

Question: Is H1(Eλ,Z) polarized?
Yes, it is. There is an intersection form Q.

categorification

The category RHSpol is semisimple abelian tensor category



Smooth genus g curve X

X topologically is a sphere with g handles.

One can define a Riemann surface of this kind by the equation

y2 = (x − t1) · ... · (x − tn), n = 2g + 2

Remark: For g > 2 there are Riemann surfaces which are not given
by this equation. Ones which have are called hyperelliptic.

Claim
H1(X ,Z) carries a weight 1 Hodge structure polarized by the
intersection form Q.



Weight one Hodge structure on X

Claim
H1(X ,Z) carries a weight 1 Hodge structure polarized by the
intersection form Q.

Idea: Show that Ω1(X )⊕ Ω
1
(X ) ⊂ H1(X ) where Ω1(X ) are

holomorphic 1-forms and then use Riemann-Roch for the
dimension counting.
First define H1,0(X ) as closed holomorphic 1-forms.
Proof:
1. Global holomorphic 1-forms are closed and cohomologous
holomorphic 1-forms are equal.
Indeed, holomorphic 1-form α locally is f (z)dz . Then
dα = ∂f

∂z dz ∧ dz + ∂f
dz dz ∧ dz = 0. And if α = df = ∂f

∂z dz + ∂f
dz dz

then f is global holomorphic function on compact X , so it is
constant.



Weight one Hodge structure on X

2. It gives H1,0(X ) ' H0(X ,Ω1
X ). If we define H0,1(X ) as H1,0(X )

then we need to prove that H1,0 ∩ H0,1 = 0.
Namely, let α be form from the intersection. Then
[α] = [β], [α] = [γ] for holomorphic 1-forms β, γ.
If α 6= 0 then 0 = i

∫
β ∧ γ = i

∫
β ∧ β > 0. Contradiction.

3. (Dimension counting) By Riemann-Roch
h0(L)− h0(L∗ ⊗ K ) = deg(L) + 1− g . When L ' O we have
1− h0(K ) = 1− g . So H0(K )=g.
Hence, we have Hodge structure of weight 1 on H1

dR(X ).

4. Polarization given by an intersection form.



Explicit description of holomorphic forms

dimΩ1(X ) = g

For hyperelliptic Riemann surfaces we can construct 1-forms
explicitly as

ωi =
x idx

y
, i = 0, ..., g − 1

These forms are independent

Indeed, for any polynomial p(x) = a0 + a1x + a2x
2 + ...+ ag−1x

g−1

of degree 6 (g − 1). The 1-form p(x)dx/y is zero iff p(x) is zero
polynomial. So they give a basis.



Period map

What is the period map here?
Consider hyperelliptic curve X with the symplectic basis
(γ1, ..., γg , δ1, ..., δg ) of (H1(X ),U)
Where do periods go?
This basis (marking) gives an isomorphism m : H1(X ,Z)→ Z2g

which extends to H1(X ,C)
'−→ C2g . The subspace m(H1,0) defines

a point in the Gr(g , 2g).
Remark: It depends on marking and the choice of ~t = (t1, ..., tg )
from U = C \∆ (parameter space for X ) where ∆ is the
discriminant locus – union of hypersurfaces ti = tj .

Period map

Consider the universal cover Ũ of U, and the pullback of local
system formed by the cohomology groups H1(Xu) will be
isomorphic to the trivial local system Z2g × Ũ.
We could define period map as P̃ : Ũ → Gr(g , 2g) which as
equivariant P̃(γx) = ρ(γ)P̃(x)
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Period map

Indeed,

m(ũ) : H1(Xũ)→ Z2g × Ũ → Z2g

denote the isomorphism of the fibers over ũ, composed with the
projection to the first factor.
So we have an isomorphism m(ũ) : H1(Xũ) ' Z2g such that
m(γ · ũ) = ρ(γ)m(ũ),where ρ is the monodromy representation and
γ · ũ is the action of π(U, u0) on Ũ by covering transformations.
Remark: Monodromy representation
ρ : π1(U)→ Sp(g ,Z) = {M ∈ GL(2g ,Z) : MT JM = J} (to
integer symplectic group).



Period map

Claim
Map P̃ : Ũ → Gr(g , 2g) is holomorphic.

Proof.
Note that P̃ is the span of rows of [Aij |Bij ] which is g × 2g matrix
with Aij =

∫
δi
ωj and Bij =

∫
γi
ωj . They are holomorphic functions

of ~t.

Claim

(1) (Aij) is invertible

(2) If Aij = Id then (Bij) is symmetric and has a positive definite
imaginary part.

Proof.
If
∫
δ ω = 0 for all ω and some δ =

∑
aiδi 6= 0, then

ω ∈ Span(γ1, ..., γg . And so is ω. Hence, [ω] ∧ [ω] = 0. But it
contradicts with i

∫
X ω ∧ ω > 0.



Siegel upper half-space
Now choose the basis ωi such that A-periods are now δij . Then

B-periods transform to Z :=
(∫

γi
ωj

)
·
(∫

δi
ωj)
−1
)

.

Now let us prove (2) from above. Namely that Z = ZT and ImZ
is positive definite.

Proof.
1. [ωj ] =

∑
i Zijγ

∨ + δ∨j
2. Then

∫
X [ωj ] ∧ [ωk ] = −Zkj + Zjk = 0. Hence, symmetric.

3. Consider
∑

j ajωj . Then 0 < i
∫
X

(∑
j ωj

)
∧
(∑

j ′ aj ′ωj ′

)
=

i
(∑

jj ′ ajaj ′
(
−Zj ′j + Zjj ′

))
=
∑

jj ′ ajaj ′ · 2ImZjj ′

Definition
Siegel upper half-space Hg is
{Z ∈ Matg×g (C)|Z = ZT , ImZ > 0}.

Theorem (Period map)

The period map takes values in Hg viewed as a subset of the
Grassmann manifold via the map Z → row space of (Idg ,Z ). So
we have the map

P : Ũ → Hg



Hg

Remark: 1. H1 = H
2. dimHg = g(g+1)

2 (recall dimGr(g , 2g) = g2).

As we mentioned integer symplectic group Sp(g ,Z) acts on Hg .
Let as describe that action:

Description of Sp(g ,Z)-action

Let T be in Sp(g ,Z). Call its four g × g -blocks K , L,M,N as

follows: T =

(
K L
M N

)
. Then it acts on (A|B) as (A|B) · T . In

terms of normalized basis it means
(Idg |Z ) 7→ (K + ZM)−1(L + ZN).

Properties of Sp(g ,Z)-action

1. For g = 1 reduces to the standard SL(2,R)-action on upper
half-plane.
2. This action is transitive.
3. The quotient Sp(g ,Z)\Hg is an analytic space.



Properties of Sp(g ,Z)-action

Properties of Sp(g ,Z)-action

1. For g = 1 reduces to the standard SL(2,R)-action on upper
half-plane.
2. This action is transitive.
3. The quotient Sp(g ,Z)\Hg is an analytic space.

Indeed, action is transitive: consider the image of Z = iIdg by

action of T =

(
Idg A
0 Idg

)(
BT 0
0 B−1

)
. This image is A + iBTB.

Recall that any hermitian matrix could be written as BTB. q.e.d
With the analytic space: note that the action T 7→ T (iIdg ) is
proper (in terms of sequences). Then it is proper discontinuous
(check). By Cartan’s argument we are done.
So there is a quotient map

P : U → Sp(g ,Z)\Hg

which is holomorphic map of analytic spaces.
Remark: Sp(g ,Z)\Hg is not complex manifold (bc of fixed points)



Injectivity
Given a family (Cs)s∈S of curves of genus g parametrized by a
complex variety S , this construction defines a single-valued period
map

S → Sp(g ,Z)\Hg , s 7→ T (Cs)

which is still holomorphic, but never surjective
Remark: for g > 4 it is not even dominant (ie its image is not
dense)

Schottky problem

This leads to other questions, in particular, such as the Schottky
problem of characterizing the possible images.

Torelli problem

The question of injectivity (called the Torelli problem) needs to be
asked more carefully (injectivity will trivially be false if (Cs)s∈S is a
constant family), but the answer is positive in the sense that a
smooth projective curve of genus g is completely determined (up
to isomorphism) by its period point in Sp(g ,Z)\Hg .



Is P surjective?

The dimension of moduli space Mg of curves of genus g is 3g − 3.
It is less than g(g + 1)/2. So..
A lot of points in Hg do not come from the curves

Question: Where they do come from (if they do)?
Answer: They come from abelian varieties!

Abelian variety

An abelian variety X/C is a projective complex torus X = V /Λ,
where V ' Cg and Λ ' Z2g is a lattice.

We have Λ = π1(X , 0) = H1(X ,Z) canonically and
HomZ(Λ,Z) = H1(X ,Z).
Moreover, X ' (S1)2g , so in fact Λ•HomZ(Λ,Z) = H∗(X ,Z) and
preserves the ring structure.



Hodge structures of weight 1

Correspondence

complex tori ←→ integral Hodge structures of weight one
abelian varieties ←→ polarizable integral Hodge structures of

weight one

Hodge structures of weight one are all of geometric origin.

Proof.
For an integral Hodge structure H of weight one, H ⊂ HC can be
projected injectively into H1,0. This yields a lattice H ⊂ H1,0.
Consider the quotient H1,0/H, it is a complex torus.
Conversely, if Cn/Γ is a complex torus, then Cn can be regarded as
ΓR endowed with an almost complex structure. This yields a
decomposition (ΓR)C = (ΓR)1,0 ⊕ (ΓR)0,1 with (ΓR)1,0 and (ΓR)0,1

being the eigenspaces on which i ∈ C acts by multiplication by i
and −i , respectively. It defines an integral Hodge structure of
weight one.



Hodge structures of weight 1 vs tori



Hodge decomposition: forms
One of the main applications of Hodge structures is to the study of
the cohomology of Kähler manifolds, via the Hodge
decomposition. This decomposition will be described now.

Basics: Let X be C∞-manifold. If X is a complex manifold, then
the space of smooth R-valued n-forms on X CnC =

⊕
p+q=n Cp,q

((p, q)-forms which locally have form
∑

fI ,JdzI ∧ dzJ for
holomorphic coordinates zi ).
We have exterior derivative d (determined on functions and

1-forms): Cp,q ∂,∂−−→ Cp+1,q ⊕ Cp,q+1.

d2 = ∂2 = ∂
2

= 0

Chain complexes

(C•R, d) ((Cp,•R , ∂)) and (Γ(X , C•R), d) ((Γ(X , Cp,•R ), ∂)) are chain
complexes. The cohomology complexes of the latter two:
H•dR(X ,R) := H•(Γ(X , C•R), d) de Rham cohomology and
Hp,•
∂

(X ) := H•(Γ(X , Cp,•R ), ∂) Dolbeault cohomology.



de Rham vs Dolbeault

Remark: There is no obvious map between Hn
dR(X ,C) and Hp,q

∂
in

either direction:

- if α is d-closed form its (p, q)-part may not be ∂-closed

- a ∂-closed (p, q)-form may not be d-closed

However, both are true in some cases. Later we will study Hodge
decomposition in Kähler case, now let us consider complex tori as
a an example when we have Hodge structure

Hodge decomposition for tori

Let T = V /Λ be a complex torus, where V is n-dimensional vector
space and Λ ⊂ V is a lattice isomorphic to Z2n. Then

Hn(T ,Z) carries a Hodge structure of weight n



Next lecture

I Hodge decomposition for tori  Hodge decomposition in
Kähler case

I Polarization and decomposition on primitive cohomology

I Filtration  Mixed Hodge structures

I Hodge structures of hypersurfaces, K3

I Hodge structure as an algebraic representation

I Kuga-Satake construction



Thanks!
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