Nikon Kurnosov University College London

November 9, 2020

$\begin{array}{l} X \ \mathsf{CW} \ \mathsf{complex} \longrightarrow H^{\bullet}_{sing}(X,\mathbb{Z}) \\ X \ \mathsf{smooth} \ \mathsf{manifold}, \ \mathsf{then} \ H^{\bullet}_{sing}(X,\mathbb{Z}) \ \mathsf{has} \ \mathsf{extra} \ \mathsf{discrete} \ \mathsf{structure} \\ (\mathsf{Poincare} \ \mathsf{duality}) \\ X \ \mathsf{smooth} \ \mathsf{alg} \ \mathsf{variety}, \ \mathsf{then} \ H^{\bullet}_{sing}(X,\mathbb{Z}) \ \mathsf{carries} \ \mathsf{Hodge} \ \mathsf{structure}, \\ \mathsf{some} \ \mathsf{continuously} \ \mathsf{varying} \ \mathsf{structure} \end{array}$

Why do we care it for?

- Topological classification (groups in $\pi_1(X)$)
- effective geometry (understanding subvarieties, Chow theory)
- Moduli (Hodge structures in families)
- Arithmetic (Galois reps, p-adic Hodge theory)

outline of course

1. Legendre families, period map

- 2. Hodge structure of curves and abelian surfaces
- 3. Hodge decomposition, Kähler manifolds
- 4. Hodge structures for hypersurfaces, K3, Kuga-Satake, period domains
- 5. Deformation theory intro and variations of the Hodge structure

bundles on \mathbb{P}^1

Let us start with a brief reminder $\mathbb{P}^1 = (U_0 = (\mathbb{C}, z)) \sqcup_{\mathbb{C}^*} (U_1 = (\mathbb{C}, \xi)), z^- 1 = \xi \in \mathbb{C}^*$ line bundles on \mathbb{P}^1

Definition $\mathcal{O}(k)$ – line bundle w basis e_0, e_1 over U_0, U_1 s.t. $e_0 = e_1g_{01}, g_{01} : U_0 \cup U_1 \to \mathbb{C}^*, z \mapsto z^k, k \in \mathbb{Z}$ A section of \mathcal{O}_K is therefore $(f_0, f_1) \in \mathcal{O}(U_0) \times \mathcal{O}(U_1) : f_0 - g_{01}f_1$. Total space $X = Tot(\mathcal{O}(k))$ is a complex surface $(U_0 \times \mathbb{C}) \sqcup_{(U_0 \cup U_1) \times \mathbb{C}}, (z, u) \sim (\xi, v) \Leftrightarrow z = \xi^{-1}, u = z^k v$

Tautological bundle on \mathbb{P}^1 is $\mathcal{O}(-1)$. And $\mathcal{T} * \mathbb{P}^1 \simeq \mathcal{O}(-2)$.

Elliptic curves, Legendre family

Consider section $f_0 = z(z-1)(z-\lambda)$, where $\lambda \in \mathbb{C} \setminus \{0,1\}$. Then $f_0 = z^3(1-\xi)(1-\lambda\xi)$ is the section of $\mathcal{O}(3)$, $z^4\xi(1-\xi)(1-\lambda\xi)$ is the section of $\mathcal{O}(4)$.

 $q=(f_0,f_1)\in H^0(\mathbb{P}^1,\mathcal{O}(4))$ - a section with four distinct zeros $0,1,\lambda,\infty.$

Elliptic curve, topology

Definition

The double branched cover of \mathbb{P}^1 along $\{0, 1, \lambda, \infty\}$, elliptic curve $E_{\lambda} = \{y \in Tot(\mathcal{O}(2)) : y^2 = q(\pi(y))\}$, or locally $= \{(z, y) : y^2 = z(z - 1)(z - \lambda)\}$

For different λ it is a family of smooth curves. Classically, $f(x) = \sqrt{x(x-1)(x-\lambda)}$ becomes single-valued on Riemann surface obtained after making cuts and glying 2 copies of \mathbb{P}^1 . The result of this topological copy-paste is Riemann surface of degree 1.

 (δ, γ) give symplectic basis $H^1_{sing}(E, \mathbb{Z})$ s.t. $\delta \cdot \gamma = 1$.

Canonical bundle of E_{λ}

$$\begin{split} \Omega &= \frac{dz \wedge dy}{y^2 - f_0(z)}, \text{ it is 2-form} \\ \text{Look how it is change while we come to } U_1: \\ &= \frac{-\xi^{-2}d\xi \wedge z^2 dv}{z^4(v^2 - f_1(\xi))} = \frac{-d\xi \wedge dv}{v^2 - f_1(\xi)} \\ \text{Then } \Omega \text{ is the section of } K_{X_2} \text{ with pole along } E_\lambda, \text{ ie} \\ \Omega &\in H^0(X_2, \Omega^2(\log E_\lambda)). \\ \text{Recall: If } D &= \{z_1 = 0\} \text{ then } \Omega^k(\log D) \text{ is } \Lambda^k(dz_1/z_1, dz_2, ..., dz_n) \end{split}$$

Idea

Any top degree form with log singularity on a hypersurface D determine top degree form on D itself (like the induced orientation)

Definition

The residue of $\Omega = f(z_1, z_2) \frac{dz_1}{z_1} \wedge dz_2$ is $f(0, z_2) dz_2 \in H^0(D, K_D)$ Example: In our case $(z, y) \in E_{\lambda}$ $Res_{z,y}\Omega = \frac{1}{2\pi i} \oint_{\gamma} \frac{dz \wedge dy}{y^2 - f_0(z)} = \frac{dz}{2\sqrt{f_0(z)}}$ Hence, $\omega = \frac{dz}{\sqrt{f_0(z)}}$ is a well-defined nowhere vanishing 1-form on E_{λ} i.e $\omega \in H^0(E_{\lambda}, K) \Rightarrow K_{E_{\lambda}} = \mathcal{O}_{E_{\lambda}}$

global 1-form Recall

$$\begin{split} & \mathcal{H}^{1}_{dR}(E,\mathbb{R}) \xrightarrow{\simeq} \mathcal{H}^{sing}_{1} \\ \text{which send form } \alpha \text{ to } \int_{(-)} \alpha. \\ & \text{Form } \omega = \frac{dz}{y} \text{ is a global 1-form: it's fine away from points} \\ & 0, 1, \lambda.\infty. \text{ By differentiation we have } \frac{dz}{y} = 2\frac{dy}{f_{0}'(z)}, \ y, f_{0}' \text{ have no common zeros.} \end{split}$$

Proposition

 ω is global holomorphic 1-form \Rightarrow closed

Proof.

locally $\omega = f(x)dx$ for some holomorphic f, so it is (u + iv)(dz + udy). Thus, $d\omega = ((-v_z - u_y) + i(u_z - u_y))dz \wedge dy = 0$ by Cauchy-Riemann. Then, $[\omega] \in H^1_{dR}(E, \mathbb{C})$, it is decomposed as $(\int_{\delta} \omega) \delta^{\vee} + (\int_{\gamma} \omega) \omega^{\vee}$. Coefficients are called **periods**.

Periods and $H^1_{dR}(E, \mathbb{C})$

Periods are integrals of holomorphic forms on singular cycles, they are essense of the Hodge structure.

Let $H^{1,0} = \mathbb{C}[\omega], H^{0,1} = \mathbb{C}[\overline{\omega}].$

Lemma

$$H^1_{dR}(E,\mathbb{C})=H^{1,0}(E)\oplus H^{0,1}(E)$$

Proof.

1. $[\omega] \cup [\overline{\omega}] = (A\overline{B} - B\overline{A})\delta^{\vee} \wedge \gamma^{\vee}$ 2. Rescale $\omega = \delta^{\vee} + \tau \gamma^{\vee}$. Then $[\omega] \cup [\overline{\omega}] = (-2iIm\tau)[E]$ 3. $\int_{E} i[\omega] \cup [\overline{\omega}] = 2Im\tau > 0$. Indeed, $i\omega \wedge \overline{\omega} = |f(z)|^2 idx \wedge d\overline{x} = 2|f|^2 dz \wedge dy$ locally. 4. Then since $A \neq 0, B \neq 0$ we have $[\omega] \neq 0$. It implies that $dimH^{1,0} = 1$. 5. If $[\overline{\omega}] = \lambda[\omega] \Rightarrow \delta^{\vee} + \overline{\tau}\gamma^{\vee} = \lambda(\delta^{\vee} + \tau\gamma^{\vee})$. So $\tau = \overline{\tau}$.

An invariant

Definition A marking of E_{λ} is a choice (δ, γ) of symplectic basis of $H_1^{sing}(E_{\lambda}, \mathbb{Z})$. Then $(E_{\lambda}, \delta, \gamma)$ is called **framed genus 1 curve**. Define $\tau(E_{\lambda}, \delta, \gamma) = \frac{\int_{\gamma} \omega_{\lambda}}{\int_{\delta} \omega_{\lambda}}$. Is it a good invariant? Claim If $f : E_{\lambda} \xrightarrow{\simeq} E_{\mu}$, then $\tau(E_{\lambda}, \delta, \gamma) = \tau(E_{\mu}, f_*\delta, f_*\gamma)$

Proof.

Since $f^*[\omega_{\lambda}] \in H^{1,0}(E_{\mu})$ we have $f^*[\omega_{\lambda}] = c[\omega_{\mu}]$ (we use that holomorphic function on compact is constant) Hence, $\int_{E_{\lambda}} f^* \omega_{\mu} \wedge f^* \overline{\omega}_m u = |c|^2 \int \omega_{\lambda} \wedge \overline{\omega}_{\lambda} = \int_{f_*E_{\lambda}} \omega_{\mu} \wedge \overline{\omega}_{\mu} = \int_{E_{\mu}} \omega_{\mu} \wedge \overline{\omega}_{\mu} \neq 0$. It follows that $c \neq 0$. Then $\tau(E_{\mu}, f_*\delta, f_*\gamma) = \frac{\int_{f_*\gamma} \omega_{\mu}}{\int_{f_*\delta} \omega_{\mu}} = \frac{c \int_{\gamma} \omega_{\lambda}}{c \int_{\delta} \omega_{\lambda}} = \tau$

Computation of τ

Consider elliptic curve $y^2 = x^3 - x$. This curve has symmetry $\sigma : (x, y) \rightarrow (-x, iy)$.

Period map

Consider a small disk $\Delta \subset \mathbb{P}^1 \setminus (0, 1, \infty)$, then the choice of δ, γ could be made so that it is valid for all $\lambda \in \Delta$. It means that for the family $\{E_{\lambda} : \lambda \in \Delta\}$ the associated v/bundle of cohomological groups $H^1_{F/\Lambda} \longrightarrow^{\pi}$ with $\pi^{-1}(\lambda) = H^1(E_{\lambda}, \mathbb{C})$ is trivialized by δ, γ . Hence, it has a flat connection $(\nabla \delta^* = \nabla \gamma^* = 0)$. It is called **Gauss-Manin connection**. Over $\Delta A(\lambda), B(\lambda)$ are holomorphic (check) and so is $P(\lambda) = \frac{B(\lambda)}{A(\lambda)}$. By analytic continuation we get multiple-valued holomorphic $P : \mathbb{P}^1 \setminus (0, 1, \infty) \longrightarrow \mathbb{C}$. *P* stands for **period map**. **Remark**: It is multi-valued if λ crosses the contour while moving along the loop Γ . Note, $P' = \frac{B'A - A'B}{A^2}$ Claim

 ${\it P}'
eq {\it 0}$ for $\lambda\in \mathbb{P}^1\setminus ({\it 0},1,\infty)$

We can observe that $[\omega_{\lambda}] = A\delta^{\vee} + B\gamma^{\vee}, [\omega_{\lambda}]' = A'\delta^{\vee} + B'\gamma^{\vee}$ so $[\omega_{\lambda}] \cup [\omega_{\lambda}]' = (AB' - BA')\delta^{\vee} \cup \gamma^{\vee}$ Goal: $\omega_{\lambda}, \omega'_{\lambda}$ are linearly independent in $H^{1}(E, \mathbb{C})$

Derivative of a period map

Claim
$$\int [\omega_{\lambda}] \cup [\omega_{\lambda}]' = \frac{-4\pi i}{\lambda(\lambda - 1)}$$

Proof.

First it looks like $[\omega_{\lambda}]' = [\omega'_{\lambda}] = [\frac{1}{2} \frac{1}{z-\lambda} \omega_{\lambda}]$ However, this is only true in $H^1_{dR}(E \setminus p, \mathbb{C}), p = (\lambda, 0)$ since ω'_{λ} has a pole of order 2. Key point: ω'_{λ} has no residue at this pole.

We have Gysin sequence:

$$0 \longrightarrow H^1_{dR}(E) \xrightarrow{Res} H^1_{dR}(E \setminus p) \longrightarrow H^2(\mathbb{C})$$

The third term above is $H^0(\{p\}) = \mathbb{C}$. So if $Res\omega'_{\lambda} = 0$ it comes from a class on $E: y^2 = p(x)$. Let's do short computation: $\omega'_{\lambda} = \frac{dx}{2y(x-\lambda)} = \frac{dy}{p'(x)(x-\lambda)} = \frac{dy}{y^2} \frac{x(x-1)}{p'(x)} \sim \frac{dy}{y^2} + \text{reg.stuff}$

P', continuation

smoothing: cut-off smooth function $\rho(y)$ which is 1 for close neighborhood of λ and then monotonously decreasing till ε -neighborhood (on annulus *Delta'*) and zero after. Denote $[\theta'_{\lambda}] = [\omega'_{\lambda} + d(\rho/y)] \in H^1(E \setminus p)$. Then $[\omega'_{\lambda}] = [\omega_{\lambda}]'$. Now we are able to compute numerator of P' using integration and Stokes' theorem:

$$\int_{E} [\omega_{\lambda}] \cup [\omega_{\lambda}]' = \int_{E} \omega_{\lambda} \wedge \theta_{\lambda}' = \int_{\Delta'} \omega_{\lambda} \wedge d(\rho/y) = - \int_{\Delta'} d(\rho/y\omega_{\lambda} \stackrel{Stokes}{=} - \int_{\partial\Delta'} \rho/y\omega_{\lambda} = -\oint_{\partial\Delta'} \frac{\omega_{\lambda}}{y} = -2\pi i (\frac{2}{p'(x)}) = 4\pi i \frac{1}{\lambda(\lambda-1)}$$

Corollary

The map $P : \mathbb{P}^1 \setminus (0, 1, \infty) \longrightarrow \mathbb{H} := \{\tau \in \mathbb{C} | Im\tau > 0\}$ is a local isomorphism everywhere, in particular, **period is locally a** complete invariant.

Global period map

From above: For a given $\lambda \in \Delta$ $(\delta.\gamma)$ is framing of E_{λ} $\rightsquigarrow P : \Delta \longrightarrow \mathbb{H}$ st $\lambda \mapsto \tau(E_{\lambda}, \delta, \gamma)$, this map is holomorphic and P' nowhere zero $\rightsquigarrow \tilde{P} : (X := \mathbb{P}^1 \setminus (0, 1, \infty)) \longrightarrow \mathbb{H}$ by analytic continuation.

Question

How does $P(\lambda)$ change as we continue around loop $\alpha \in \pi_1(X, \lambda_0)$

• ω_{λ} does not change

• framing changes to $(\delta', \gamma') = (a\delta + b\gamma, c\delta + d\gamma)$ So, $\tau' = \frac{c+d\tau}{a+b\tau}$. Namely, any matrix from $SL_2(\mathbb{R})$ acts on \mathbb{H} by Möbius transformation (and factors through $PSL_2(\mathbb{R})$).

description of \tilde{P}

From above \tilde{P} is equivariant and $\rho : \pi_1(X, \lambda_0) \longrightarrow SL_2(\mathbb{Z})$ (monodromy representation)

Or, in the other words, $P : \mathbb{P}^1 \setminus (0, 1, \infty) \longrightarrow img \rho \setminus \mathbb{H}$, where $img \rho$ acts properly discontinuously.

Picard-Lefschetz transformation

Let us study the monodromy of Gauss-Manin connection.

Quote

In mathematics, **monodromy** is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity.

Example

Consider $\Gamma \in \pi_1(\mathbb{C} \setminus \{0,1\})$ around 1. If $\lambda \to 1$ then torus degenerates to the pinched torus, and cycle γ is getting killed. It is called **vanishing cycle**

Let's define α and β , the generators of $\pi_1(\mathbb{P}^1 \setminus \{0, 1, \infty\}, \lambda)$, as the equivalence classes of loops shown below

Then we can see that singularity points arise only when $\lambda \to 0$ and $\lambda \to \infty$.

Monodromy

Note: No canonical choice of slits, they all give the same Riemann surface (torus in that case).

Monodromy representation

$$\mathit{img}\,
ho = \langle \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}
angle$$

It is called monodromy group of the Legendre family.

Definition

Group
$$\Gamma(2) := \{M \in SL_2(\mathbb{C}) | M \equiv id(mod2)\}$$

structure of $\mathit{img}\,\rho$

• $\Gamma(2)$ has index 2 at $SL_2(\mathbb{C})$ • $img \rho = \Gamma(2)$ in $PSL_2(\mathbb{Z})$ • ρ is injective

Proof.

Compare the fundamental domains of $img\rho$ on \mathbb{H} and of $\Gamma(2)$, they are the same.

Then $\pi_1(\Gamma(2) \setminus \mathbb{H}) \simeq \mathbb{Z}^{*2}$ generated by $\rho(\alpha), \rho(\beta)$ Hence, $P : \mathbb{P}^1 \setminus (0, 1, \infty) \longrightarrow img \rho \setminus \mathbb{H}$ is \simeq on π_1

Claim

P is isomorphism

Proof.

First, $img \rho \setminus \mathbb{H}$ is quasiprojective curve and P is algebraic map (check). Then recall that proper étale map which is isomorphism on π_1 is isomorphism.

Reconstructon of H.str via local periods

Input: au and period domain $\mathbb H$

Goal: Obtain pure Hodge structure

We need for this to reconstruct ω by these data. For each λ fix basis $[\delta_{\lambda}], [\gamma_{\lambda}]$ for each $H_1(E_{\lambda})$ with $[\delta \cup \gamma]$ being the fundamental class.

We may define $\omega = \delta^{\vee}_{\lambda} + \tau(\lambda, \gamma, \delta) \gamma^{\vee}$

Note: It is not canonical.

General remarks

1.
$$E = \mathbb{C}/\Lambda$$
, where lattice $\Lambda \simeq \mathbb{Z}^2$ and $\iota : \Lambda \hookrightarrow \mathbb{C}$.
2. $\Lambda \simeq H_1^{sing}(E,\mathbb{Z})$, oriented integral basis (framing)
3. dz is translation-invariant so it gives the form on E . Moreover,
 $[dz] = [\omega]$ up to scale. So $\int_{\delta} dz = \iota(\delta)$ for $\delta \in \Lambda$.
4. In particular, if $E = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau)$ then $\tau(E, 1, \tau) = \tau$ (!!)
5. So period is determind uniquely up to $SL_2(\mathbb{Z})$
6. Recall $E[2] \simeq \Lambda/2\lambda$, so $\Gamma(2) \setminus \mathbb{H}$ parametrizes $E[2] \to (\mathbb{Z}/2)^2$

In general

Derivative of period map generalizes to the deformation theory, and monodromy to Picard-Fuchs equations

Thanks!