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X CW complex −→ H•sing (X ,Z)
X smooth manifold, then H•sing (X ,Z) has extra discrete structure

(Poincare duality)
X smooth alg variety, then H•sing (X ,Z) carries Hodge structure,

some continuously varying structure

Why do we care it for?
- Topological classification (groups in π1(X ))
- effective geometry (understanding subvarieties, Chow theory)
- Moduli (Hodge structures in families)
- Arithmetic (Galois reps, p-adic Hodge theory)



outline of course

1. Legendre families, period map
2. Hodge structure of curves and abelian surfaces
3. Hodge decomposition, Kähler manifolds
4. Hodge structures for hypersurfaces, K3, Kuga-Satake, period
domains
5. Deformation theory intro and variations of the Hodge structure



bundles on P1

Let us start with a brief reminder
P1 = (U0 = (C, z)) tC∗ (U1 = (C, ξ)) , z−1 = ξ ∈ C∗

line bundles on P1

Definition
O(k) – line bundle w basis e0, e1 over U0,U1 s.t.
e0 = e1g01, g01 : U0 ∪ U1 → C∗, z 7→ zk , k ∈ Z
A section of OK is therefore (f0, f1) ∈ O(U0)×O(U1) : f0 − g01f1.
Total space X = Tot(O(k)) is a complex surface(
U0 × C)t(U0∪U1)×C

)
, (z , u) ∼ (ξ, v)⇔ z = ξ−1, u = zkv

Tautological bundle on P1 is O(−1). And T ∗ P1 ' O(−2).



Elliptic curves, Legendre family

Consider section f0 = z(z − 1)(z − λ), where λ ∈ C \ {0, 1}. Then
f0 = z3(1− ξ)(1− λξ) is the section of O(3), z4ξ(1− ξ)(1− λξ)
is the section of O(4).

q = (f0, f1) ∈ H0(P1,O(4)) - a section with four distinct zeros
0, 1, λ,∞.

•



Elliptic curve, topology

Definition
The double branched cover of P1 along {0, 1, λ,∞}, elliptic curve
Eλ = {y ∈ Tot(O(2)) : y2 = q(π(y))}, or locally
= {(z , y) : y2 = z(z − 1)(z − λ)}

For different λ it is a family of smooth curves.
Classically, f (x) =

√
x(x − 1)(x − λ) becomes single-valued on

Riemann surface obtained after making cuts and glying 2 copies of
P1. The result of this topological copy-paste is Riemann surface of
degree 1.

(δ, γ) give symplectic basis H1
sing (E ,Z) s.t. δ · γ = 1.



Canonical bundle of Eλ
Ω = dz∧dy

y2−f0(z)
, it is 2-form

Look how it is change while we come to U1:

= −ξ−2dξ∧z2dv
z4(v2−f1(ξ))

= −dξ∧dv
v2−f1(ξ)

Then Ω is the section of KX2 with pole along Eλ, ie
Ω ∈ H0(X2,Ω

2(logEλ).
Recall: If D = {z1 = 0} then Ωk(logD) is Λk(dz1/z1, dz2, ..., dzn)

Idea
Any top degree form with log singularity on a hypersurface D
determine top degree form on D itself (like the induced orientation)

Definition
The residue of Ω = f (z1, z2)dz1

z1
∧ dz2 is f (0, z2)dz2 ∈ H0(D,KD)

Example: In our case (z , y) ∈ Eλ
Resz,yΩ = 1

2πi

∮
γ

dz∧dy
y2−f0(z)

= dz

2
√

f0(z)

Hence, ω = dz√
f0(z)

is a well-defined nowhere vanishing 1-form on

Eλ i.e ω ∈ H0(Eλ,K )⇒ KEλ
= OEλ



global 1-form
Recall

H1
dR(E ,R)

'−→ Hsing
1

which send form α to
∫

(−) α.

Form ω = dz
y is a global 1-form: it’s fine away from points

0, 1, λ.∞. By differentiation we have dz
y = 2 dy

f ′0 (z) , y , f ′0 have no
common zeros.

Proposition

ω is global holomorphic 1-form ⇒ closed

Proof.
locally ω = f (x)dx for some holomorphic f , so it is
(u + iv)(dz + udy). Thus,
dω = ((−vz − uy ) + i(uz − uy ))dz ∧ dy = 0 by
Cauchy-Riemann.

Then, [ω] ∈ H1
dR(E ,C), it is decomposed as(∫

δ ω
)
δ∨ +

(∫
γ ω
)
ω∨. Coefficients are called periods.



Periods and H1
dR(E ,C)

Periods are integrals of holomorphic forms on singular cycles, they
are essense of the Hodge structure.
Let H1,0 = C[ω],H0,1 = C[ω].

Lemma

H1
dR(E ,C) = H1,0(E )⊕ H0,1(E )

Proof.
1. [ω] ∪ [ω] = (AB − BA)δ∨ ∧ γ∨
2. Rescale ω = δ∨ + τγ∨. Then [ω] ∪ [ω] = (−2iImτ)[E ]
3.
∫
E i [ω] ∪ [ω] = 2Imτ > 0. Indeed,

iω ∧ ω = |f (z)|2idx ∧ dx = 2|f |2dz ∧ dy locally.
4. Then since A 6= 0,B 6= 0 we have [ω] 6= 0. It implies that
dimH1,0 = 1.
5. If [ω] = λ[ω]⇒ δ∨ + τγ∨ = λ(δ∨ + τγ∨). So τ = τ .



An invariant

Definition
A marking of Eλ is a choice (δ, γ) of symplectic basis of
Hsing

1 (Eλ,Z). Then (Eλ, δ, γ) is called framed genus 1 curve.

Define τ(Eλ, δ, γ) =

∫
γ ωλ∫
δ ωλ

. Is it a good invariant?

Claim
If f : Eλ

'−→ Eµ, then τ(Eλ, δ, γ) = τ(Eµ, f∗δ, f∗γ)

Proof.
Since f ∗[ωλ] ∈ H1,0(Eµ) we have f ∗[ωλ] = c[ωµ] (we use that
holomorphic function on compact is constant)
Hence,

∫
Eλ

f ∗ωµ ∧ f ∗ωmu = |c |2
∫
ωλ ∧ ωλ =

∫
f∗Eλ

ωµ ∧ ωµ =∫
Eµ
ωµ ∧ ωµ 6= 0. It follows that c 6= 0.

Then τ(Eµ, f∗δ, f∗γ) =

∫
f∗γ ωµ∫
f∗δ ωµ

=
c
∫
γ ωλ

c
∫
δ ωλ

= τ



Computation of τ

Consider elliptic curve y2 = x3 − x . This curve has symmetry
σ : (x , y)→ (−x , iy).



Period map
Consider a small disk ∆ ⊂ P1 \ (0, 1,∞), then the choice of δ, γ
could be made so that it is valid for all λ ∈ ∆.
It means that for the family {Eλ : λ ∈ ∆} the associated v/bundle
of cohomological groups H1

E/∆ −→
π with π−1(λ) = H1(Eλ,C) is

trivialized by δ, γ. Hence, it has a flat connection
(∇δ∗ = ∇γ∗ = 0). It is called Gauss-Manin connection.

Over ∆ A(λ),B(λ) are holomorphic (check) and so is P(λ) = B(λ)
A(λ) .

By analytic continuation we get multiple-valued holomorphic
P : P1 \ (0, 1,∞) −→ C. P stands for period map.
Remark: It is multi-valued if λ crosses the contour while moving
along the loop Γ.
Note, P ′ = B′A−A′B

A2

Claim
P ′ 6= 0 for λ ∈ P1 \ (0, 1,∞)

We can observe that [ωλ] = Aδ∨ + Bγ∨, [ωλ]′ = A′δ∨ + B ′γ∨ so
[ωλ] ∪ [ωλ]′ = (AB ′ − BA′)δ∨ ∪ γ∨
Goal: ωλ, ω

′
λ are linearly independent in H1(E ,C)



Derivative of a period map

Claim∫
[ωλ] ∪ [ωλ]′ = −4πi

λ(λ−1)

Proof.
First it looks like [ωλ]′ = [ω′λ] = [ 1

2
1

z−λωλ]

However, this is only true in H1
dR(E \ p,C), p = (λ, 0) since ω′λ has

a pole of order 2.
Key point: ω′λ has no residue at this pole.
We have Gysin sequence:

0 −→ H1
dR(E )

Res−−→ H1
dR(E \ p) −→ H2(C)

The third term above is H0({p}) = C. So if Resω′λ = 0 it comes
from a class on E : y2 = p(x).
Let’s do short computation:
ω′λ = dx

2y(x−λ) = dy
p′(x)(x−λ) = dy

y2
x(x−1)
p′(x) v

dy
y2 + reg.stuff



P ′, continuation

smoothing: cut-off smooth function ρ(y) which is 1 for close
neighborhood of λ and then monotonously decreasing till
ε-neighborhood (on annulus Delta′) and zero after.
Denote [θ′λ] = [ω′λ + d(ρ/y)] ∈ H1(E \ p). Then [ω′λ] = [ωλ]′.
Now we are able to compute numerator of P ′ using integration and
Stokes’ theorem:∫
E [ωλ] ∪ [ωλ]′ =

∫
E ωλ ∧ θ

′
λ =

∫
∆′ ωλ ∧ d(ρ/y) =

−
∫

∆′ d(ρ/yωλ
Stokes

= −
∫
∂∆′ ρ/yωλ = −

∮
∂∆′

ωλ
y = −2πi( 2

p′(x) =

4πi 1
λ(λ−1)

Corollary

The map P : P1 \ (0, 1,∞) −→ H := {τ ∈ C|Imτ > 0} is a local
isomorphism everywhere, in particular, period is locally a
complete invariant.



Global period map
From above: For a given λ ∈ ∆ (δ.γ) is framing of Eλ
 P : ∆ −→ H st λ 7→ τ(Eλ, δ, γ), this map is holomorphic and

P ′ nowhere zero  P̃ : ˜(X := P1 \ (0, 1,∞)) −→ H by analytic
continuation.

Question
How does P(λ) change as we continue around loop α ∈ π1(X , λ0)

• ωλ does not change
• framing changes to (δ′, γ′) = (aδ + bγ, cδ + dγ)
So, τ ′ = c+dτ

a+bτ .
Namely, any matrix from SL2(R) acts on H by Möbius
transformation (and factors through PSL2(R)).

description of P̃

From above P̃ is equivariant and ρ : π1(X , λ0) −→ SL2(Z)
(monodromy representation)

Or, in the other words, P : P1 \ (0, 1,∞) −→ imgρ\H, where imgρ
acts properly discontinuously.



Picard-Lefschetz transformation
Let us study the monodromy of Gauss-Manin connection.

Quote
In mathematics, monodromy is the study of how objects from
mathematical analysis, algebraic topology, algebraic geometry and
differential geometry behave as they ”run round” a singularity.

Example

Consider Γ ∈ π1(C \ {0, 1}) around 1. If λ→ 1 then torus
degenerates to the pinched torus, and cycle γ is getting killed. It is
called vanishing cycle
Let’s define α and β, the generators of π1(P1 \ {0, 1,∞}, λ), as
the equivalence classes of loops shown below

Then we can see that singularity points arise only when λ→ 0 and
λ→∞.



Monodromy

Note: No canonical choice of slits, they all give the same Riemann

surface (torus in that case).



Monodromy representation

imgρ = 〈
(

1 2
0 1

)
,

(
1 0
−2 1

)
〉

It is called monodromy group of the Legendre family.

Definition
Group Γ(2) := {M ∈ SL2(C)|M ≡ id(mod2)}

structure of imgρ

•Γ(2) has index 2 at SL2(C)
•imgρ = Γ(2) in PSL2(Z)
•ρ is injective



Proof.
Compare the fundamental domains of imgρ on H and of Γ(2), they
are the same.

Then π1(Γ(2)\H) ' Z∗2 generated by ρ(α), ρ(β)

Hence, P : P1 \ (0, 1,∞) −→ imgρ\H is ' on π1

Claim
P is isomorphism

Proof.
First, imgρ\H is quasiprojective curve and P is algebraic map
(check). Then recall that proper étale map which is isomorphism
on π1 is isomorphism.



Reconstructon of H.str via local periods

Input: τ and period domain H
Goal: Obtain pure Hodge structure
We need for this to reconstruct ω by these data. For each λ fix
basis [δλ], [γλ] for each H1(Eλ) with [δ ∪ γ] being the fundamental
class.
We may define ω = δ∨λ + τ(λ, γ, δ)γ∨

Note: It is not canonical.



General remarks

1. E = C/Λ, where lattice Λ ' Z2 and ι : Λ ↪→ C.
2. Λ ' Hsing

1 (E ,Z), oriented integral basis (framing)
3. dz is translation-invariant so it gives the form on E . Moreover,
[dz ] = [ω] up to scale. So

∫
δ dz = ι(δ) for δ ∈ Λ.

4. In particular, if E = C/(Z⊕ Zτ) then τ(E , 1, τ) = τ (!!)
5. So period is determind uniquely up to SL2(Z)
6. Recall E [2] ' Λ/2λ, so Γ(2)\H parametrizes E [2]→∼ (Z/2)2

In general

Derivative of period map generalizes to the deformation theory,
and monodromy to Picard-Fuchs equations



Thanks!


	Intro

