
54 NIKON KURNOSOV, UCL

Lecture 5

Abstract: In the last lecture we will talk about Lagrangian fibraions. I will review
results on the base of fibration and the structure of fibers.

4.9. Lagrangian fibrations.

4.9.1. Elliptic K3 surfaces. Consider Fermat’s quartic S (as we know it is K3 sur-
face) in the following form

(x2 + y2)(x2
� y2)� (z2 + t2)(z2 � t2) = 0

Consider a point p = [� : µ] 2 P
1, then the following intersection is contained in

S:

Cp :=

(
�(x2

� y2) = µ(z2 + t2)

µ(x2 + y2) = �(z2 � t2)

Note that for the generic p this is a smooth elliptic curve (Exercise 1). Moreover,
for �/µ = 0,±1,±i,1 the fiber degenerates into a cycle of four lines. Therefore,
we have 24 singularities.

Remark: For ones who is interested in mirror symmetry, look into paper of
Auroux [Au]. In fact, the mirror of K3 surface is another K3 surface, carrying a
special Lagrangian fibration whose base di↵ers from B by an exchange of the two
a�ne structures on the B ' S2

\ {24 points }.

4.9.2. Matsushita theorem. It appears that

Theorem 4.17. (Matsushita, [Mat1, Mat2, Mat3])
Let ⇡ : X ! B be a proper surjective holomorphic map with connected fibers from

a hyperkähler manifold X to a projective variety B, with 0 < dim(B) < dim(X).
Then

(1) dim(B) = 1
2dim(X), and

(2) the fibers of ⇡ are Lagrangian (this means that the holomorphic symplectic
form vanishes on the fibers ⇡�1(x)).

(3) Moreover, B is a Fano variety with Q-factorial singularities and Picard num-
ber 1.

We will discuss the proof of this theorem and most of known results about
Lagrangian fibrations.

Example: Let S be a K3 surface with an elliptic fibration ⇢ : S ! P
1. The

composition S[n]
! S(n)

! (P1)(n) ' P
n is a Lagrangian fibration ⇡ : S[n]

! P
n.

A generic fiber of ⇡ is isomorphic to C1 ⇥ · · · ⇥ Cn, where C1, ..., Cn are generic
distinct fibers of ⇢. The generic deformation of the couple (S[n],⇡) is not obtained
by deforming (S, ⇢). In fact by [?] the deformation space of (S[n],⇡) is smooth and
it has dimension one greater than the deformation space of (S, ⇢).

4.9.3. Fiber of the fibration. We will start with the small remark.
Remark: The normal bundle of a Lagrangian submanifold T ⇢ X is isomorphic

to the cotangent bundle of T .

Let us state the following Theorem of Kollár and Saito ([Ko1, Ko2, Sai]):
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Theorem 4.18. Let f : X ! B be a proper surjective morhpism from a smooth
Kähler manifold X to a normal variety B. Then Rif⇤!X is torsion free, where !X

is the dualizing sheaf of X.

Proposition 4.6. Let f : X ! B be a proper Lagrangian fibration. Then every
irreducible component of a fibre of f is a Lagrangian subvariety. In particular, f
is equidimensional.Furthermore, every smooth fibre Xt of f is a complex torus and
in fact an abelian variety.

Idea of proof:
1. Let Xt be a general fiber. Then by adjunction, KF ⇠ 0 and also the dimension

of the general fiber is n.
2. Consider arbitrary ! 2 H2(X,R) and ↵ 2 H2(B,R), then by Fujiki’s equation

we have

q(⌦+ ⌦̄+ x · ! + y · f⇤↵)n = �X

Z

X

(⌦+ ⌦̄+ x · ! + y · f⇤↵)2n

3. Hence, by comparing coe�cients we have

Z

X

(⌦ ^ ⌦̄) ^ !n�2
^ f⇤(↵n) = 0

4. Restrict the equation above on Xt we have

Z

X

(⌦ ^ ⌦̄)|Xt ^ !n�2
|Xt = 0

which implies ⌦|Xt = 0.
5. Since Xt is Lagrangian we have ⇥Xt ' N⇤

Xt/X
, normal bundle is trivial,

therefore so is tangent bundle. Any compact Kähler manifold with trivial tangent
bundle is a complex torus by Albanese morphism.

6. By the Theorem 4.18 we have R2f⇤!X torsion-free, also we have !X ' OX .
7. By Leray spectral sequence, there exists a morphism

⇢ : H2(X,OX) ! H0(B,R2f⇤OX)

so ⇢(⌦̄) is a torsion element in H0(B,R2f⇤OX) since general fiber is Lagrangian.
8. Let V be an irreducible component of a fibre. Let ⇡ : Ṽ ! V be its resolution.

Then ⇡⇤⌦̄ is trivial. Indeed, it is contained in the image of the following sequence

R2f⇤OX ⌦ k(p) �! H2(V,OV ) �! H2(Ṽ ,O
Ṽ
)

9. The dimension of V is at least n because of semi-continuity of the dimension
of the fibers. Therefore, V is Lagrangian.

Remark: If we drop the condition of properness, there exists a counter-example,
see Exercise 3.

4.9.4. Lagrangian tori.

Proposition 4.7. (Voisin, [Voi])
Any Lagrangian submanifold T ⇢ X of a hyperkähler manifold X is projective.

In particular, any Lagrangian torus is an abelian variety.
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Remark: As T is Lagrangian, the map (H2,0
�H0,2)(X) �! H2(T,C) is trivial,

and H1,1(X) ! H1,1) is certainly not trivial. Thus, T ⇢ X deforms with X along
a subset of codimension at least one.

Moreover, the restriction map

H2(X,Z) ! H2(Xb,Z)

has rank 1, so that the fibers Xb are in fact canonically polarized by the restriction
of any ample line bundle on X.

Question: Are every Lagrangian torus T ⇢ X is the fiber of a Lagrangian
fibration X ! B.

The question has been answered a�rmatively by Greb-Lehn-Rollenske ([?]) for
non-projective X and also in dimension four, it was also discussed in the works of
Amerik-Campana ([AC]), the projective case was discussed by Hwang-Weiss.

4.9.5. The base of a fibration. In the Matsushita theorem 4.17 it is stated that the
base is Fano variety with Picard 1 and Q-factorial singularities. We refer to [Mat1]
for the proof of it.

Here is a refined statement due to Matsushita for the smooth base. In that case

Theorem 4.19. (Matsushita)
Assume f : X ! B is a fibration with B smooth. Then B is a simply connected,

smooth projective variety of dimension n satisfying

Hp,q(B) = 0 for all p 6= q and Hp,p(B) = Hp,p(Pn)

for all p > 0 and H2(B,Q) ' Q. In particular,

Pic(B) ' H2(B,Z) ' Z

Moreover, B is a Fano variety.

Remark: The equalities Hp,0(B) = H0,p(B) = 0 for all p > 0 and H2(B,Q) =
Q are more easily to prove.

Remark: The proof of an isomorphism of rational Hodge structuresH⇤(B,Q) '
H⇤(Pn,Q) relies on the factH⇤(X,OX) = H⇤(Pn,C). It was studied by Matsushita
for projective X via higher direct images (Rif⇤OX ' ⌦i

B
) and then projectivity

condition can be dropped by [?] where they used the deformation theory.
Nevertheless, we will proof couple of claims of the Proposition 4.19.

Idea of proof of the Pic(B) = Q:
1. Since X is Kḧler, so is B.
2. Since H2,0(B) = H0,2(B) = 0, there exists a rational Kähler class on B

implying that it is projective.
3. By results of Kollár the natural map ⇡1(X) ! ⇡1(B) is surjective. Hence, B

is simply-connected.
4. Then, by the universal coe�cient theorem, H2(B,Z) is torsion-free.
5. The exponential sequence gives Pic(B)!̃H2(B,Z).

Idea of proving that B is Fano8

1. X admits a Kḧler– Einstein metric. Hence, !B ' OB or !⇤
B

is ample.
2.The case !B ' OB is excluded, since Hn,0(B) = 0.

8i.e. !⇤
B is ample



HYPERKÄHLER GEOMETRY 57

Flatness of f and smoothness of the base B.
Remark:In fact, f is flat if and only if B is smooth. Flatness of f follows from

smoothness X and B by [?]
If B is not-smooth we can constract nonflat fibration.

Example: Let X := A⇥ C
3, where A is a three-dimensional torus.

Let us define the following action of Z2 on X:

(x, y, z;u, v, w) 7! (�x,�y, z + ⌧ ;�u,�v, w),

where ⌧ is a 2-torsion element of A.
If we define the holomorphic symplectic form on X by dx^du+dy^dv+dz^dw,

the morphism X/Z2 ! C
3/Z2 is a Lagrangian fibration.

One can check that it is nonflat Lagrangian fibration.
Later, Hwang [Hw] studied the smooth case and proved

Proposition 4.8. (Hwang)
If the base B is smooth, then B ' P

n.

Idea of proving this Proposition is based on interplay of the existence of two
geometric structures on the base B: the theory of varieties of minimal rational tan-
gents describes a certain geometric structure arising from minimal rational curves at
general points of a Fano manifold B with b2(B) = 1, on the other hand, the theory
of Lagrangian fibrations (and related theory of completely integrable Hamiltonian
systems) provides an a�ne structure at general points of the base manifold B via
the classical action variables. If base is not Pn then the first structure is ”non-flat”,
while the a�ne structure arising from the action variables is naturally ”flat”.

Remark: In dimension two, the result is immediate by Exercise NNN
Remark: However, it is still unclear if the base is always smooth.

Conjecture 4.2. The base of Lagrangian fibration is always projective space P
n.

Dimension four

Theorem 4.20. (Ou, [Ou])
Let f : X ! B be a Lagrangian fibration from a projective irreducible symplectic

manifold X of dimension 4 to a normal surface B. Then either X ' P
2 or X '

Sn(E8).

The surface Sn(E8) is the unique Fano surface with exactly one singular point
which is Du Val of type E8, and two nodal rational curves in its anti-canonical
system.

For a Fano surface B with canonical singularities and simpl-connected smooth
locus and Picard number 1 there are following possibilities ([?]):

• If B is smooth, then B ' P
2

• If there is one singular point, then possible type of singularities areA1, A4, D5, E6, E7, E8.
There are isomorphic classes for E8, and one for any other case.

• If there are two singular points, then one is of type A1, and the other is of
type A2.

Let us describe the construction of the surfaces Sc(E8) and Sn(E8). Choose a
singular cubic rational curve C in B1 = P

2. Let x be one of the smooth inflection
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points of C. Then we blow up the point x, and call resulting surface as B2. Consider
B3 ! B2 as the blow up of the intersection point of the strict transform of C in
B2 and the exceptional divisor of B2 ! B1. Then we can apply this procedure six
more times and get B9, which has eight (-2)-curves: the strict transform of tangent
line to x, and the strict transforms of all the exceptional curves of B8 ! B1. Blow
down all these curves to get surface B, then B is isomorphic to Sc(E8) if C is a
cuspidal rational curve, or is isomorphic to Sn(E8) if C is a nodal curve.

The key theorem of Ou’s proof is the following

Theorem 4.21. Let f : X ! B be a Lagrangian fibration from a complex projective
irreducible symplectic manifold X to a normal projective variety B. Let H be a Q-
ample integral Weil divisor in B, and let D = f⇤H. Then for all j > 0 and i � 0,
we have

hj(X,Rif⇤(OX(D))) = 0 and hi(X,PX(D)) = h0(B,⌦[i][⌦]OB(H)).

where ⌦[i] = (⌦i)⇤⇤ for all i > 0, and for two coherent sheaves F and G, let
F [⌦]G = (F ⌦ G)⇤⇤

As a corollary, we conclude that if dimX = 4, then

h0(B,OB(H))� h0(B,⌦[1][⌦]OB(H)) + h0(B,OB(H +KX)) = 3

The theorem above follows from generalization of Kollár theorem: for a La-
grangian fibration f from a smooth complex projective symplectic variety X to a
projective variety B. Let H be a Weil divisor on B, and let D = f⇤H. We will
show that the sheaf Rif⇤OX(D) is reflexive and is isomorphic to ⌦i

B
[⌦]OB(H) for

all i � 0.

Theorem 4.22. (Huybrechts-Xu, Bogomolov-Kurnosov, [HX, BK])
The base of Lagrangian fibration of hyperkähler fourfold is P

2.

For both papers main idea is that since the normal surface B is known to be
Q-factorial with at most log-terminal singularities, then, locally analytically, it is
isomorphic to a quotient of the form C

2/G for some finite subgroup G ⇢ GL(2,C)
(see [?]). By Theorem 4.20 there is just on case left, this case leads to the non-trivial
central extension of group A5 by Z2 and was excluded by Bogomolov-Kurnosov.
Huybrechts-Xi have proved the following theorem which is stronger than the any-
thing left to prove after Ou:

Theorem 4.23. (Huybrechts,Xu)
Assume X ! B is a projective Lagrangian fibration of a quasi-projective sym-

plectic fourfold over a normal algebraic surface B. If B is locally analytically at a
point 0 2 B of the form C

2/G for a finite subgroup G ⇢ GL(2,C), then G is not
the binary icosahedral group.

For the proof of this theorem they needed to studyG-action on the essential skele-
ton of the one-dimensional degeneration over Spec(R). The study of degenerations
and essential skeleton leads to many other results on the geometry of Lagrangian
fibrations (see Section 4.11.2).
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4.10. SYZ conjecture. Holomorphic Lagrangian fibrations are important in Mir-
ror Symmetry. In [SYZ] Strominger, Yau and Zaslow conjectured that Mirror Sym-
metry of Calabi-Yau manifolds comes from real Lagrangian fibrations. In particular,
any Calabi-Yau manifold which admits mirror must have a Lagrangian fibration and
the dual fibration corresponds to the mirror dual Calabi-Yau manifold.

Definition 4.20. Let L be a line bundle on a compact complex manifold M . Then
L is called semiample if there exists a holomorphic map ⇡ : M ! X to a projective
variety X, and LN

' ⇡⇤(O(1)), for some N > 0.

Conjecture 4.3. (The hyperkähler SYZ conjecture, [V4])
Let L be a line bundle on a hyperkähler manifold, with q(c1(L), c1(L)) = 0, and

c1(L) nef
9. Then L is semiample.

By Theorem 4.17 for su�ciently big N , the corresponding projective morphism
M ! P(H0(M,L⌦N )⇤) is a Lagrangian fibration onto its image.

Remark: Semiampleness of L implies that the Kodaira dimension and numerical
dimension of L are equal, this condition is often called ”the abundance conjecture”
[DPS].

The Conjecture 4.3 is known for all known examples of hyperkähler manifolds.
And we can state it in more weak and popular form

Conjecture 4.4. Let M be a hyperkähler manifold. Then M can be deformed to
a hyperkähler manifold admitting a holomorphic Lagrangian fibration.

Remark: In the hyperlähler case this conjecture was stated by Hassett-Tschinkel,
and then by Huybrechts, Sawon, who studied them. In his review of SYZ conjecture
Verbitsky says that conjecture was stated even earlier by Bogomolov and Tyurin.

Remark: The weakened form of Matsushita’s conjecture have been proved in
the work of Geemen-Voisin [GV]

4.10.1. Special fibers. We have proved that the general fiber is Lagrangian tori.
The structure of special fibers is also very interesting question. It was first studied
by Kodaira, who gave a classification of singular fibers for elliptic surfaces. In the
hyperkähler case this question was studied by Hwang, Oguiso, Sawon [HO, S1] and
others.

Theorem 4.24. (Kodaira)
Singular fibres of elliptic surfaces look like:

9i.e. it belongs to the closure of the Kähler cone.
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Remark: All these singular fibres can occur for elliptic K3s except multiple
fibres and Ib, I⇤b for b � 0. A very general elliptic K3 has 24 singular fibres of type
I1.

In higher dimensions there is not much known. Below there is on of possible sin-
gular fibers. Unlike elliptic K3 surfaces, the singular fibres of Lagrangian fibrations
can have multiplicities

Theorem 4.25. (C. Lehn, Sawon)
For a general Lagrangian fibration X ! P

n a general singular fibre has character-
istic cycle of type Ib, I1, II (cuspidal), III (tacnode), or IV (triple intersection).

4.11. Degeneration of hyperkähler manifolds.

4.11.1. P = W conjecture.

Definition 4.21. Let ⇡ : X ! � be a projective degeneration of hyperkähler
manifolds over the unit disk which we assume to be semistable, namely the central
fiber X0 is reduced with simple normal crossings. For t 2 �⇤, let N denote the
logarithmic monodromy operator on H⇤(Xt,Q). The weight filtration of N centered
at d on Hd(Xt,Q), denoted by WkHd(Xt,Q), is the weight filtration of the limit
mixed Hodge structure associated to ⇡. The degeneration ⇡ : X ! � is called of
type III if N2

6= 0 and N3 = 0 on H2(Xt,Q). In this case, the limit mixed Hodge
structure is of Hodge–Tate type by result of Soldatenkov [Sol].

Theorem 4.26. (Harder,Li, Shen, Yin)
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For any Lagrangian fibration f : X ! B, there exists a type III projective
degeneration of hyperkähler manifolds ⇡ : X ! � with Xt deformation equivalent to
X for all t 2 �⇤, together with a multiplicative isomorphism H⇤(X,Q) ' H(Xt,Q),
such that

PkH
⇤(X,Q) = W2kH

⇤(Xt,Q) = W2k+1H
⇤(Xt,Q

4.11.2. Mazzon-Brown result.

Definition 4.22. Let X
⇤/�⇤ be a projective degeneration of hyper-Kähler man-

ifolds. Let ⌫ 2 {1, 2, 3} be the nilpotency index for the associated monodromy
operator N on H2(Xt) (i.e. N = logTu, where Tu is the unipotent part of the
monodromy T = TsTu). We say that the degeneration is of Type I, II, or III
respectively if ⌫ = 1, 2, 3 respectively.

Definition 4.23. Any projective 1-parameter degeneration X/� of K3 surfaces
can be arranged to be semistable with trivial canonical bundle; such a degeneration
is called a Kulikov degeneration of K3s.

For a Kulikov degeneration, one can give a rather precise description of the
possible central fibers X0 of the degeneration.

Theorem 4.27. (Kulikov, Persson, Roan, [Ku]
Let X/� be a Kulikov degeneration of K3 surfaces. Then, depending on the Type

of the degeneration (or equivalently, the nilpotency index of N) the central fiber X0

of the degeneration is as follows:
i) Type I: X0 is a smooth K3 surface.
ii) Type II: X0 is a chain of surfaces, glued along smooth elliptic curves. The

end surfaces are rational surfaces, and the corresponding double curves are smooth
anticanonical divisors. The intermediary surfaces (possibly none) are (birationally)
elliptically ruled; the double curves for such surfaces are two distinct sections which
sum up to an anticanonical divisor.

iii) Type III: X0 is a normal crossing union of rational surfaces such that the
associated dual complex is a triangulation of S2. On each irreducible component
V of X0, the double curves form a cycle of rational curves giving an anticanonical
divisor of V .

Definition 4.24. Let R be a discrete valuation ring with quotient field K and
residue field k, and let X be a smooth proper variety over K. By resolution of
singularities guarantees that we can always produce an R-model X where the special
fiber Xk is a strict normal crossings (snc) divisor. Given such a model, we associate
the dual complex D(Xk), which is the dual intersection complex of the components
of the special fiber.

Remark: The dual complex of the special fiber of a such degeneration reflects
the geometry of the generic fiber. If the generic fiber is rationally connected, then
the dual complex of the special fiber is contractible. For Calabi-Yau varieties,
degenerations are classified by the action of monodromy on the cohomology. The
principle is that the degenerations with maximally unipotent actions have the most
rich combinatorial structure in the dual complex.

Just as for Calabi-Yau varieties, degenerations of hyper-Kähler varieties can be
understood in terms of the monodromy operator on cohomology, with classification
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into types I, II, III. Type I is the case where the dual complex is just a single point,
but types II and III have more interesting structure. In [KLSV] was show that in
the type II case the dual complex has the rational homology type of a point, and in
the type III case of a complex projective space. Gulbrandsen, Halle, and Hulek use
GIT to construct a model of the degeneration of n-th order Hilbert schemes arising
from some type II degenerations of K3 surfaces, and show that the dual complex
is an n-simplex. There are considerations from mirror symmetry that suggest that
for a type III degeneration the dual complex should be homeomorphic to CP

n

Remark: The dual complex of the special fiber of a Kulikov degeneration of a
K3 surface is a point, a closed interval or the sphere S2 according to the respective
type.

Definition 4.25. For complete K with respect to the valuation induced by R, we
get non- archimedean norm on K. We associate a K-analytic space to X; each
point corresponds to a real valuation on the residue field of a point of X, extending
the discrete valuation on K. This space, denoted by Xan, is called the Berkovich
space associated to X. From any snc model X of X one can construct a subspace of
Xan, called the Berkovich skeleton of X and denoted by Sk(X): it is homeomorphic
to the dual intersection complex of the divisor Xk.

Theorem 4.28. (Mazzon-Brown, [BM])
If the essential skeleton of S is PL homeomorphic to a point, a closed interval or

the 2-dimensional sphere, then the essential skeleton of S[n] is PL homeomorphic
to a point, the standard n-simplex or CP

n respectively.
If the essential skeleton of A is PL homeomorphic to a point, the circle S1 or

the torus S1
⇥ S1, then the essential skeleton of Kn(A) is PL homeomorphic to a

point, the standard n-simplex or CP
n respectively.

Conjecture 4.5. For type III degenerations of 2n-dimensional hyper-Kähler man-
ifolds, the base of the SYZ fibration is CP

n.
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4.12. Exercises 5.

(1) Show that generic fiber of the elliptic K3 surface from Lectures is a smooth
elliptic curve. Also show that special fibers degenerates into a cycle of four
lines.

Hint: Show that its tangent bundle fits in some exact sequence.
(2) Construct Lagrangian fibrations for K3[n] and Kn(T ).
(3) Let us consider the morphism ⇡ : C4

! C
2 which is defined by (x, y, z, w) 7!

(xy, y). Define a symplectic form on C
4 by dx ^ dz + dy ^ dw. Show that

⇡ is a Lagrangian fibration and the fibre ⇡�1(0, 0) is not a Lagrangian
subvariety.

(4) Any smooth projective surface B with !⇤
B

ample and H2(B,Q) = Q is
isomorphic to P

2.
(5) For a degeneration of abelian surfaces, the dual complex of the special fiber

is homeomorphic to a point, the circle S1 or the torus S1
⇥ S1 according

to the three types of degeneration.
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