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4. Lecture 4

Abstract: I will finish the idea of proof of Torelli theorem.
In the second part of lecture we will talk about automorphisms groups of hy-

perkähler manifolds, in particular about Kawamata-Morrison cone conjecture and
finiteness results.

4.1. Ideas of proving Torelli theorem. Note that a point z 2 ⌦ determines
an oriented positive 2-plane ⇧z in H2

R: for the associated Hodge decomposition,
the sum ⇧2,0

z
+⇧0,2

z
is the complexification of a 2-plane ⇧z in H2

R, which is indeed
canonically oriented.

Therefore, the positive cone we have associated to ⇧z is an open subset of the
Re(⇧1,1

z
). Conversely, an oriented positive 2-plane in H2

R determines a point of ⌦.

The main ingredient is the following result due to Huybrechts-Demaily-Paun
([H, DP]).

Theorem 4.1. Let X be a hyperkähler manifold for which H1,1(X) \H2(X;Z) =
{0}, namely ⇧?

z
\H2 = {0}).Then every element of the positive cone of X represents

a Kähler class.

Since period space is simply connected, Theorem 3.16 is equivalent to saying
that Per is a covering map.

It is su�cient to prove the following proposition.

Proposition 4.1. Let U ⇢ ⌦ be a neighborhood of Per(t) isomorphic to the open
unit ball in C

n+1. If t 2 Js lies over the center of this ball, then there exists a
unique section � of Per over U which takes P(t) to t.

Definition 4.1. If the rational closure of a linear subspace W in V for Q-vector
space is all of V , then we say that W is fully irrational.

Remark: It is clear that in the Grassmannian of all linear subspaces of V that
are not fully irrational form a countable union of proper subvarieties defined over
Q. In particular, the fully irrational subspaces are dense.

Idea of proof:
1.

Lemma 4.1. Let W be a fully irrational, positive 3-plane in H2(R). Then Per
maps every connected component of Per�1D(W ) isomorphically onto D(W ).

Lemma follows from the Theorem 4.1.
2. Let us identify U with the open unit ball B<1 in C

n+1. Let r be the supremum
of the a 2 (0, 1] for which there exists a section over the open ball B<a that takes
Per(t) to t.

3. Suppose r < 1. Since Per is a local homeomorphism between separated
spaces, two sections defined on the same connected subset of ⌦ are equal when
they are equal at some point. Hence, we have a section � defined over its interior
B<r .

4. Let z 2 @Br. A positive line l in ⇧?
z

determines a twistor conic D(l + ⇧z).
Take l such that D(l+⇧z) is transversal to the tangent space of @Br at z and l is
fully irrational.

Remark: First is an open, nonempty condition, second condition is dense.
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5. By step 1 (Lemma 4.1) we have that B<r \D(l +⇧z) is nonempty and that
the restriction of � to this subset extends across z. Therefore, we obtain a section
�z on an open ball neighborhood Uz of z in U such that � and �zcoincide at points
of Uz \B<r by connectedness.

6. Moreover, � and �z, z 2 @Br all together define a section of period mp Per
on a neighborhood of Br. It gives a contradiction, because it contains a ball of a
larger radius.

4.2. Cones.

Definition 4.2. Let X be an IHS. The Kähler cone KX ⇢ H1,1(X,R) is the open
convex cone of all Kähler classes on X, i.e. classes that can be represented by some
Kähler form.

Definition 4.3. K̃M closure of Kähler cone in H1,1(M,R) is called the nef cone. A
face of the Kähler cone is the intersection of the boundary of K̃M and a hyperplane
V ⇢ H1,1(M,R) which has non-empty interior.

Definition 4.4. The set of classes with positive square in H1,1(X,R) has two
connected components. We call the positive cone the component containing the
Kähler classes.

The following analogue of Shafarevich and Pyatetski- Shapiro’s/Looijenga and
Peters’ result is known.

Theorem 4.2. (Huybrechts, Boucksom; [Bo, H])
The Kähler classes on an IHS X are the elements of the positive cone Pos(X)

which are strictly positive on all rational curves on X.

Remark: Hence, the Kähler cone is cut out within the positive cone by the
orthogonal hyperplanes to the classes of the rational curves. Recall that, in the
projective case, the ample classes are elements of the Neron-Severi group which
have positive square and are positive on all the rational curves.

Assuming that the hyperkähler manifold X is projective, we now look at the
intersections of the cones in H1,1(X)R that we have constructed with the real sub-
space Pic(X)R := Pic(X)⌦ R = <H1,1(X)R \H2(X,Q)>.

The open cone
Posalg(X) := Pos(X) \ Pic(X)R

is the component of {L 2 Pic(X)R|L2 > 0} that contains the ample classes.
By exercise NN it makes sense to define the (possibly nonconvex) open bimero-

morphic kähler cone

BirK(X) := [uu
⇤(K(X 0)) ✓ Pos(X)

There might be infinitely many di↵erent cones u⇤(K(X 0)).
The closed cone ¯BirK(X) is convex. By Theorem 4.2 we have the following

description:

KX=↵ 2 Pos(X)|↵ · C > 0 for all rational curves C ⇢ X
KX=↵ 2 Pos(X)|↵ · C � 0 for all rational curves C ⇢ X

Bir(K)X=↵ 2 Pos(X)q(↵, Y ) � 0 for all (uniruled/negative) irreducible
hypersurfaces Y ⇢ X

The following result shows that these cones are either disjoint or equal.
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Proposition 4.2. (Fujiki)
Let X and X 0 be hyperkähler manifolds with a bimeromorphic isomorphism

u : X ˜99KX 0
() u⇤

KX0) = X () KX \ u⇤(KX0 6= ;

4.2.1. Ample/movable cone.

Definition 4.5. The intersection

KX \ Pic(X)R = Amp(X)

is the ample cone, generated by classes of ample line bundles.

Remark: We also have nef cone KX\Pic(X)R = Amp(X) = Nef(X) generated
by classes of nef line bundles.

By Theorem 4.2 we have

Amp(X) =↵ 2 Posalg(X)|↵ · C > 0 for all rational curves C ⇢ X

Nef(X) =↵ 2 Pos
alg

(X)|↵ · C � 0 for all rational curves C ⇢ X

Definition 4.6. The “rational hull” of the ample cone Nef+(X) is the smallest
convex cone containing the ample cone and all rational points of its boundary

Remark: For some varieties these cones have a nice structure, e.g. for Fano
varieties they are rational polyhedral. However in general they can be quite myste-
rious: they can have infinitely many isolated extremal rays or ”round” parts. Both
phenomena occur already for K3 surfaces.

Definition 4.7. Mov(X) is the convex hull in NS(X)⌦R of all classes of movable5

line bundles and Mov+(X) stands for keeping only the rationally defined part of
the boundary.

Proposition 4.3. Let X be a projective hyperkähler manifold. We have

Mov(X) = BirKX \ Pic(X)R

Example: Let S be a projective K3 surface and let X = S[m], with m � 2. We
have

H2(X,Z) ' H2(S,Z)� Z�, P ic(X) ' Pic(S)� Z�,

with qX(�) = �2(m � 1). The irreducible hypersurface in X that parametrizes
nonreduced subschemes has class 2�; and it is therefore negative. The whole nef
cone Nef(S) ⇢ Pic(S)R corresponds to classes that are nef but not ample on X:
it is contained in the boundary of Nef(X) ⇢ Pic(X)R. Hence,it is also contained
in the boundary of the movable cone Mov(X) ⇢ Pic(X)R.

4.3. (-2)-curves on K3 surfaces. It is known since Shafarevich and Pyatetski-
Shapiro’s work [PS-S] in the algebraic case and Looijenga-Peters [?] in the compact
Kähler case that some important aspects of the geometry of K3 surfaces are gov-
erned by smooth rational curves on these surfaces. By adjunction, the square of
such a curve is always equal to -2.

Definition 4.8. Curves with a square -2 are called (-2)-curves.

5whose base locus has codimension � 2 (no fixed divisors)
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Remark: A fundamental theorem states that a line bundle on a K3 surface is
ample if and only if it is of positive square and positive on all (-2)-curves. We also
have an analogue in the non- algebraic case, with an ample line bundle replaced
by a Kähler class. In other words, the orthogonal hyperplanes to the (-2)-curves
bound the ample (resp. Kähler) cone inside the positive cone in NS(X)⌦R (resp.
H1,1(X))R The number of (-2)-curves on a K3 surface S is not necessarily finite.

Stark proved that there are finitely many of them up to the action of Aut(S)
[St].

Proposition 4.4. For the projective K3 surface the group Aut(S) has a polyhedral
fundamental domain on Nef+(X).

Remark: The Riemann-Roch formula implies that any divisor of square -2 on
a K3 surface is e↵ective, up to a ± sign. However not all Hodge classes of square -2
on a K3 surface are represented by (-2)-curves. Indeed the corresponding e↵ective
divisor can be reducible.

Observation: Nevertheless, for any (-2)-class z on a K3 surface X there is a
deformation X 0 where H1,1(X 0)\H2(X 0,Q) = hzi. Indeed, the locus where a class
↵ remains of type (1, 1) is equal to ↵? in the space of local deformations Def(X),
identified with a neighbourhood of zero inH1(X,⌦1X) ⇠= H1(X,TX), and a general
element of the hyperplane ↵? is not orthogonal to any other integral class.

4.4. MBM classes.

Definition 4.9. Any birational map between hyperkähler manifolds 'M 99K M 0

is an isomorphism in codimension one, therefore induces an isomorphism on the
second cohomology. We say that M and M 0 are birational models of each other.

The observation from the previous section has the following generalization:
The space of deformations of X where a class ↵ 2 H2(X,Z) is of type (1,1) can

be described as the hyperplane ↵?. A general deformation X 0 of this type satisfies
H1,1(X) \H2(X,Q) = h↵i.

There are two cases: for a generic deformation X 0, some multiple of ↵ is repre-
sented by a curve, or that no multiple of ↵ is represented by a curve. By Theorem
4.2, in the second case every class in the positive cone of X 0 is Kähler.

In the first case, a multiple of ↵ is represented by a rational curve and ↵? defines
the unique wall of the Kähler cone of X 0. By the deformation theory this is also the
case for any deformation x0 with Picard group generated by ↵ over the rationals.

Therefore, we have the following definition.
The MBM classes are defined as those classes whose orthogonal hy- perplanes

support faces of the Kähler chambers.

Definition 4.10. A negative integral cohomology class z of type (1,1) is called
monodromy birationally minimal (MBM) if for some isometry � 2 O(H2(M,Z))
belonging to the monodromy group, �(z)? ⇢ H1,1(M,R). contains a face of the
Kähler cone of one of birational models M 0 of M .

Remark: Geometrically, the MBM classes are characterized among negative
integral (1,1)-classes, as those which are, up to a scalar multiple, represented by
minimal rational curves on deformations of M under the identification of H2(M,Q)
with H2(M,Q) given by the BBF form. Roughly speaking, MBM classes are co-
homology classes of negative BBF-square whose duals are represented by minimal
rational curves on a deformation of M .
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Remark: A face of Kähler cone by definition has dimension h1,1
� 1. The z

being MBM means that �(z)? \ @KM 0 contains an open subset of �(z)?. The
MBM classes are analogues of “extremal rays” from projective geometry, up to
monodromy and birational equivalence, that is the origin of a name. In fact when
M is projective, those are exactly the monodromy transforms of extremal rays on
birational models of M .

Example: MBM classes for K3 surfaces are (-2)-classes.

Theorem 4.3. (Amerik, Verbitsky, [AV1])
Let M be a hyperkähler manifold, z 2 H1,1(M) an integral cohomology class,

q(z, z) < 0, and M 0 a deformation of M such that z remains of type (1,1) on M 0.
Assume that z is monodromy birationally minimal on M . Then z is monodromy
birationally minimal on M 0.

Using MBM classes we can describe Kähler cone explicitely.

Theorem 4.4. Let M be a hyperkähler manifold, and S ⇢ H1,1(M) the set of all
MBM classes of type (1,1). Consider the corresponding set of hyperplanes S? :=
{z?|z 2 S} in H1,1(M). Then the Kähler cone of M is a connected component of
Pos(M)\[S?. Moreover, for any connected component K of Pos(M)\[S?, there
exists � 2 O(H2(M,Z)) in the monodromy group of M and a birational model M 0

such that �(K) is the Kähler cone of M 0.

Remark: Note that for a negative integral class z 2 H1,1(M), the orthogonal
hyperplane z? either passes through the interiour of some Kähler-Weyl chamber and
then it contains no face of a Kähler- Weyl chamber (it means that z is not MBM),
or its intersection with the positive cone is a union of faces of such chambers (when
z is MBM).

Hence, there are no “barycentric partitions” in the decomposition of the positive
cone into the Kähler chambers.

4.5. Kawamata-Morrison conjecture.

Definition 4.11. Let � be a group acting on a topological space X. A fundamental
domain for the action of � is a connected open subset D ⇢ X such that

[�2�� · D̄ = X

and the sets � ·D are pairwise disjoint.

Definition 4.12. Let X be a subset of a metric space Y . A side of a convex
subset C ⇢ Y is a maximal nonempty convex subset of @C. A polyhedron in Y
is a nonempty closed convex subset whose collection of sides is locally finite. A
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fundamental polyhedron for the action of a discrete isometry group � on X is a
convex polyhedron D whose interior is a locally finite fundamental domain for �. 6

Definition 4.13. Let V be a finite-dimensional real vector space equipped with a
fixed Q-structure. A rational polyhedral cone in V is a cone, which is an intersection
of finitely many half spaces defined over Q. In particular, such a cone is convex
and has finitely many faces. For an open convex cone C ⇢ V we denote by C

+ the
convex hull of C̄ \ V (Q).

Conjecture 4.1. (Morrison-Kawamata cone conjecture)
Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic

automorphisms of M acts on the set of faces of KM with finite number of orbits.
And for the ample cone the automorphism group Aut(M) has a finite polyhedral
fundamental domain.

Remark: This conjecture is still wide open even for Calabi-Yau threefolds.
Remark: The statement about the finiteness of the orbits is often referred to as

the weak Morrison-Kawamata cone conjecture, the strong one states that Aut(M)
has a finite polyhedral fundamental domain on ample cone, and on Nef+(M)
The latter has a chance to be valid only in the algebraic setting, i.e. for the
ample/movable cone rather than the Kähler/birational Kähler one. Indeed for a
very general IHS X, the Kähler cone is round (it is equal to Pos(X)) whereas the
group of (birational) automorphisms is trivial.

Theorem 4.5. (Sterk)
The Cone Conjecture holds for any projective K3 surface S.

Remark: Let S is a very general K3 surface, then S is non-projective. Hence,
the ample cone is empty but the Kähler cone is still rich. If S is very general, then
⇢(S) = 0 and Aut(S) = {idS}. Moreover, S has no smooth rational curves and the
Kähler cone of S coincides with the positive cone in H1,1(S), which is completely
circular. This is also the unique fundamental domain as Aut(S) = {idS}. So the
version of cone conjecture for the Kähler cone does not hold for a very general K3
surface.

Theorem 4.6. (Amerik-Verbitsky, Markman) Let M be a projective simple
hyperkähler manifold. Then

(1) The group of automorphisms Aut(M) acts with finitely many orbits on the
set of faces of the Kähler cone KM .

(2) [AV2] The group Aut(M) has a finite polyhedral fundamental domain on
Nef+(M).

(3) ([M]) The group Bir(M) has a rational polyhedral fundamental domain on
Mov(M)+.

MBM-classes have played the key role in study of Kawamata-Morrison conjec-
ture, in particular, first Amerik-Verbitsky managed to prove the following theorem

Theorem 4.7. (Amerik, Verbitsky, [AV1])
Let M be a simple hyperkähler manifold, and q the Bogomolov- Beauville-Fujiki

form. Suppose that there exists C > 0 such that |q(⌘, ⌘)| < C for all primitive
integral MBM classes. Then the Morrison-Kawamata cone conjecture holds for M .

6Local finiteness means that for each point x 2 X there is an open neighborhood U of x such
that U meets only finitely many sets � · D̄, � 2 �. Obviously, this also implies that every compact
subset K ⇢ X intersects only finitely many sets � · D̄.
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Definition 4.14. Denote by MonHdg(M, I) the group of all oriented isometries
of H2(M,Z) preserving the Hodge decomposition, we will call such isometries as
Hodge isometries.

In the other words, their complexifications preserve the lineH2,0(M) ⇢ H2(M,C).

Definition 4.15. A Kähler-Weyl chamber of a hyperkähler manifold is the image
of the Kähler cone of M 0 under some � 2 MonHdg(M, I), where M 0 runs through
the set of all birational models of M .

Then Theorem 4.4 says that the connected components of Pos(M, I) \ S? are
Kähler-Weyl chambers of (M, I).

Theorem 4.8. Let (M, I) be a hyperkähler manifold, and

Mon(M, I) ⇢ O(H2(M,Z))

its monodromy group. Let G the image of Aut(M) in O(H2(M,Z)). Then G is the
set of all � 2 MonHdg(M, I) fixing the Kähler chamber.

Remark: The image of the mapping class group is a finite index subgroup in
O(H2(M,Z)), and,then, MonHdg(M, I) is of finite index in the group of isometries
of the Picard lattice.

Later they proved the boundedness assumption on squares of primitive MBM
classes.

Theorem 4.9. Let M be a simple hyperkähler manifold such that b2(M) � 6.
Then the primitive MBM classes of type (1,1) have bounded Beauville- Bogomolov
square.

4.6. Finitness properties of automorphism groups. By means of BBF-form,
the signature of the Neron-Severi groupNS(M) is either (1, 0, ⇢(M)�1), (0, 1, ⇢(M)�
1), (0, 0, ⇢(M)) where ⇢(M) is the Picard number of M . We call these three cases
hyperbolic, parabolic, elliptic respectively.

Theorem 4.10. Huybrechts projectivity criterion, [H]
Let X be an IHS. Then X is projective i↵ KX \H2(X,Z) 6= ;.

Remark: This follows from Demailly-Paun-Nakai-Moshezon theorem, which is
quite hard to proof (using Demailly’s regularization of currents).

Theorem 4.11. Let X be a compact Kähler manifold. Then the Kähler cone of
X is a connected component of the set of all classes ↵ 2 H1,1(X,R) such thatR
Y
↵d > 0 for any irreducible analytic subset Y ⇢ X of dimension d.

By a theorem of Huybrechts, a holomorphic symplectic manifold M is projec-
tive if and only if it has an integral (1, 1)-class with strictly positive Beauville-
Bogomolov square. In this case, the Picard lattice H1,1(M) = H2(M,Z) \Z
H1,1(M), equipped with the Beauville-Bogomolov form q, is a lattice of signature
(+,�,�, ...,�). If M is not projective, the Picard lattice can be either negative
definite, or degenerate negative semidefinite with one-dimensional kernel.

Let X be a hyperkähler manifold, let Bir(X) be the group of its bimeromorphic
automorphisms, and let Aut(X) be the subgroup of its (biholomorphic) automor-
phisms. There are representations (by Exercise 5)

 B : Bir(X) ! O(H2(X,Z), qX),  A : Aut(X) ! O(H2(X,Z), qX).
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Proposition 4.5. (Huybrechts, Hassett–Tschinkel, [H])
Let X be a hyperkähler manifold. The kernels of  A and  B are equal and finite,

and they are invariant by deformation of X.

Idea of proof:
1. Consider bimeromorphic automorphism in the kernel of  B , it preserves a

Kähler class, hence is biholomorphic (Proposition 4.2).
2. If an automorphism of X fixes a Kähler class, it fixes the unique Calabi–Yau

metric in that class, therefore it is an isometry of the underlying Riemannian man-
ifold.

3. We know that the group of isometries of a compact Riemanniann manifold is
compact and the group Aut(X) is discrete (since its Lie algebra is H0(X,TX) = 0),
then kernel is finite.

4. The defromation invariance of the kernel is studied in [?]
Remark: In particular, the index of  A(Aut(X)) in  B(Bir(X)) is equal to

the index of Aut(X) in Bir(X).

4.6.1. Oguiso’s results.

Definition 4.16. A group G is almost abelian of finite rank r if there are a normal
subgroup G0CG of finite index and a finite group K which fit in the exact sequence

id ! K ! G0
! Z

r
! 0.

Then one has the following analogue of Tits’ alternative for hyperkähler mani-
folds:

Theorem 4.12. (Oguiso, [Og] Let M be a projective hyperkähler manifold and
G be a subgroup of Bir(M). Then G satisfies either:

(1) G is an almost abelian group of finite rank, or
(2) G contains a non-abelian free group.

It is even simpler for non-projective case (recall that NS(M) is not hyperbolic):

Theorem 4.13. (Oguiso, [Og]
Let M be a non-projective hyperkähler manifold. Then the group Bir(M) (and

hence Aut(M)) is almost abelian of rank at most max(⇢(M)� 1, 1). In particular,
these groups are finitely generated.

Moreover, (1) If NS(M) is elliptic, then Bir(M) falls into the exact sequence

1 ! N ! Bir(M) ! Z
r
! 0

where N is a finite group and r is either 0 or 1. Moreover, r = 0 if b2(M)� ⇢(M)
is odd, i.e. the rank of transcendental lattice is odd. Moreover, in each dimension
2m, both r = 0 and r = 1 are realizable.

(2) If NS(M) is parabolic, then Bir(M) is an almost abelian group of rank at
most ⇢(M)� 1. Moreover, in dimension 2, this estimate is optimal.

4.6.2. Projective hyperkähler manifolds.

Theorem 4.14. (Boissiere, Sarti, Cattaneo,Fu, Kurnosov,Yasinsky, [BS,
CF, KY])

For any projective hyperkähler manifold X, the automorphism group Aut(X) and
the birational automorphism group Bir(X) are finitely presented
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Boissier-Sarti has studiedAut(X) via Torelli theorem. Cattaneo-Fu, and Kurnosov-
Yasinsky proved finiteness property of Bir(X).

Remark: Using Global Torelli Theorem, S. Boissiere and A. Sarti proved that
Bir(M) is finitely generated. This does not imply that Aut(M) is finitely generated
since Aut(M) is not necessarily of finite index in Bir(M).

Both proofs are based on Amerik-Verbitsky results on Kawamata-Morrison con-
jecture. The Cattaneo-Fu proof uses Kleinian groups, the proof of Kurnosov-
Yasinsky based on the hyperbolic nature of the action. More precisely, it is proved
that both groups are so-called CAT(0)-groups. From this the following strong form
of Tits’ alternative for hyperkähler manifolds was deduced:

Theorem 4.15. Let M be a projective hyperkähler manifold, and G ✓ Bir(M) be
a subgroup. Then

(1) either G contains a finite index subgroup isomorphic to Z
n ;

(2) or G contains a non-commutative free group. In particular, so are Bir(M)
and Aut(M).

4.6.3. A bit of hyperbolic geometry. We give a idea of proving Theorem 4.14 fol-
lowing [KY].

Definition 4.17. A horosphere on a hyperbolic space is a sphere which is every-
where orthogonal to a pencil of geodesics passing through one point at infinity, and
a horoball is a ball bounded by a horosphere. A cusp point for an n-dimensional
hyperbolic manifold H/� is a point on the boundary @H such that its stabilizer in
� contains a free abelian group of rank n � 1. Such subgroups are called maximal
parabolic. For any point p 2 @H stabilized by �0 ⇢ �, and any horosphere S tangent
to the boundary in p, �0 acts on S by isometries. In such a situation, p is a cusp
point if and only if (S \ p)/�0 is compact.

By Amerik-Verbitsky results there is fundamental domain of the action of auto-
morphism group.

The group � acts on the image of ample/movable cone in hyperbolic space (since
we are in the projective case) with a fundamental domain ⇧, which moreover has
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finitely many sides. There exists a finite family W of horocusp regions with disjoint
closures such that ⇧ \ W is compact, we can make this collection such that they
have disjoint closures and X \W is a CAT(0) space7. And action of � on X \W is
properly discountinuous and cocompact.

4.7. Symplectic automorphisms. I would like to mention few results on the
symplectic automorphisms.

Definition 4.18. Symplectic automorphisms are automorphisms which preserve
the holomorphic symplectic structure.

In fact, the symplectic automorphisms of hyperkähler manifolds can be classi-
fied in the same way as automorphism of the hyperbolic plane (see below). There
are hyperbolic, or, more precisely, loxodromic automorphisms (ones which act on
H1,1(M) with two real eigenvalues of absolute value 6= 1), elliptic ones (automor-
phisms of finite order) and parabolic (quasiunipotent with a non-trivial rank 3
Jordan cell).

Recall that the BBF form has signature (1, b2�3) onH1,1(M). An automorphism
of a hyperkähler manifold (M, I) is called elliptic (parabolic, hyperbolic) if it is
elliptic (parabolic, hyperbolic) on H1,1

I
(M,R). Namely, we have the following cases

for an automorphism ↵.

Definition 4.19. Let n > 0, and ↵ 2 SO+(1, n) a non-trivial oriented isometry
acting on V = R1,n. Then one and only one of these three cases occurs:

(i) ↵ has an eigenvector x with q(x, x) > 0 (”an elliptic isometry”)
(ii) ↵ has an eigenvector x with q(x, x) = 0 and real eigenvalue �x satisfying

|�x| > 1 (“hyperbolic isometry”).
(iii) ↵ has a unique eigenvector x with q(x, x) = 0 and eigenvalue 1, and no fixed

points on PV (“parabolic isometry”).

Remark: All eigenvalues of elliptic and parabolic isometries have ab- solute
value 1. Hyperbolic and elliptic isometries are semisimple (i.e. the corresponding
linear operators are diagonalizable over C), parabolic are not.

Remark: When (V, q) has some underlying integral structure the elliptic isome-
tries preserving the integral structure are of finite order. Parabolic ones are of
infinite order, since any linear homomorphism of finite order is semisimple.

In our case (V, q) = (H1,1(M), qBBF ).

Elliptic:
I am not going to talk about them in these Lectures. There are series of works

of Mongardi and others. They have constructed some specific automorphisms and
studied them for known examples of hyperkähler manifolds.

Hyperbolic:
By Exercise 7 we have the following theorem:

Theorem 4.16. (Amerik, Verbitsky, [AV3])
Let M be a hyperkähler manifold with b2(M) � 5. Then M has a deformation

admitting a hyperbolic automorphism.

7i.e. that geodesic triangles are ”not thicker” than Euclidean ones.
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Parabolic:

Amerik-Verbitsky have proved that any hyperkähler manifold with b2 � 14 ad-
mits a projective deformation with a parabolic automorphism.

Remark: The parabolic automorphisms are those which fix an isotropic vector.
This vector must be rational, namely BBF-isotropic line bundle. Such line bundle
is nef on a birational model of M , and there is conjecture that sections of this line
bundle give a Lagrangian fibration. The interest to study parabolic automorophisms
is that they preserve such fibrations which we will study in the Lecture 5.
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4.8. Exercises 4.

(1) Using the Cauchy-Schwarz inequality check that the positive cone is convex.
(2) Describe a Kähler cone of complex torus
(3) Show that Kähler cone coincides with the positive cone if hyperkähler man-

ifold is projective and the Picard number is one.
(4) If (S,L) is a very general polarized K3 surface, X = S[2], with L is ample of

degree 2e, so that Pic(S) = ZL and Pic(X) = ZL� Z�, we have qX(aL+
b�) = 2ea2 � 2b2.

Describe Posalg(X).
(5) Let X and X 0 be hyperkähler manifolds with a bimeromorphic isomor-

phism u : X ˜99KX 0. There exist open subsets U ⇢ X and U 0
⇢ X 0

(with codimension of the complement at least two, such subsets are called
big) such that u induces an isomorphism U ˜99KU 0 and a Hodge isometry
u⇤ : (H2(X,Z), qX0)!̃(H2(X,Z), qX).

(6) Let X be a very general compact hyperkähler manifold. The Kähler cone
coincide with the set of all classes ↵ 2 H1,1(X,R) such that

R
Y
↵d > 0 for

any irreducible analytic subset Y ⇢ X of dimension d.
(7) Let L be a non-degenerate indefinite lattice of rank � 5, and N a natural

number. Then L contains a primitive rank 2 sublattice ⇤ of signature (1,1)
which does not represent numbers of absolute value less than N .

(8) Let ⇤0 be a lattice containing a sublattice spanned by two (-2)-classes c1, c2
with (c1, c2) = 2n. We let M 0 denote the �-orbit of {c1, c2}. If N = Zc2
and ⇤ = N?, then c1 + nc2 has square 2(n2

� 1) and is the orthogonal
projection of c1. Note that this situation is realized geometrically by K3
surface with two smooth rational curves intersecting in 2n points.
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