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3. Lecture 3

Abstract:
In this lecture I will cover LLV-decomposition and some known results on the

bounds of the second Betti number.
In the second part of the lecture I will discuss Torelli theorem, in particular,

defining Teichmüller space, moduli space of marked hyperkähler manifolds and
discussing the issue of non-Hausdor↵ness.

I am also thankful to Pascale Voegtli who did a project on the topic of Bakker-
Lehn proof of the general Torelli theorem ([P]).

3.0.1. LLV-decomposition. We are going to formulate some results on the algebra
so(H̃, q̃) defined above.

Definition 3.1. The Looijenga–Lunts–Verbitsky (LLV) algebra g(X) of X is the
Lie subalgebra of g(H⇤(X,Q)) generated by all formal Lefschetz and dual Lefschetz
operators associated to almost all elements in H2(X,Q).

Corollary 3.1. (of Theorem 2.6), [LL, V1] Let X be a hyperkähler manifold,
and r = [b2(X)/2]. The LLV algebra g is a simple Lie algebra of type Br+1 or
Dr+1, depending on the parity of b2(X).

Definition 3.2. We have

H⇤(X,Q) =
M

µ

V �mµ
µ

,

with Vµ the irreducible g-module of highest weight µ. We call the decomposition
above the LLV decomposition; it is a basic di↵eomorphism invariant of X.

3.0.2. Verbitsky representation. There is one representation which appears for all
hyperkähler manifolds, known and not discovered ([V1, ?].

Theorem 3.1. Let X be a compact hyperkḧler manifold X of dimension 2n. Then
the subalgebra SH2(X,Q) ⇢ H⇤(X,Q) generated by H2(X,Q) is an irreducible
g-module V(n) ⇢ SymnV of highest weight µ = (n).

This representation was first described by Verbitsky, and later Bogomolov, some-
times it is also called F � algebra.

Here is the construction:
Let V be a vector space over an algebraically closed field of characteristic zero.

Let q be a non-degenerate scalar product on V , and S•V the symmetric algebra.
Multiplication by qk3 gives a natural embedding SiV !q

k

Si+2kV . Denote by
Rn,k(V ) ⇢ Sn+kV the orthogonal complement to the image of Sn�kV ! Sn+kV .

Definition 3.3. Let F •
n
(V ) be the quotient of S•V by the ideal generated by [kRn,k(V ),

with the grading multiplied by two, so that F 2i(V ) is the quotient of SiV . The al-
gebra F •

n
(V ) is called the n-th F -algebra of V .

Remark: This is an even-graded algebra, with dimF4n(V ) = 1.
Remark: By Bogomolov the F -algebra has the following description

F •
n
(V ) '

S•

hxn+1|x 2 V, q(x, x) = 0i

3We may identify V and V ⇤ via q and consider q as an element of S2V
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Idea of proof of Theorem 3.1: 1. We have the decomposition g = g�2�(so(H, q)�
Q⌅) � g�2 as in Exercise 3. It is enough to show SH2(X,Q) is closed under the
g2-action and g�2-action.

2. Clearly SH2(X,Q) is closed under g2. The vector space g�2 is generated
by the operators ⇤!. To prove that SH2(X,Q) is closed we compute for any
x1, ..., xk 2 H2(X,Q), we have

⇤!(x1x2 · · · xk) = ⇤x(Lx1(x2 · · · xk)) = [Lx1 ,⇤!](x2 · · · xk)� Lx1(⇤!(x2 · · · xk)).

3. The first term is contained in SH2(X,Q). For the second one we use the
induction on k.

Definition 3.4. We call SH2(X,Q) ' V(n) the Verbitsky component of H⇤(X,Q).

As we have seen above it looks in the following way

SH2(X,Q)2k =

(
Symk(H2(X,Q)), 0  k  n

Sym2n�kH2(X,Q), n < k  2n

3.0.3. Kuga-Satake construction. Recall that the Hodge structures of weight one
are all of geometric origin. There is a natural bijection between the set of isomor-
phism classes of integral Hodge structures of weight one and the set of isomorphism
classes of complex tori, and analogous bijection in the case of polarizable Hodge
structures of weight one:

complex tori  ! integral Hodge structures of weight one ,
abelian varieties  ! polarizable integral Hodge structures of weight one

K3 surface has Hodge structure on the second cohomology, such that h2,0 = 1.

Definition 3.5. We call V a Hodge structure of K3 type if V is a (rational or
integral) Hodge structure of weight two with

dimC(V
2,0) = 1, V p,q = 0 for |p� q| > 2.

Kuga-Satake construction is a way to get Hodge structure of weight 1 starting
with K3-type Hodge structure V with quadratic form q.

Let I := I(q) ⇢ T (V ) be the two-sided ideal generated by the even elements
v ⌦ v � q(v), v 2 V .

Recall that the Cli↵ord algebra is the quotient algebra

Cl(V ) := Cl(V, q) := T (V )/I(q).

The Cli↵ord algebra has a natural Z/2Z-grading, so it consists of odd and even
parts.

Now let us briefly recall the Kuga-Satake construction:
1.Let � = e1 + ie2 be a generator of V 2,0with e1, e2 2 VR and q(e1) = 1.
2. Since q(�) = 0 we have e1 · e2 = �e2 · e1 in Cl(VR), hence left multiplication

with J := e1 · e2 induces a complex structure on the real vector space Cl(VR).
3. Now one defines the Kuga–Satake Hodge structure as the Hodge structure of

weight one on Cl+(V ) given by

⇢ : C⇤
! GL(Cl+(V )R), x+ yi 7! x+ yJ.

Remark: There is a natural bijection between rational Hodge structures of
weight n on a rational vector space V and algebraic representations ⇢ : C

⇤
!

GL(VR) with R
⇤ acting by ⇢(t)(v) = tn ·v. This leads to Deligne torus construction.
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Definition 3.6. The Kuga–Satake variety associated with the integral Hodge struc-
ture V of weight two is the complex torus.

KS(V ) := Cl+(VR)/Cl+(V ).

Remark: The dimension of KS variety is 2n�2, where n = dimCVC.

Proposition 3.1. The Kuga–Satake construction

KS : Hodge structures of K3 type ,! Hodge structures of weight one

is injective.

If we just apply the classical Kuga-Satake construction to (H2(M), qM ), we
will lose all the information on the higher cohomology structure and LLV-algebra
action. However, the classical Kuga-Satake construction has been generalized by
the following theorem.

Theorem 3.2. (Kurnosov, Soldatenkov,Verbitsky, [KSV])
Let M be a hyperkähler manifold. There exists an integer l � 0, a complex

torus T , an embedding gtot(M) ,! }tot(T ) of Lie algebras, and an embedding  :
H•(M,C) ,! H•+l(T,C) of gtot(M)-modules. For each complex structure I of
hyperkähler type on M there exists a complex structure on T such that  is a
morphism of Hodge structures.

3.1. Rozansky-Witten invariants. There is a deep theory of Rozansky-Witten
invariants – developed by Rozansky, Witten, Kontsevich, Kapranov. In the hy-
perkähler case some computations were done in the works of Sawon and Hitchin.
Namely, they computed RW invariants for the most simple graphs.

Let us recall the definition of the invariants in the case of hyperkähler manifolds
and trivalent graphs and then state the result which later allowed Guan to get some
bounds on b2.

Sawon-Hitchin approach, [S, HS]:
Consider the Riemann curvature tensor R as a section K 2 ⌦1,1(EndT ) with

components Ki

jkl̄
relative to local complex coordinates. Using the non-degenerate

holomorphic 2-form ⌦ to identify ⇥X and ⌦X , we can lower the first index and
define

� 2 ⌦1,1(⌦X ⌦ ⌦X) = ⌦0,1(⌦X ⌦ ⌦X ⌦ ⌦X)

by

�
ijkl̄

=
X

m

⌦imGKm

jkl̄

Remark: It is symmetrical in j, k because the connection is torsion-free and
preserves the complex structure. It is also symmetrical in i, j because the the
curvature takes values in the Lie algebra of Sp(2k,C).

Thus

� 2 ⌦0,1(Sym3⌦X)

and by Bianchi identity it is H1(M,Sym2⌦X).
Let � be a trivalent (oriented)4 graph with 2k vertices and no edges joining a

vertex to itself.

4Two such orderings are equivalent if they di↵er on an even number of vertices
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Choose an ordering of the vertices and consider the tensor of 2k copies of �. If
vertex vm and vertex vn of the graph � are joined by an edge and m < n then we
contract with the skew form ⌦̃ on ⌦X dual to ⌦:

cm,n⌦
ij�⌦ ...⌦ �im ⌦ ...⌦ �in ⌦ ...⌦ �

where cm,n = ± depending if the orientation on the edge goes from vm to vn, or
not. Continuing over all 3k edges, and projecting this to the exterior product, we
obtain (0, 2k)-form �(�)

Definition 3.7. The Rozansky-Witten invariant of M of dimR = 4k defined by the
graph � is

b�(M) :=
1

(8⇡2)kk!

Z

M

�(�)⌦k

Remark: The particular factor in the integral above is chosen to make the
invariant have multiplicative properties.

There is exercise 2 which allows to compute RW invariant of graph ✓k. By the
bubbling formula proved by Sawon one have

Theorem 3.3. (Sawon)

�b✓l  (b2 + 2(k � 1))b✓k�2✓2

3.2. Bounds on b2. We will review some particular know results on LLV-decomposition
and discuss bounds on the second Betti number.

3.2.1. Guan’s results.

Proposition 3.2. (Salamon, [Sa])
Let X be a HK manifold of dimension 2n. Then

nb2n(X) = 2
2nX

i=1

(�1)i(3i2 � n)b2n�i(X).

Remark: This is the Riemann-Roch formula for irreducible compact hyperkähler
manifolds of dimension 2n.

Theorem 3.4. (Guan, [GKLR])
Let X be hyperkähler fourfold then
(1) b2  23.
(2)

b3 
4(23� b2)(b� b2

b2 + 1

If b2 � 7, then (b2, b3) 2 (8, 0), (23, 0) If b2  7, then one of the following holds:
b2 3 4 5 6 7
b3 4l, l  17 4l, l  15 4l, l  9 4l, l  4 0,8

Idea of proof:
(1) From Salamon equation and Verbitsky’s embedding Sym2H2(X) ,! H4(X)

it follows that b2  23
(2) Guan proved inequality for b3 using some direct computations with topolog-

ical invariants. However, it is just corollary of Theorem 3.3
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Remark: If b2 = 23 the Hodge diamond of X is the same as the Hodge
diamond of the Hilbert square of a K3 surface.When b2 = 7, either b3 = 04 or the
Hodge diamond of X is the same of the Hodge diamond of a Kummer variety.

Remark: Results of Guan were generalized to low higher dimensions by Sawon,
Kurnosov and by Fu-Menet to orbifolds of dimension four.

3.2.2. Conjecture on b2. Moreover, Sawon-Kurnosov using Guan’s motivation con-
jectured the following bound on b2:

Conjecture 3.1.

b2 
21 +

p
96n+ 433

2
, ifH⇤

odd
(X) = 0

Remark: This conjecture is related to so called Nagai’s conjecture below. Let
X/� be a one-parameter projective degeneration of hyperkähler manifolds. Similar
to the K3 case, it is natural to define the Type of the degeneration to be I, II, or
III, in accordance to the index of nilpotence ⌫2 of the log monodromy operator
N2 = log(T2)u on H2(X). As the hyperkähler manifolds are controlled by their
second cohomology, one might expect some tight connection between the second
monodromy and higher monodromies.

Conjecture 3.2. (Nagai) The index of nilpotency ⌫2k of log monodromy N2k on
H2k(Xt) satisfies

⌫2k = k⌫2
for k = 1, ..., n.

Green-Roblees-Kim-Laza have shown that all known examples satisfy the con-
dition, which is even stronger then Nagai’s conjecture

Theorem 3.5. (Green-Roblees-Kim-Laza, [?])
Let X be a 2n-dimensional hyperkähler manifold of K3[n],Kn(T ), OG6, or OG10

type. Then any irreducible g-module component Vµ occurring in the LLV decompo-
sition of H⇤(X) satisfies

µ0 + + µr�1 + |µr|  n.

Remark: All known examples satisfy this conjecture. Furthermore, the equality
holds for the Verbitsky component, an irreducible g-submodule with highest weight
µ = (n, 0, ...., 0) that is always present in H⇤(X). In the other words inequality
says that Verbitsky component is maximal one.

Using this motivation Kim and Laza have deduced Conjecture 3.1 from the
inequality from Theorem 3.5:

Theorem 3.6. (Laza-Kim) Let X be a compact hyperkähler manifold of dimension
2n. If the inequality in Theorem 3.5 holds for X, then

b2 

(
21+

p
96n+433
2 , ifH⇤

odd
(X) = 0

2k + 1, ifHk
6= 0 for odd k

3.3. Monodromy groups.

Definition 3.8. Let M be a manifold, Diff(M) its di↵eomorphism group, and
Diff0(M) the connected component of unity in Diff(M). The quotient group
� = Diff(M)/Diff0(M) is called the mapping class group
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Theorem 3.7. The group � acts on the set of connected components of the set of
all Sp(n)-metrics on M . The quotient by this action is finite.

Definition 3.9. The monodromy group Mon(M) of a hyperkähler manifold M is a
subgroup of GL(H⇤(M,Z)) generated by the monodromy of the Gauss- Manin local
systems, for all holomorphic deformations of M over a connected complex analytic
base.

3.4. Period map and Teichmuller spaces.

Definition 3.10. The period domain associated to ⇤ is the set

⌦⇤ := {x 2 P(⇤⌦ C)|q(x) = 0, q(x, x̄) > 0}.

3.4.1. Teichmüller space Teich. Now we introduce several spaces which serve as
the source of Period map.

Definition 3.11. Let (M, I) be a compact hyperkähler manifold, I the set of ori-
ented complex structures of hyperkähler type on M , and Diff0(M) the group ofiso-
topies. The quotient space Teich := I/Diff0(M) is called the Teichmüller space
of (M, I), and the quotient of Teich over a whole oriented di↵eomorphism group
the coarse moduli space of (M, I).

Definition 3.12. For any J 2 Teich, (M,J) is also a simple hyperkähler manifold

Remark: The fact that (M,J) is also simple hyperkähler manifold follows from
the following statement due to Verbitsky: Let M be a compact hyperkähler man-
ifold, which is homotopy equivalent to a simple hyperkähler manifold. Then M is
also simple.

Remark: By assigning to a hyperkählerian complex structure on M the asso-
ciated Hodge decomposition on H2, we obtain the period map.

Definition 3.13. Consider a map Per : Teich ! PH2(M,C),sending J to the
line H2,0(M,J) 2 PH2(M,C). Clearly, Per maps Teich into an open subset of the
quadric, defined by

{x 2 P(⇤⌦ C)|q(x) = 0, q(x, x̄) > 0}

The map Per : Teich! ⌦ is called the period map.

Definition 3.14. Define the Torelli group K of M as the subgroup of all elements
of the mapping class group � of M acting trivially on H2(M).

Definition 3.15. The marked moduli space of M is the quotient Teich/K. is called
the coarse, marked moduli space of complex structures, and its points – marked
hyperkähler manifolds. To choose a marking it means to choose a basis in the
cohomology of M . The period map is well defined on it as well.

Remark: It follows that each connected component of Teich/K is di↵eomorphic
to the corresponding connected component of Teich, because K acts by permuting
isomorphic connected components of Teich.

This theorem gives us a description of monodromy group in context of mapping
class group
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Theorem 3.8. (Verbitky, [V2]) Let (M, I) be a hyperkähler manifold, and TeichI

the corresponding connected component of a Teichmüller space. Denote by �I the
subgroup of the mapping class group preserving the component TeichI , and let
Mon(M) be the monodromy group of (M, I) defined above. Then Mon(M) co-
incides with the image of �I in GL(H⇤(M,Z)).

Theorem 3.9. (Bogomolov)
Let M be a simple hyperkähler manifold, and Teich its Teichmüller space. Then

the period map Per : Teich! ⌦ is locally an unramified covering.

Remark: Bogomolov’s theorem implies that Teich is smooth. However, it is
not necessarily Hausdor↵ (and it is non-Hausdor↵ even in the simplest examples).
We will discuss non-Hausdor↵ness later.

Remark: Using the boundedness results of Kollar and Matsusaka, D. Huy-
brechts has shown that the space Teich has only a finite number of connected
components:

Theorem 3.10. (Huybrechts, [H1]) Let M be a fixed compact manifold. Then
there exist at most finitely many di↵erent deformation types of irreducible holomor-
phic symplectic complex structures on M .

Remark: Note that the argument does not show that the number of connected
components of M⇤ that parametrizes complex structures on a fixed manifold M is
finite. A priori, this seems only to be the case modulo the action of Aut(�) (as it
was stated in Theorem 3.7.

Remark: To work over Tecihmüller spaces is rather complicated than over
moduli of marked hyperkählers.

We will follow Loojenga approach ([?]) to the proof of Torelli theorem, so we
will use his way to define (topology of) Teichmüller spaces.

3.4.2. Teichmüller space J . From now on, we fix a compact simply-connected man-
ifold M of dimension 4m which admits an irreducible hyperkähler structure.

We start with Teich as the set, namely set the set of hyperkähler structures on
M given up to isotopy.

Structure of manifold on J : Consider an atlas whose charts are of the following
type: Given an open subset U of ⌦, then let us agree that a basic chart for J

with domain U is given by a complex structure on M ⇥ U for which the resulting
complex manifold X has the property that

(i) the projection X ! U is holomorphic,
(ii) the fibers of X ! U are hyperkähler manifolds and
(iii) its period map is given by the inclusion of U in ⌦.

Remark: The basic charts cover all of J . Indeed, it is clear that such an object
defines an injection of U in J . By the local Torelli theorem, every hyperkähler
complex structure on M appears as a member of such a family.

Proposition 3.3. Our atlas is complex-analytic and that it gives J the structure
of a (non-separated) complex manifold for which Per is a local isomorphism.
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3.4.3. Non-separation for hyperkähler manifolds. It is well-known for K3 surfaces
that moduli space is not Hausdor↵.

Example (Atiyah): Consider the following 1-parameter family St of quartic
surfaces in P

3, which is given in a�ne coordinates by

x2(x2
� 2) + y2(y2 � 2) + z2(z2 � 2) = 2t2.

Let the parameter t vary in a small neighbourhood B of the origin, for t 6= 0
these surfaces are smooth, whereas the surface S0 has an ordinary double point at
(0, 0, 0), this singularity is the only one of the total space S. After blow up of this
node one obtains a smooth 3-fold S̃ with a quadric P

1
⇥ P

1 as exceptional divisor
E. Then the proper transform Ŝ0 of S0 is a smooth K3 surface intersecting the
exceptional divisor E in a rational curve of bidegree (1, 1). This is a nodal curve on
Ŝ0 . Both rulings on E can each be contracted giving rise to smooth 3-dimensional
spaces p1 : S1 ! B and p2 : S2 ! B, which coincide over B \ {0}.

Remark: They are not identical over all of B, since the identity on S§0 would,
otherwise, have to extend to an automorphism of the total space acting non-trivially
on the tangent cone of the double point, which is clearly impossible.

Now choose a marking for p1, it defines a marking for p2. Period maps coincide
away from 0, and di↵er on the central fibre.

This shows that M cannot be Hausdor↵.
Remark: In fact all non-Hausdor↵ behaviour comes from the existence of dif-

ferent resolutions of double points in families.

Definition 3.16. Let M be a topological space. We say that points x, y 2 M
are inseparable (denoted x ⇠ y) if for any open subsets U 3 x, V 3 y, one has
U \ V 6= ;.

Theorem 3.11. (Huybrechts, [H2])
Let M be a hyperkähler manifold, M its marked moduli space, and x, y 2 M

points corresponding to hyperkähler manifolds Mx and My. Suppose that x and y
are inseparable. Then the manifolds Mx and My are bimeromorphically equivalent.
Conversely, if M1 and M2 are bimeromorphically equivalent, they can be realised
as inseparable points on the Teichmüller space.

This inseparability condition is used everywhere to define a Hausdor↵ spaces
and work with them in Verbitsky’s original work and in Huybrecht’s survey on
Verbitsky’s work to define ”Hausdor↵ reduction” of moduli space M.

Theorem 3.12. Let Teich be a Teichmüller space of a hyperkähler manifold, and
⇠ the inseparability relation defined above. Then ⇠ is an equivalence relation.
Moreover, the quotient Teichb := Teich/ ⇠ is a smooth, Hausdor↵ complex analytic
manifold.

Definition 3.17. We call the quotient Teich/ ⇠ the birational Teichmüller space,
denoting it as Teichb.

Clearly, the map Per : Teichb ! Per is well defined.

Remark: However, it is not straightforward that the inseparability relation
defined in 3.16 is transitive. For the moduli spaces it is much easier and it was
done in [H2]. This problem brings us back to Loojenga’s work on Torelli theorem
and his approach of defining Teichmüller space J .
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Defining separated Teichmüller space Js

Definition 3.18. Define separated Teichmüller space Js as follows: two hyperkähler
complex structures on M which give complex manifolds X and X 0, define the same
point of Js if and only if there exist basic charts X/U,X 0/U containing X resp. X 0

over the same open subset U ⇢ ⌦, and a sequence (zi 2 U)1
i=1 converging to some

o 2 U such that Xzi and X 0
zi

di↵er by a C1-isotopy and Xo = X and X 0
o = X 0

, or equivalently, if there exists a bimeromorphic equivalence f : X 99K X 0 whose
associated isotopy class [f ] is that of the identity of M .

Remark: The space Js is indeed a separated complex manifold and the period
map factors through the separated period map

Per
s
: Js ! ⌦

which of course is still a local isomorphism.

Remark: With abuse of notation we will use Per for both J and Js

3.4.4. Teich vs J . Teich is defined as the orbit space of the space of hyperkähler
structures on M with respect to the action of the group of di↵eomorphisms isotopic
to the identity.

Atlas of J consists of certain sections to orbits, and so we have a priori a map
T ! Teich for which Teich has the quotient topology.

Proposition 3.4. This map is homeomorphism.

Indeed, this map clearly is a bijection.
Equivalence relation for Teich for J this is just the relation that says that the

two points lie in the same fiber of J ! Js. Hence it is an equivalence relation, so
that our J ! Js can be identified with Verbitsky’s Teich! Teichb.

3.4.5. Teichmüller spaces vs Moduli spaces of marked HK. A finitness result (The-
orem 3.7) implies that K acts properly on the connected component set ⇡0J of J
and has only finitely many orbits in ⇡0J .

Example:

3.5. Surjectivity of the period map.

Theorem 3.13. (Huybrechts, Surjectivity of the period map)
Let M0

⇤ be a connected component of the moduli space M⇤ of marked hyperkähler
manifolds. Then the restriction of the period map

Per : M0
⇤ ! ⌦⇤

is surjective.

Any two points x, y 2 ⌦ are (strongly) equivalent.
Idea of proof:
1. It is enough to show that x 2 Per(M0) i↵ y 2 Per(M0) for any two points

x, y 2 D(W ) ⇢ ⌦.
2. Indeed, the generic twistor line D(W ) can be lifted through any preimage

(X,') of x, then y is contained in the image of the lift.
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3.5.1. Twistor line.

Definition 3.19. A subspace W ⇢ ⇤ ⌦ R of dimension three such that q|W is
positive definite is called a positive three-space.

Definition 3.20. For any positive three-space W one defines the associated twistor
line D(W ) as the intersection

D(W ) := ⌦⇤ \ P(W ⌦ C).

Remark: For W a positive three-space, P(W ⌦ C) is a plane in P(⇤ ⌦ C) and
D(W ) is a smooth quadric in P(W ⌦C) ' P

2. Thus, as a complex manifold D(W )
is simply P

1. Two distinct points x, y 2 ⌦⇤ are contained in one twistor line if and
only if their associated positive planes P (x) and P (y) span a positive three-space
hP (x), P (y)i ⇢ ⇤⌦ R.

Remark: In Loojenga’s paper they are called twistor conics. It does make sense
since twistor line is also used for a section of a twistor deformation.

3.5.2. Twistor deformation. Hyperkähler metric comes with a sphere of complex
structures L = aI+bJ+cK, each (M,L) is again a complex manifold of hyperkähler
type.

Definition 3.21. The twistor space associated to Kähler class ↵ 2 H1,1(X,R) is
the complex manifold X described by the complex structure I 2 End(TmM �TLP

1),
given by (v, w) 7! (L(v), IP1(w)) on the di↵erentiable manifold M ⇥ P

1, where IP1

is the standard complex structure on P
1.

Clearly, we have holomorphic map X ! P
1. By construction, the twistor space

is a family of complex structures on a fixed manifold M . The period map is a holo-
morphic map Per : P1

! ⌦. Namely, Per identifies P1 with the twistor line D(W↵),
which is associated to the positive three-space W↵ := h[!I ], [Re(�I)], [Im(�I)]i =
R↵� (H2,0(X)�H0,2(X))R.

3.6. Torelli Theorem.

3.6.1. Torelli theorem for K3. Let us first recall the global Torelli theorem for K3:
By definition M = {(S,')}/'

Theorem 3.14. (Global Torelli for K3 surfaces) The moduli space M has
two connected components interchanged by (S,') 7! (S,�') and the period map

P : M! ⌦⇤, (S,') 7! ['(H2,0(S))]

is generically injective on each of the two components.

Remark: Injectivity really only holds generically, i.e. for (S,') in the comple-
ment of a countable union of hypersurfaces.

Let us now consider the natural action

O(⇤)⇥M !M, (', (S, )) 7! (S,' �  ).

The transformation �id 2 O(⇤) induces the involution (S,') 7! (S,�') that
interchanges the two connected components and, it is an unique one with a such
property. This becomes part of the following reformulation of the Global Torelli
theorem for K3 surfaces:

Each connected component M
o
⇢ M maps generically injectively into ⌦ and

for any K3 surface S one has O(H2(S,Z))/Mon(S) = {±}.



38 NIKON KURNOSOV, UCL

3.6.2. Global Torelli theorem. Standard form of Torelli theorem was proven by Ver-
bitsky:

Theorem 3.15. (global Torelli theorem) Let ⇤ be a lattice of signature (3, b2 � 3)
and let M0

⇤ be a connected component of the moduli space M⇤ of marked compact
hyperkähler manifolds (X,' : H2(X,Z)!̃⇤). Then the period map

P : M0
⇤ ! ⌦⇤ ⇢ P(⇤⌦ C), (X,')! ['(H2,0(X))]

is generically injective.

This theorem might be reformulated in terms of Teichmüller spaces as it was
done in Verbitsky’s paper [V] (for Teichb) and Loojenga’s survey [?] (for Js)

Theorem 3.16. The period map Per : Js ! ⌦ maps every connected component
of Js isomorphically onto ⌦. In particular, the �- stabilizer of a component acts
with finite kernel on H2(M ;Z).

Later, Bakker-Lehn ([BL]) extended global Torelli theorem for singular holomor-
phic symplectic manifolds and even get a di↵erent proof without notion of twistor
lines. Amarked moduli space M

lt obtained by gluing the universal locally trivial
deformation spaces together,

Theorem 3.17. Let X be a symplectic variety with b2(X) > 4 that admits an
irreducible symplectic resolution. Let N lt ⇢M.

(1) The period map Per : N lt
! ⌦ is surjective, generically injective, and the

points in any fiber are pairwise nonseparated. Moreover, varieties underlying points
in the same fiber are birational.

(2) The points in the fiber containing (X, ⌫) are in bijective correspondence with
the cones obtained by restricting the Kähler chambers of a resolution to H1,1(X,R).

(3) The locally trivial weight two monodromy group Mon2(X)lt is a finite index
subgroup of O(H2(X,Z)).
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3.7. Exercises 3.

(1) Let X be a hyperkähler manifold of dimension 2m. The kernel of the
canonical morphism

µ : Sym•H2(X,C)! H2•(X,C)

is generated by the relations ↵m+1 for all ↵ 2 H2(X,C) such that qX(↵) =
0. In particular, µ is injective in degrees  m.

[Hint: 8↵ 2 H2(X,C)qX(↵) = 0, ↵m+1 = 0 in H2m+2(X,C)]
(2) Check that Kuga-Satake construction (subsection 3.0.3) for K3-type Hodge

structure gives a complex torus
(3) Prove that

b✓k =
k!

(4⇡2l)k
||R||

2k

(volM)k�1

using the fact that on Ricci-flat Kähler manifold of complex dimension n
the L2-norm of the curvature can be expressed in terms of c2 and the Kähler
class:

||R||
2 =

8⇡2

(n� 2)!

Z

M

c2!
n�2

(4) Check that inseparability is indeed an equivalence condition on Teich.
(5) Two points x, y 2 ⌦ are called equivalent if there exists a chain of twistor

lines D(W1), ..., D(Wk) and points x = x1, ..., xk+1 = y with xi, xi+1 2

D(Wi).
Show that any two points x, y 2 ⌦ are equivalent.

(6) Consider a marked hyperkähler manifold (X,') 2M and assume that its
period is contained in a generic twistor line D(W ) ⇢ ⌦. Then there exists
a unique lift of D(W ) to a curve in M̄ through (X,').
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