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2. Lecture 2

Abstract: In the second lecture I covered the definition of O’Grady’s examples
(see the lecture 1 notes) and started the discussion of the cohomology of hyperkähler
manifolds.

In particular, I stated the local Torelli theorem to define the BBF-form., and
described the structure of total Lie algebra acting on cohomology.

2.1. Local Torelli theorem.

2.1.1. Deformations.
Remark: Any smooth Kähler deformation of a hyperkähler manifold is again a

hyperkähler manifold (any small deformation is Kähler, but there are large defor-
mations of compact Kähler manifolds that cease to be Kähler).

Definition 2.1. A deformation of a compact manifold X is a smooth proper holo-
morphic map X ! S, where S is an analytic space and the fibre over a distinguished
point 0 2 S is isomorphic to X.

We will say that a certain property holds for the generic fibre, if for an open
(in the analytic topology) dense set U ⇢ S and all t 2 U the fibre Xt has this
property. The property holds for the general fibre if such a set U exists that is the
complement of the union of countably many nowhere dense closed (in the analytic
topology) subsets.

Remark: One knows that for any compact Kähler manifold X there exists a
semi-universal deformation X ! Def(X), where Def(X) is a germ of an analytic
space and the fibre X0 over 0 2 Def(X) is isomorphic to X. The Zariski tangent
space of Def(X) is naturally isomorphic to H1(X,⇥X).

Definition 2.2. Deformation is call universal if for any deformation XS ! S of
X there exists a uniquely determined holomorphic map S ! Def(X) such that
XS ' X ⇥Def(X) S.

Let X be a HK manifold. Let ⌦ be a symplectic holomorphic form on X.
Contraction of tangent vectors with ⌦ defines an isomorphism of vector-bundles
⇥X ' ⌦X . Therefore, H0(X,⇥X) ' H0(X,⌦X) ⇢ H1(X,C) vanishes.

Remark: By Kuranishi’s theorem, there is a universal local deformation. Its
base is a germ of an analytic subspace of H1(X,⇥X) defined by h2(X,⇥X) equa-
tions.

Note that h2(X,⇥X) = h2(X,⌦X) = h1,2(X) = 1
2b3(X) can very well be

nonzero.
However,

Theorem 2.1. (Bogomolov [B]) The deformation space of a HK manifold X is
unobstructed.

Remark: Explicitly Theorem 2.1 asserts the following: There exist a submersive
map f : X ! U of complex manifolds and a point 0 2 U such that U is a polydisc,
F�1(0) ' X and the Kodaira-Spencer map ⇥0U ! H1(⇥X) is an isomorphism.

Corollary 2.1. The deformation space of a HK manifold X has dimension equal
to (b2(X)� 2).
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Indeed, by Theorem 2.1 the deformation space of X has dimension h1(⇥X)
and the latter equals h1(⌦X). Now h1(⌦X) = h1,1(X) and by Hodge Theory
b2(X) = 2h2,0(X) + h1,1(X) thus the corollary follows from h2,0(X) = 1.

Remark:We have from above that if n � 2 then the generic deformation of
K3[n] is not isomorphic to K3[n]. In fact gives that a K3 surface has 20 moduli
while K3[n] has 21 moduli because b2(K3[n]) = 23.

2.1.2. The local period map.

Definition 2.3. Let X be a hyperkähler manifold and let ⇡ : X ! B be its universal
local deformation, with X = X0, the fiber at 0 2 B. 1

The (local) period map is the map

r : B ! P(H2(X,C), b 7! [H2(Xb]

Remark: If B is simply-connected, then the family ⇡ : X ! B is di↵eren-
tially trivial and we may uniquely identify each H2(Xb,Z) with H2(X,Z) (the local
system R2⇡⇤Z is trivial because B is simply connected).

Proposition 2.1. (Gri�ths) The map r is holomorphic and that its di↵erential
at the point 0 2 B is the composition

TB,0!̃H1(X,⇥X) ! Hom(H2,0(X), H1(X,⌦X)) ⇢ Hom(H2,0(X), H2(X,C)/H2,0(X)) =

= TP(H2(X,C)),[H2,0(X)]

Indeed, the second arrow is the di↵erential of period map.
The tangent space to Def(X) is given by H1(X,⇥X), for the codomain we recall

that P(H2(X,C)) is parametrizing the 1-dimensional subspaces given by H2,0(Xt).
By the standard deformation theory for Grassmannians we have that the tangent
space to P(H2(X,C)) is given by

Hom(H2,0(X), H2(X,C)/H2,0(X))) = Hom(H2,0(X), H1,1(X)�H0,2(X)

Theorem 2.2. (Local Torelli theorem)
The local period map of a hyperkähler manifold is an embedding and its image is

(a germ of) a smooth analytic hypersurface in P(H2(X,C)).

Idea of proof: As we know the symplectic form ⌦X induces an isomorphism
⇥X!̃⌦X . The map g above is therefore an isomorphism, because it factors as

g : H1(X,⇥X)!̃H1(X,⌦X)!̃Hom(H2,0(X), H1(X,⌦X))

where the last isomorphism is given by ↵ 7! (⌦X 7! ↵)
This finishes the proof of the theorem.

2.2. Cohomology of hyperkähler manifolds.

2.2.1. Basic results.

Proposition 2.2. Let X be a hyperkähler manifold of dimension 2m and let ! be
a generator of H0(X,⌦2

X
). For each r 2 {0, ..., 2m}, we have

H0(X,⌦r

X
) =

(
C!^(r/2) r = 2l

0 r = 2l + 1

In particular, �(X,OX) = m+ 1.

1Upon shrinking B, we may assume that it is smooth and simply connected.
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It follows from the classification of compact Kähler manifolds with vanishing real
first Chern class ([Bea2]).

Proposition 2.3. There are following equations on the Hodge numbers of hy-
perkähler manifold of complex dimension n:

hp,q = hq,p = hn�p,n�q = hn�p,q

2.2.2. BBF-form.
Remark: One can be much more precise: we are going to show that the image

of the local period map is an open subset of a smooth quadric Q in P(H2(X,C)).

Theorem 2.3. (Fujiki, [F]) Let M be a simple hyperkähler manifold, ⌘ 2 H2(M)
and n = 2m = dimM . Then Z

M

⌘2m = �q(⌘, ⌘)m,

where q is a primitive integer quadratic form on H2(M,Z) and � > 0 is a rational
number.

Remark: Of course if X is a K3 then qX is the intersection form of X (and
� = 1). In general qX gives H2(X;Z) a structure of lattice just as in the well-
known case of K3 surfaces. Its signature is (3, b2 � 3) on H2(M,R) and (1, b2 � 3)
on H1,1(M).

Idea of proof: 1. As we saw above, the image of the local period map is a smooth
analytic hypersurface Q ⇢ P(H2(X,C)) and

8� 2 Q �m+1 = 0

Indeed, �m+1 has a type (n+ 2, 0) in Hn+2(Xb,C).
2.Consider the polynomial F (↵) :=

R
X
↵n. Its vanishing defines an algebraic

hypersurface of degree n in P(H2(X,C))
3. We can see that f vanishes along Q by taking derivatives. Hence f vanishes

along its Zariski closure Q̄. with multiplicity � m.
4. Suppose Q is contained in a hyperplane, then the hyperplane H2,0(Xb) �

H1,1(X is the same fro all b 2 B, that gives a contradiction.
5. Therefore, Q̄ is a quadric with equation q = 0 and f = qm. Since f has

rational coe�cients, one can choose qX proportional to q integral and nondivisible,
and � as in the formula above. This formula determines qX up to sign. We choose
this sign so that qX is positive on the convex cone of kähler forms.

We can define BBF-form by the following ([Bea2])

Definition 2.4. The BBF(Beauville-Bogomolov-Fujiki)-form of an IHS X is the
quadratic form on H2(X,R) given by

qX(↵) =
n

2

Z
↵2(⌦⌦̄)n�1 + (1� n)(

Z
↵⌦n⌦̄n�1)(

Z
↵⌦n�1⌦̄n),

where ⌦ 2 H2,0(X) is chosen such that qX(⌦⌦̄)n = 1.

Remark: Using arguments of the deformation theory Beauville has shown that
the form defined by the formula above is invariant under deformations.

Definition 2.5. If ! is a kähler form on a compact manifold X of dimension n,
one defines the primitive cohomology by

H2
prim

(X,R) := Ker(H2(X,R) !!
n�1

H2n(X,R) ! R
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Remark: By Lefschetz theory the quadratic form q!(↵) :=
R
X
↵2!n�2 is non-

degenerate of signature (2, b2(X)� 3) on H2
prim

(X,R).

Proposition 2.4. Let X be a hyperkähler manifold with symplectic form ⌦X . Its
BBF-form qX satisfies the following properties.

(a) The quadric Q is defined as the set qX(⌦X) = 0, qX(⌦X , ⌦̄X

(b) One has

H1,1(X) = (H2,0(X)�H0,2(X))?qX .

(d) The signature of qX on H2(X,R) is (3, b2(X)� 3).

Idea of proof:
1. If we di↵erentiate Fujiki relation we will have

8� 2 H2(X,C), n

Z

X

!n�1 = m�XqX(!)m�1qX(!,�)

2. Since qX(!>0 we have H2
prim

is the same as !?qX .
3. Taking another derivative, we ! is a kähler form on X, the restriction of qX

to H2(X,R) is a positive multiple of prim the form q!

Remark: Recall that if ! is a Kähler class on a hyperkähler manifold X, one has
qX(!) > 0. In particular, if L is an ample line bundle on X, one has qX(c1(L)) > 0.
The following theorem states a sort of converse.

Theorem 2.4. (Huybrechts, Demailly–Boucksom). A hyperkaähler manifold
is projective if and only if there is a line bundle L on X such that qX(c1(L)) > 0.

The Hirzebruch–Riemann–Roch theorem takes the following form on hyperkähler
manifolds.

Theorem 2.5. (Huybrechts, [H]). Let X be a hyperkähler manifold of dimension
2m. There exist rational constants a0, a2, ..., a2m such that, for every line bundle L
on X, one has

�(X,L) =
mX

i=0

a2iqX(L)i

When X is the m-th Hilbert power of a K3 surface (or a deformation), we have
(Ellingsrud-Götsche-M. Lehn)

�(X,L) =

✓
1
2qx(L) +m+ 1

m

◆
;

When X is a generalized Kummer variety of dimension 2m , we have (Britze)

�(X,L) = (m+ 1)

✓
1
2qx(L) + 1

m

◆
;

2.2.3. Mukai extension. Then we discussed moduli spaces of semistable bundles
on K3 we introduced the notion of Mukai vector. We can extend the definition
of Mukai extension to any quadratic vector space H, q over field k (algebraically
closed).



24 NIKON KURNOSOV, UCL

Definition 2.6. For a quadratic vector space (H, q) let H̃ = k�H�k be the graded
vector space with direct summands of degree 0, 2 and 4. Define the quadratic form
q̃ on H̃ as follows: let q̃((a, x, b), (a0, x0, b0)) = q(x, x0) � ab0 � a0b so that degree 0
and degree 4 summands make up a hyperbolic plane which is orthogonal to H, and
the restriction of q̃ to H is q. Then vector space (H̃, q̃) is called Mukai extension
of (H, q).

Remark: For a K3 surface this q was the intersection form on the second co-
homology, for higher-dimensional hyperkähler manifold we have H2(X) with BBF-
form qX .

2.2.4. Lie algebra action.

Definition 2.7. Let (M, I, J,K, g) be a hyperkähler manifold, !I , !J , !K its
Kähler forms. On ⇤⇤(M), the following operators are defined:

(1) de Rham di↵erential d, its adjoint d⇤ and the Laplacian �;
(2) The Lefschetz operators

LI(↵) = !I ^ ↵, LJ(↵) = !J ^ ↵, LK(↵) = !K ^ ↵

and their adjoints

⇤I(↵) = ⇤LI ⇤ ↵, ⇤J(↵) = ⇤LJ ⇤ ↵, ⇤K(↵) = ⇤LK ⇤ ↵;

(3) The Weil operators WI |⇤p,q(M,I) =
p
�1(p�q), WJ |⇤p,q(M,J) =

p
�1(p�q),

WK |⇤p,q(M,K) =
p
�1(p� q).

Remark: One has [LI ,⇤J ] = WK , [LJ ,⇤K ] = WI , [LI ,⇤K ] = �WJ

Proposition 2.5. (Verbitsky, [V], Bogomolov, [B2])
Let M be a hyperkähler manifold, and a be a Lie algebra generated by LR and ⇤R

for all induced complex structures R over M . Then the Lie algebra a is isomorphic
to so(4, 1).

Structure of so(4, 1):
(1) Operators WR (R = I, J,K) generate a 3-dimensional Lie algebra, which is

isomorphic to su(2).
(2) The basis of so(4, 1) is given by LR,⇤R,WR and the element ⌅ = [LR,⇤R],

it is the standard Hodge operator acting on r-forms as multiplication by a scalar
n� r, where n = dimCM .

(3) The triple (L,⇤,⌅) is called Lefschetz triple and it sl(2) algebra.
Moreover, this action coincide with the Hodge decomposition, namely

Proposition 2.6. The sl(2)-action of (L,⇤,⌅) and the action of the Weil oper-
ator W commute with Laplacian, hence preserve the harmonic forms on a Kähler
manifold.

The triple (L,⇤,⌅) is called Lefschetz triple and it can be defined in a very
general setting

Definition 2.8. Let A• =
L

r

i=0 A
i be a graded-commutative algebra with dimAr =

1. Consider the Ar-valued form on A• mapping x, y 2 A• to the Ar-component of
xy. The algebra A• is called degree r graded Frobenius algebra if this pairing
is non-degenerate.
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Example: The basic example of a Frobenius algebra is the cohomology algebra
of a compact manifold.

Definition 2.9. A Lefschetz triple in a Frobenius algebra A =
L2n

i=0 A
i is a

triple of operators L⌘,⌅,⇤⌘ 2 A• where ⌘ 2 A2 is a fixed element, L⌘(x) := ⌘x,
⌅|Ai = i� n and ⇤⌘ is an element such that L⌘,⌅,⇤⌘ form an sl(2)-triple.

Remark: It is easy to see that such ⇤⌘ is uniquely determined by ⌅ and ⌘ (this
statement is sometimes called “Morozov’s lemma”, and sometimes included in the
statement of Jacobson-Morozov theorem). Existence of one Lefschetz triple is a
non-trivial condition; however, the space of ⌘ 2 A2 for which the Lefschetz triple
exists is Zariski open.

Definition 2.10. The Frobenius-Lefschetz algebra is a Frobenius algebra ad-
mitting a Lefschetz sl(2)-triple.

Remark: The Kähler assumption is needed only to conclude that the set of
! 2 H2(X) for which ⇤! is defined is a non-empty (and thus dense) open Zariski
set.

Loojienga-Lunts ([LL]) have studied this Lie algebra generated by all Lefschetz
triples in the case of hyperkähler manifolds and for other geometric examples of
Frobenius algebras (flag varieties, Hodge classes on an abelian variety). We will
restrict ourself from now on to the the hyperkähler case.

Remark: A Cartan subalgebra of so(4, 1) can be given as (⌅,
p
�1WI). The

weight decomposition on H⇤(M) associated with this Cartan algebra action coin-
cides with the Hodge decomposition.

From this exercise 2, the following structure theorem can be deduced ([V1, V2,
LL]).

Theorem 2.6. The algebra g generated by all so(4, 1) for all hyperkähler triples on
a given hyperkähler manifold M of maximal holonomy is isomorphic to so(4, b2(M)�
2).

1. Consider the action of g on the Mukai extension of H2(M,R)

H̃ := R · x�H2(M,R)� R · y,

where x has degree 0, y has degree 4, H2(M,R) is in degree 2. On H̃ we have
the extended quadratic form q̃. The action of g is determined by the following
properties:

(1) It is compatible with the grading;
(2) For all ↵,� 2 H2(M,R), one has L↵x = ↵, L↵� = q(↵,�)y, where q is the

BBF form.
(3) ⇤↵y = ↵, ⇤↵� = q(↵,�)x.

To see that this action is well-defined, we need to check that commutator rela-
tions hold. This follows from commutator relations in so(4, 1) and Zariski density
of pairs ↵,� 2 h!I ,!J ,!Ki in the set of all pairs ↵,� 2 H2(M,R). 2

2To obtain that the set of such pairs is Zariski dense, we use Torelli theorem
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2. We have constructed a homomorphism g ! End(H̃). By construction, it
preserves the Mukai pairing q̃ 2 S2(H̃⇤). This defines a homomorphism  : g !

so(H̃, q̃) = so(4, b2(M)� 2).
3.  is surjective, because it is surjective on generators, and injective, because

the relations in so(4, b2 � 2) can be obtained from relations in so(4, 1).
Remark: As we have seen from the proof Lie algebra acting on cohomology is

isomorphic to so(H̃, q̃) of Mukai extension.

Corollary 2.2. The cohomology algebra H⇤(X) of hyperkähler manifold is decom-
posed by irreducible representations of so(H̃, q̃).

Remark: Since so(H̃, q̃) consists of only even degree operators, then its action
preserves the even and odd cohomology. Since so(H̃, q̃) is semisimple, we have
decomposition provided by Corollary 2.2.

We are going to study this decomposition in the next subsection.
The induced by Mukai extension decomposition of g is described in Exercise 3.
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2.3. Exercises 2.

(1) Check that the Lie algebra formed by Lefschetz triples associated with
I, J,K is isomorphic to so(4, 1).

(2) Let (L!,⌅,⇤!) and (L!0 ,⌅,⇤!0) be two sl(2)-triples on a hyperkähler man-
ifolds. Then [⇤!0 ,⇤!] = 0.

(3) We have g2 ' g�2 ' H as vector spaces, g0 ' k � so(H, q) as subalgebra
(the first summand is the center of g0). The action of g0 on g�2 and g2 is via
the standard representation of so(H, q). The Lie bracket of two elements
x 2 g�2 and y 2 g2 is given by [x, y] = (q(x, y), x ^ y) 2 g0, where we use
the natural isomorphism so(H, q) ' ⇤2H.
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