
HYPERKÄHLER GEOMETRY

NIKON KURNOSOV, UCL

1. Lecture 1

Abstract: In the first lecture I am going to cover definitions of hyperkähler mani-
folds, Beauville-Bogomolov theorem and examples of simple hyperkähler manifolds.

This notes don’t exactly copy all things I told, there are some examples missed,
however, there are also some details on the ideas of proofs written here, which I
had no time to cover during the lecture.

The last section is construction of O’Grady’s examples, which I will start with
on the next lecture.

Lecture 2 will cover O’Grady’s examples and cohomology of hyperkähler mani-
folds.

Please send all questions by email or ask in class!

1.1. K3 surfaces.

1.1.1. Definition and geometry. We start with an example in (complex) dimension
two.Consider the following surface

Definition 1.1. A K3 surface is a compact surface S such that H0(S,Ω2S) = Cω,
where ω is a nowhere vanishing holomorphic 2-form on S, and H1(S,OS) = 0.

There are many examples of algebraic K3 surfaces like a smooth quartic in P3

(and in general complex smooth projective surfaces whose generic hyperplane sec-
tion is a canonically embedded curve), double covers of P2 along smooth sextics,
(2,3) complete intersections in P4, (2,2,2) complete intersections in P5.

1.1.2. Torelli theorem. The Torelli theorem (originally stated and proved for curves)
answers the question as to whether a smooth Kähler complex manifold is determined
(up to isomorphism) by (part of) its Hodge structure. In the case of polarized K3
surfaces, this property holds.

A polarization L on a K3 surface S is an isomorphism class of ample line bundles
on S or equivalently, an ample class in Pic(S), which is not divisible in Pic(S).

Theorem 1.1. (Torelli theorem). Let (S,L) and (S′, L′) be polarized complex
K3 surfaces. If there exists an isometry of lattices

ϕ : H2(S′,Z)→̃H2(S,Z)

such that ϕ(L′) = L and ϕC(H2,0(S′)) = H2,0(S), there exists an isomorphism
σ : S→̃S′ such that ϕ = σ∗.

We want to express this as the injectivity of a certain morphism, the period map,
which we now construct.
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Let S be a complex K3 surface. The lattice (H2(S,Z), ·) is even unimodular
with signature -16; it is therefore isomorphic to the rank-22 lattice

ΛK3 := U⊕3 ⊕ E8(−1)⊕ 2

We consider polarized K3 surfaces. For each e ∈ Z+, a primitive vector h2e ∈
ΛK3 with h2

2e = 2e. They are all in the same O(ΛK3 by Eichler’s criterion (Exercise
1).

Let now (S,L) be a polarized K3 surface of degree 2e and let ϕ : H2(S,Z)→ ΛK3

be an isometry of lattices such that ϕ(L) = h2e (such an isometry exists by Eichler’s
criterion).

The “period” p(S,L) := ϕC(H2,0(S)) ∈ ΛK3 ⊗ C is then in h⊥2e; it also satisfies
the Hodge– Riemann bilinear relations

p(S,L) · p(S,L) = 0, p(S,L) · ¯p(S,L) > 0.

Define the 19-dimensional (non-connected) complex manifold

Ω2e := {[x] ∈ P(ΛK3,2e ⊗ C)|x · x = 0, x · x̄ > 0},
so that p(S,L) is in 2e.

Remark: However, the point p(S,L) depends on the choice of the isometry ϕ,
so we would like to consider the quotient of Ω2e by the image of the (injective)
restriction morphism {Φ ∈ O(ΛK3)|Φ(h2e) = h2e} → O(ΛK3,2e

), Φ 7→ Φ|h⊥2e .

It turns out that this image is equal to the special orthogonal group Õ(ΛK3,2e),

so we set P2e := Õ(ΛK3,2e) \ Ω2e.
Let (S,L) be a polarized K3 surface of degree 2e. Then there exists an irreducible

19-dimensional quasi-projective coarse moduli space K2e for polarized complex K3
surfaces of degree 2e.

Definition 1.2. A period map is an algebraic morphism:

p2e : K2e → P2e, [(S,L)] 7→ [p(S,L)]

Theorem 1.2. (Torelli theorem, revisited) Let e be a positive integer. The
period map

p2e : K2e → P2e

is an open embedding.

1.2. Definition. K3 is a modelling example of manifolds which we are going to
talk about. Let us give first algebraic geometric definition.

Definition 1.3. A (simple/irreducible) hyperkähler manifold is a simply connected
compact Kähler manifold X such that H0(X,Ω2X) = CΩ, where Ω is a holomorphic
2-form on X which is nowhere degenerate (as a skew symmetric form on the tangent
space).

Remark: We prefer to call to the manifolds above IHS or simple hyperkähler as
building blocks of hyperkähler geometry by Beauville-Bogomolov decomposition.

These properties imply that the canonical bundle is trivial, the dimension of X
is even, say 2m, and the abelian group H2(X,Z) is torsion-free.

If we omit the word Kähler above we end up with the definition of holomorphi-
cally symplectic manifold

Definition 1.4. Complex manifold (M, I) is called holomorphically symplectic if
it possess is a holomorphic 2-form Ω on X which is nowhere degenerate.
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1.3. Differential geometric point of view.

Theorem 1.3. (Berger, 1955). If (M, g) is non-symmetric and irreducible then
Hol0(g) is one of

SO(n), U(2n), SU(2n), Sp(4n), Sp(4n)× Sp(1), G2, Spin(7).

The hyperkähler case is the case of H = Sp(m) (n = 4m). In this case we have
a triple of Kähler forms (ω1, ω2, ω3) modelled on

∑
i dq̄i ∧ qi on Hm.

Definition 1.5. Riemannian manifold (M, g) is called hyperkähler if there exist
three complex structures I, J,K compatible with metric, satisfying quaternionic re-
lations and corresponding Kähler forms are closed.

We can easily observe that any holomorphically symplectic manifold is hyperkähler.
Remark: Let (M, g) be a HK. The associated Kähler forms ωI , ωJ , ωK span a

three- dimensional subspaceH2
+(M, g) ⊂ H2(M,R).IfX = (M, I), thenH2

+(M, g) =
(H2,0(X)⊕H0,2(X))R⊕RωI , where the orientation is given by the base (Re(Ω), Im(Ω), ωI).
In order to see this, one verifies that the holomorphic two-form Ω on X = (M, I)
can be given as Ω = ωJ + iωK .

On the contrary we have the following consequence of the celebrated theorem of
Calabi–Yau [Y]

Theorem 1.4. Let X be an IHS. Then for any α ∈ KX there exists a unique
hyperkähler metric g on M , such that α = [ωI ] for ωI = g(I(), ).

1.3.1. BB-decomposition theorem.

Theorem 1.5. ([Bea2, B]) Let X be a compact Kḧler manifold with c1(X) = 0.
There exists an étale finite cover Πi=1Mi → X where each of the factors Mi is
either a compact complex torus, a HK manifold or a Calabi-Yau variety i.e. a
compact Kḧler manifold of dimension n ≥ 3 with trivial canonical bundle and such
that h0(ΩpMi) = 0 for 0 < p < n.

Remark: The above result follows from:
(a) Yau’s Theorem (formerly Calabi’s conjecture) on the existence of Ricci-flat

metrics on compact Kähler manifolds with c1 = 0,
(b) De Rham’s decomposition Theorem for simply-connected complete riemann-

ian manifolds, and
(c) Berger’s classification of holonomy groups of complete riemannian manifolds.

Definition 1.6. A Calabi-Yau manifold is a simply connected compact Kähler
manifold X of dimension n ≥ 3 with KX trivial and H0(X,ΩpX) = 0 for all 0 <
p < n.

Examples: One has in particular χ(X,OX) = 1 + (−1)n. There are some
example which are easy to find: any smooth complete intersection of multidegree
(d1, ..., dr) in Pn+r, with d1 + ... + dr = n + r + 1 and n ≥ 3, is a Calabi–Yau
manifold of dimension n.

1.4. Examples.
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1.4.1. Hilbert schemes. We will start with Beauville example [Bea]. Consider zero-
dimensional subschemes of smooth surfaces. Let S be a smooth complex projective
surface and S[n] be the Hilbert scheme parametrizing length n subschemes of S.
Then a point of S[n] is a subscheme Z ⊂ S such that H0(OZ) is finite-dimensional
of dimension n.

Remark: Well-known that the generic such Z is reduced i.e. it consists of n
distinct points and that S[n] is a smooth complex projective variety of dimension
2n.

Let S(n) be the symmetric n-th power of S. Elements of S(n) look like
∑
imipi

with mi ∈ N and
∑
imi = n.

There is a regular Hilbert-Chow map

γ : S[n] → S(n)

which sends Z into the formal sum
∑
p∈S l(OZ,p)p, where l(OZ,p is equal to the

dimension of OZ,p as C-vector space.

Remark: Strictly speaking, S[n] is a scheme only if S is algebraic. In general,
it is just a complex space.

Remark: It is possible to show that the morphism γ is a resolution of singular-
ities. Note that γ is an isomorphism over sm(X(n)), the smooth locus of X(n) (i.e.
the subset parametrizing cycles x0 + ...+ xn with pairwise distinct xi’s. The fibers
of γ over the singular locus sing(X(n)) are positive dimensional.

Case n = 2: Since the singular locus of X(2) consists of double points, the map
γ becomes the blow-up along the diagonal sing(X(2)) = ∆2 = {(x, x)|x ∈ X}, and
one can define

X [2] := Bl∆2
(X(2)).

The varietyX [2] is stratified according to the dimensions of the fibers of γ. There are
two strata: an open stratum isomorphic to sm(X(2)) (reduced length 2 subscheme),
and a closed stratum isomorphic to the projectivization of the tangent bundle of X
(nonreduced, length 2 subscheme, point 2x with a vector).

In general, let ∆ij where the i-th and j-th components are equal. Then the
action of the symmetric group is not free on such diagonals with stabilizer 1, (ij).
Denote by D the image of ∪i,j∆ij by quotient by symmetric group. It is irreducible.

Remark: Let D∗ ⊂ D be the open subset where exactly two coordinate are
equal. Given 2x1 + x2 + ... + xr−1 ∈ D∗, the datum of an Artinian subscheme of
length r supported on 2x1 + x2 + ...+ xr−1 is equivalent to the datum of a tangent
line to S at x1. Hence, the set of Artinian subschemes of length r supported on
2x1 + x2 + ...+ xr−1 is naturally identified with PTx1S.

Proposition 1.1. The homomorphism H1(S;Z)→ π1(S[n]; {p1, ..., pn}) is an iso-
morphism.

Idea of proof:
1. Consider n pairwise distinct points on S and map h : S \{p1, ..., pn−1} → S[n]

given by p 7→ (p1, ..., pn−1, p). Then homomorphism induced on fundamental groups
is surjective. Then we have the homomorphism above.

2. Let Alb(S) = H0(Ω1
S)v/H1(S,Z) be the Albanese variety of S and Albanese

map u : S → Alb(S) given by p 7→ (ω 7→
∫ p
p0
ω).
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3. Define the map Z 7→
∑
p∈S l(OZ,p)u(p) which is considered as the sum in the

group Alb(S).
4. We have homomorphism H1(S,Z)→ π1(Alb(S);u(p1)+...+u(pn)) ' H1(S,Z)

which as identity. Therefore the desired map is injective, and hence an isomorphism.

Now we construct holomorphic 2-form on S[n] from the one on S.
From Exercise 4 we have the Cartesian diagram

η
Bl∆(Sn∗ ) → Sn∗

ρ ↓ ↓π

S
[n]
∗ → S

(n)
∗

γ

Let S
(n)
∗ be the open subset where at most two coordinates coincide and S

[n]
∗ be

the inverse image of S
(n)
∗ in S[n]. Let ω be a holomorphic symplectic form on S,

one can define a two-form on the product Sn∗ by

ω̃ =
∑

pr∗i ω,

where pri : Sn → S is the projection to the i-th factor.
Remark: Such two-form is clearly invariant under the action of the symmetric

group on Sn∗ , and its pullback η∗ω̃ to Bl∆(Sn∗ ) is an invariant under this action.

Hence, there exists a holomorphic form τ on S
[n]
∗ such that

η∗ω̃ = ρ∗τ

Proposition 1.2. If KS = Ω2S is trivial, then S[r] admits a holomorphic symplec-
tic form.

Idea of proof:
1. Denote Eij = η∗∆ij . Then the divisors Eij are exceptional divisors of the

blow up η and the ramification divisors of the morphism ρ.
Hence,

KBl∆(Sn
∗ ) = ρ∗K

S
[n]
∗

+
∑

Eij

and for the divisor of zeros

Div(ρ∗ ∧n τ) = ρ∗Div(∧nτ) +
∑

Eij

2. However, since η∗ω̃ = ρ∗τ and
tildeω is closed the the left hand-side is equal to

Div(ρ∗ ∧n τ) = Div(η∗ ∧n ω̃) = Div(∧nη∗ω̃) =
∑

Eij

3. Hence, ρ∗Div(∧nτ) = 0 so the form τ is a holomorphic symplectic form on
S[n] which extends to S[n] by Hartog’s theorem.

1.4.2. K3[n].

Proposition 1.3. Let S be a projective K3 surface. Then S[n] is a smooth pro-
jective variety of dimension 2n. We will prove that S[n] is hyperkähler and that
b2(S[n]) = 23.
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Idea of proof: 1. S[n] is simply-connected by Proposition 1.1.
2. Let Ω ∈ H0(Ω2S) be non-zero. Then Ω is symplectic because S is a K3

surface and hence Ω[n] ∈ H0(Ω2) is symplectic by 1.2
3. Lastly Exercise 7 gives that h2,0(S[n]) = 1 and that (2.4.1) holds (the second

Betti number of a K3 surface equals 22 by Noether’s formula).

1.4.3. Kn(T ). Let T be an abelian surface. The Hilbert scheme T [n+1] carries a
holomorphic symplectic form but it is not simple HK (Exercise ??).

Indeed, the fibration sn+1 : T [n+1] → T given by the same formula as for the
Hilbert scheme and using that T is the group shows that H1(T [n+1],Q) 6= 0.

Moreover, T [n+1] carries non-zero holomorphic 2-forms which are not symplectic.

Definition 1.7. Let Kn(T ) := s−1
n+1(0). The variety Kn(T ) is known as a gener-

alized Kummer variety.

Remark: The name follows from the case n = 1, then it is isomorphic to the
Kummer surface of T , which the minimal desingularization of the quotient T/(-1).

Proposition 1.4. Kn(T ) is a hyperkähler variety and that b2(Kn(T )) = 7.

Idea of proof: 1. Kn(T ) is simply-connected because the long exact sequence
associated to sn+1 gives an exact sequence

0 = π2(T )→ π1(K [n](T ))→ π1(T [n+1])→ π1(T )

the latter map is an isomorphism.
2. We have surjection given by restriction map

H2(T [n+1],Q)� H2(Kn(T ),Q)

3. Now using the equation from Exercise 7 and simply-connectedness of Kn(T )
we have a surjection

H2(T,Q)
⊕

Qξn+1 � H2(Kn(T ),Q)

4. The map above is an isomorphism, indeed, consider the regular map

f : Kn(T )× T → T [n+1], (Z, a) 7→ τa(Z),

where τa : T → T is a translation by a (Exercise 8).
5. H2(f) defines an injection H2(T [n+1],Q) ↪→ H2(Kn(T ),Q) ⊕ H2(T,Q) by

Künneth formula. By step 3 we have

2b2 + 1 = b2(T [n+1]) ≤ b2(Kn(T )) + b2(T ) ≤ 2b2 + 1

6. Therefore b2(Kn(T )) = 7 and h2,0(Kn(T )) = 1

Remark: Map f is Beauville-Bogomolov decomposition of T [n+1].

Remark: The whole Hodge diamond of generalized Kummer varieties has been
computed by Göttsche and Sorgel [GS]
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1.4.4. Geometric constructions of Beauville’s examples. As for K3-surface there
are many geometric constructions of simple hyperkähler manifolds deformationally
equivalent to the Hilbert scheme of point on K3 surface. Among them most famous
are the following:

(1) Fano variety of lines on cubic fourfold.
Let Y ⊂ P5 be a smooth cubic hypersurface and let X := F (Y ) be the

Fano variety of lines on Y . It is a smooth 4-dimensional subvariety of the
Grassmannian Gr(2, 6).

All cubics are deformation equivalent and, hence, so are the correspond-
ing Fano varieties. Beauville and Donagi showed that for a special cubic Y
the Fano variety X is isomorphic to the Hilbert scheme K3[2] of a special
K3 surface of degree 14 in P8. Hence, for an arbitrary cubic Y the Fano
variety X is a deformation of K3[2] and, therefore, irreducible symplectic.

(2) Twisted cubics on cubic fourfold

Definition 1.8. A rational normal curve of degree 3, or twisted cubic for
short, is a smooth curve C ⊂ P3 that is projectively equivalent to the image
of P1 under the Veronese embedding P1 → P3 of degree 3.

Lehn, Lehn, Sorger and van Straten constructed a hyperkähler eightfold
out of twisted cubics on cubic fourfolds. It is deformationally equivalent to
the K3[4].

1.4.5. O’Grady sporadic examples.
Moduli of semistable sheaves
We need a brief reminder on the theory of semistable sheaves, we mostly follow

notation from [HL].

Definition 1.9. Let X be a complex projective variety and H an ample Cartier
divisor on X. We let OX(1) := OX(H). Let F be a coherent sheaf on X, and
Ann(F ) ⊂ OX be the annihilator of F .

Note: The Ann(F ) is an ideal sheaf; the support of F is the subscheme of X
defined by supp(F ) := V (Ann(F )). The dimension dim(F ) of F is equal to the
dimension of supp(F ).

Definition 1.10. The sheaf F is pure if any non-zero subsheaf G ⊂ F has dimen-
sion equal to dim(F ).

Example:If dimX = 1, then a sheaf is pure iff it is torsion-free. For dimX = 2
look in Exercises.

Remark: Recall that for any X and ample divisor H, we can associate to a co-
herent sheaf Hilbert polynomial P (F, n) = χ(F⊗OX(nH) =

∫
X
ch(E)ch(OX(nH))Td(X)

Example: 1. Let X be a surface. Then ch(F ) = (r, c1, ch2(F )). For the Hilbert
polynomial we have

P (F, n) =

∫
X

(r, c1, ch2(E)) · (1, nH, n
2H2

2
) · (1, c1(X)

2
,
c1(X)2 + c2(X)

12
) =

= r
H2

2
n2 + c1Hn+ ch2(E) +

c1c1(X)

2
+ r

Hc1(X)

2
n+ r

c1(X)2 + c2(X)

12
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2. Let X be a K3 surface now, then c2(X) = 24, c1(X) = 0. Hence,

P (F, n) = r
H2

2
n2 + c1Hn+ ch2(E) + 2r

Definition 1.11. Let F be a sheaf on X we let F (n) := F ⊗OX(n). Suppose that
F is non-zero and let d := dim(F ) ≥ 0. The Hilbert polynomial χ(F (n)) is integer-
valued, it follows that there exists a unique sequence of integers ai for 0 ≤ i ≤ d
such that

χ(F (n)) =

d∑
i=0

ai

(
n
i

)
Example: Suppose that dim(F ) = dimX. Then F is locally-free on an open

dense subset X0 ⊂ X and the rank of F , denoted by rk(F ), is equal to the rank of
the vector-bundle F |X0

. Then ad(F ) = rk(F )
∫
X
c1(H)d.

Definition 1.12. Let F be a sheaf on X. Let d := dim(F ). The reduced Hilbert
polynomial of F , denoted by pF is defined by

pF (n) :=
χF (n))

ad(F )

Definition 1.13. Let X be a smooth irreducible projective variety equipped with
an ample divisor H. A non-zero pure sheaf F on X is H-semistable if for every
non-zero subsheaf E ⊂ F we have

pE(n) ≤ pF (n) ∀n� 0.

If strict inequality holds whenever E 6= F then F is H-stable.

Examples:
d = 0: pF (n) = 1, F is pure, semistable. F is stable iff F ' k(x), x ∈ X.
d = 1: F = i∗E, where E is locally free on i : C ↪→ X, then µ-stability of E ⇔

stability of F (Exercise ??).
d = 2: Assume X is a K3, so c2(X) = 24:

P (F, n) = a0(F ) + a1(F )n+ a2(F )n
2

2 = 2rF + ch2(F ) + c1(F )Hn+ rFH
2 n2

2

Then pF (n) = a0(F )
rFH2 + c1(F )H

rFH2 n+ n2

2

Therefore, stability criteria of F are

(1) c1(F )H
rFH2 > c1(E)H

rEH2 , or

(2) if they are equal, then a0(E)
rEH2 >

a0(F )
rFH2

Remark: For pure sheaves of dimension equal to dimX there is the notion of
µ-(slope)-semistability: one replaces the reduced Hilbert polynomial by the slope.
The slope of a sheaf F of dimension equal todimX is

µ(F ) :=
1

rk(F )

∫
X

c1(F )c1(H)dimX−1

Definition 1.14. F is µ-semistable if for every non-zero subsheaf E ⊂ F we have
µ(E) ≤ µ(F ).

Remark: The usual semistability/stability imply µ one.
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Definition 1.15. Consider an equivalence relation which is weaker than isomor-
phism. Let F be a pure H-semistable sheaf on X. There exist a Jordan-Hoölder
(J-H) filtration of F0 = F0 ⊂ F1 ⊂ ... ⊂ FtP . with the property that each quotient
Fi/Fi−1 is pure, H-stable with reduced Hilbert polynomial equal to PF .

Examples:
(1) If F is H-stable, then a JH-filtration is necessarily trivial.
(2) Let F = L ⊗C V where L is a line-bundle on X and V is a vector space of

dimension r. Then

Set of JH-filtrations of F ←→ set of complete flags on V .

Remark: The JH-filtration is not unique. However, the associated graded sum

grJH(F ) := ⊕li=1Fi/Fi−1

is unique up to isomorphism.

Definition 1.16. Let F and G be pure H-semistable sheaves on X. Then are called
S-equivalent if grJH ' grJH(G).

Remark: If F is H-stable then F is S-equivalent to G if and only if F ' G.

Definition 1.17. Moduli space of pure semistable sheaves on X with a given Hilbert
polynomial modulo S-equivalence is

MX(P ) := {F pure H-semistable sheaf on X|χ(F (n)) = P (n)}/S-equivalence

Notation: Consider a pure H-semistable sheaf with Hilbert polynomial P we
denote by [F ] ∈ MX(P ) to be the point corresponding to the S-equivalence class
of F .

Definition 1.18. LetMX(P )s ⊂MX(P ) be the subset parametrizing stable sheaves.

Remark: The space MX(P )s is open.
Local structure of MX(P ):

Proposition 1.5. Let [F ] ∈MX(P )s. There is a natural isomorphism

Θ[F ]MX(P ) ' Ext1(F, F ).

Idea of proof: Let [F ] ∈MX(P )s, then there is a natural identification between
the germ of MX(P ) at [F ] and the universal deformation space of F . Indeed,
assume MX(P ) is fine. Consider [F ] ∈ MX(P ), it corresponds to a stable sheaf
F , one has

T[F ]M = Hom[F ](SpecC[t]/t2,MX(P )) =M(SpecC[t]/t2) = Ext1(F, F )

Remark: It works even if MX(P ) is not fine (Exercise 9). The real question
now is smoothness of this space. The answer is given by the following theorem

Example: Suppose d = dimF = 0, then P (F, n) ≡ n. Therefore, MX(P ) =
SymnX
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Remark: It might happen that the moduli space defined above behave quite
bad (like MP1(2, 0) from exercises).

In particular, problem is that of we find a strictly semistable sheaf, then M
cannot be represented, i.e. M is not fine.

Definition 1.19. Let F be a (coherent) sheaf on X; one can define a trace map

Tri : Exti(F, F )→ Hi(OX)

Then let Exti(F, F )0 := kerTri.

Theorem 1.6. (Mukai, Artamkin). Suppose that [F ] ∈ MX(P )s and that
Ext2(F, F )0 = 0. Then MX(P ) is smooth at [F ] and its tangent space is canonical
identified with Ext1(F, F ).

Geometric example of rank 2 moduli space

Let X be a degree 8 hypersurface in P5, given by the complete intersection of
three quadrics Q0, Q1, Q2. Let H denote its hyperplane class in OX(1).

Consider the locus
λ0Q1 + λ1Q1 + λ2Q2 = 0

If we denote by [X0, ..., X5] the coordinates of P5, and suppose that the equations
of the quadrics are given by

Qi =
∑

ajkXjXk, i = 1, 2, 3

then the zero locus of the determinant of the matrix

A = (ajk) = (λ1a
jk
1 + λ2a

jk
2 + λ3a

jk
3 )

is the vanishing locus of a degree six polynomial in λi hence it is a sextic curve
C = V (detA) ⊂ P2 and it parametrize the degenerate quadrics in the locus.

Remark: If rk(A) = 5, moreover, such sextic is smooth.

One denote by ϕ : M → P2 the degree two branched cover of P2 ramified along
C: M is a K3 surface. Next we show that under additional assumptions on X, the
K3 surface M is in fact naturally isomorphic to a moduli space M of degree two
sheaves on X.

Proposition 1.6. Then the moduli space M(2, H, 2) ' M is a fine moduli space
and one has M(2, H, 2) 'M ' X.

Mukai lattice.
Let S be a symplectic projective surface.
Consider

H̃(S) := H0(S)⊕H2(S)⊕H4(S)

It has an integral Hodge structure of weight 2 as follows:

H̃(S)2,0 = H2,0(S), H̃(S)0,2 = H0,2(S), H̃(S)1,1 = H0(S)⊕H1,1(S)⊕H4(S).

Definition 1.20. The Mukai lattice of S is the group H̃(S;Z) equipped with the
symmetric bilinear form

(

2∑
i=0

αi,

2∑
i=0

βi) :=

∫
S

(−α0β2 − α2β0 + α1 ∧ β1)
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where αi, βi ∈ H2i(S;Z).

Remark: Later we will define Mukai lattice for any (simple) hyperkähler mani-
fold, and using it we will prove existence of some huge Le algebra acting on coho-
mology of hyperkähler manifolds.

Remark: This lattice is even unimodular of signature (4,b2(S) − 2), i.e. just
second cohomology lattice with hyperbolic lattice added.

Notation: We denote elements of H̃(S) by (r, l, s) where l ∈ H2(S) and r, s ∈ C,
where we identify H4(S) with C via the orientation class η of S.

Definition 1.21. A Mukai vector is a

v = r + l + sη ∈ H̃1,1(S)

such that r ≥ 0 and such that l is effective if r = 0.

Definition 1.22. A Mukai-vector v ∈ H̃(X,Z) is indivisible if there is a vector v′

with Mukai-pairing (v, v′) = 1.

Definition 1.23. Let F be a coherent sheaf on S, then Mukai vector associated
with F is

v(F ) := ch(F )
√
Td(S) = ch(F )(1 + εη) = (r, c1,

c21
2
− c2 + r

where η ∈ H4(S,Z) is the orientation class, and ε is equal to 1 if S is a K3 surface,
and 0 if S is an abelian surface, and c1, c2 are the Chern classes of F and r its
rank.

Remark: As a reminder here are the first few terms of the Chern character and
Todd class for reference: ch(F ) = rk(F ) + c1(F ) + 1

2 (c1(F )2 − 2c2(F )) + ... and

td(F ) = 1 + 1
2c1(F )2 + 1

12 (c1(F )2 + c2(F )) + ...

Definition 1.24. As X is a K3 surface, tdX = 1 + η where η ∈ H4(X,Z) is the
fundamental class of X. So v(F ) = (rk(F ), c1(F ), rk(F ) + ch2(F )). We call a
Mukai vector (rk, c1, aη) primitive if gcd(rk, c1, a) = 1.

Proposition 1.7. We have

dimExt1(F, F ) = 2dimHom(F, F ) + (v(F ), v(F ))

Idea of proof:
1. v(F ) ∈ H̃1,1

Z (S)
2. By Hirzebruch-Riemann-Roch we have

(v(E), v(F )) = −χ(E,F ) := −
2∑
i=0

dimExti(E,F )

3. Serre duality gives us Ext2(F, F ) ' Hom(F, F )∨.

Remark: Notice that if F is a pure sheaf of dimension 2 or 1 then v(F ) is a
Mukai vector.

Let v ∈ H̃1,1 be a Mukai vector: the Hilbert polynomial χ(F (n)) of a sheaf F
such that v(F ) = v is independent of F , call it P .
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Definition 1.25. Let H be an ample divisor on S. Define the moduli space of
H-semistable pure sheaves on S parametrized by Mukai vectors:

MS(v) := {[F ] ∈MS(Pv)|v(F ) = v}.

Remark: The space MS(v) is open and closed in MS(P ). Moreover, the rank
of sheaves parametrized by MS(P ) is constant and the Chern classes of sheaves
parametrized by MS(P ) are locally constant.

Remark:

Theorem 1.7. (Mukai, [M]) Let S be a projective symplectic surface and H an
ample divisor on S. Let v be a Mukai vector. Then

(1) MS(v) is a projective scheme.
(2) Suppose that [F ] ∈MS(v)s. Then MS(v) is smooth at [F ] and

dim[F ]MS(v) = 2 + (v, v).

An important example is covered by Exercise 13.

Theorem 1.8. Let (r, l, s) be primitive, either r ≥ 1 or s 6= 0, and (v, v) = 0.
Then, for generic H, M(v) is a K3 surface.

Idea of proof:
1. We know that M :=Ms is a smooth projective surface with form Ω ∈ Γ(Ω2

M ).
Then ωM ' OM . Our goal is to prove H1(OM ) = 0.

2. Consider universal sheaf E on X × M with p, q be projections on X and
M respectively. Then by Bondal-Orlov criterion for surfaces with ωM ' OM we
have Fourier-Mukai transform FME : Db(M) → Db(X) which is equivalence of
categories.

3. We haveHi(M,Extip(E,E)) andHi(X,Extiq(E,E)) both giving Exti+j(E,E).

4. Thus embeddings H1(M,OM ) ↪→ Ext1(E,E) andH1(X,OX) ↪→ Ext1(E,E).
Also we know that H1(X,OX) = H0(X,ΘX) = 0, and ΘX = Ext1q(E,E). There-

fore H1(OM ) = 0 and we are done with our goal.

Example: Let S be a K3 surface, and u = (1, 0, 0). Then MS(u) ' S and the
tautological sheaf is I∆ where ∆ ⊂ S × S is the diagonal.

Example: Let X ⊂ P3 be a quartic and v = (2,OX(−1), 1), then we have
M(v)→̃X given by [E] 7→ x. Indeed, we have E ↪→ O⊕3

X � Ix.
Semistable sheaves on symplectic surfaces
A lot of things in this section (and some of previous ones) were done by Mukai

first. [M]
Example: Let S be a K3 surface. We have an isomorphism

S[n]→̃MS(1− (n− 1)η)

[Z] 7→ [IZ ]

A torsion free sheaf F with Mukai vector v(F ) = (1, 0, 1 − n) will have rank one,
c1 = 0, and c2 = n. The cokernel of the inclusion F ↪→ F∨∨ will be the structure
sheaf OZ of a zero-dimensional subscheme Z ⊂ X of length n. Moreover, we have
the following:

0→ E ' IZ → E∨∨ ' OX → OZ → 0
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Theorem 1.9. (Mukai, Göttsche - Huybrechts, O’Grady, Yoshioka).
Let S be a projective K3 surface. Let v be Mukai vector, and suppose that
(1) v is indivisible,
(2) −2 ≤ (v, v),
(3) (r, s) 6= (0, 0).
Let H be a v-generic ample divisor on S. Then MS(v) is an irreducible sym-

plectic variety deformation equivalent to S[n] where 2n = 2 + (v, v).

Remark: In general the moduli space MS(v) is not isomorphic to a Hilbert
scheme S[n], not even birational. So the proof of theorem above rely on the following
idea:

(1) the moduli of stable sheaves MH(v) on an arbitrary K3 surface S is defor-
mation equivalent to a Hilbert scheme of points, to showing thatMH′(v

′) on some
fixed K3 surface S′ is (for appropriate H ′ and v′). We can do this for two reasons:
(1) the moduli space of polarized K3 surfaces of fixed degree is connected, and (2)
we can construct the moduli of stable sheaves in the relative setting.

(2) Then for some particular Mukai vector we finish the proof using the following
results of Huybrechts:

Proposition 1.8. . Let X be a projective symplectic variety and Y an irreducible
holomorphic symplectic variety. If X is birational to Y , then X is irreducible
holomorphic symplectic as well.

Proposition 1.9. Two irreducible holomorphic symplectic varieties which are bi-
rational are deformation equivalent.

Remark: There is an analog of Theorem 1.9 which has been proved by Mukai-
Yoshioka, I will not state it here, just mention that kernel of a map MT (v) →
T×Pic(T ) for some values of Mukai-vector v is an an irreducible symplectic variety
deformation equivalent to Kn(T ) where 2n = (v, v)− 2.

Construction of O’Grady examples
Let S be a projective symplectic surface and v a Mukai vector for S which is

divisible. Thus

v = mv0, v0 ∈ H1,1(S) indivisible, m ∈ N,m ≥ 2.

This theorem summarizes results of many mathematicians, and answers to the
question which types of hyperkähler manifolds we can obtain by this construction

Theorem 1.10. (O’Grady, Kiem, Rapagnetta, Kaledin, Lehn, Sorger,
Perego). Let S be a symplectic projective surface. Let v be a divisible Mukai
vector as above. Suppose that v2

0 ≥ 2 and that (r, s) 6= (0, 0). Let H be a v-generic
ample divisor on S. Then MS(v) is non-empty, irreducible of dimension (2 + v2)
and its smooth locus is equal to MS(v)st. There exists a symplectic desingular-

ization π̃ : M̃(v) → M(v) if and only if m = 2 and v2 = 2. Now suppose that
m = 2 = v2.

(1) If S is a K3 surface then M̃(2v0) is a 10-dimensional HK variety and

b2(M̃S(v0)) = 24.

(2) If S is an abelian surface let M̃(2v0)0 := f−1(M̃(2v0)0). Then M̃(2v0)0 is a

6-dimensional HK variety and b2(M̃(2v0)0) = 8.
(3) Let S and S′ be K3 surfaces, v0 and v′0 Mukai vectors for S and S′ with

2 = v2
0 = (v′0)2 and H,H ′ ample divisors on S and S′ respectively which are 2v0
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and 2v′0 generic respectively. Then M̃S(2v) is deformation equivalent to M̃S′(2v
′
0).

A similar statement holds for abelian surfaces.

Remark:
The second Betti number of M̃S(2v) is different from that of K3[n] and of a

generalized Kummer, so it is not a deformation of Beauville examples. A similar is
true for M̃S(2v)0.

Remark: If we consider an H-stable sheaf F with a primitive Mukai vector v0,
then for m ≥ 2, the sheaf F⊕m is strictly H-semistable. Hence if we set v = mv0,
this sheaf determines a singular point of the moduli spaceMv(X,H), whose smooth
locus still carries a holomorphic symplectic form. O’Grady considered the case of
v0 = (1, 0,−1) and m = 2(a sheaf F parametrized by MS(2v0) has rank 2,c1 = 0
and c2 equal to 4 if S is a K3 and 2 if S is an abelian surface.), and showed that the

singular symplectic variety Mv(X,H) admits a symplectic resolution M̃(X,H).

Definition 1.26. Holomorphically symplectic manifolds constructed in the theorem
above are called (sporadic) O’Grady’s examples, and denoted as OG6 and OG10.

1.4.6. Geometric construction of O’Grady’s. In the case of abelian surface if we
construct moduli space, and if v2

0 ≥ 4, then there is a non-trivial Albanese variety,
so, in order to get an irreducible holomorphic symplectic manifold, one needs to
consider a fiber

Kv(A,H) := alb−1(0),

where alb :Mv(A,H)→ A×A∨ is Albanese morphism.
Let us consider a principal polarization Θ ⊂ A on abelian surface A. The

Mukai vector v0 = (0,Θ, 1) satisfies v2
0 = 2, and hence, if we set v = 2v0, there is

symplectic resolution K̃v → Kv that is deformation equivalent to OG6. There is a
natural support morphism Kv → |2Θ| = P3, realizing Kv as a Lagrangian fibration.

By definition of Kv, the fiber over a smooth curve C ∈ |2Θ| is the kernel of the
natural morphism Pic6(C) → A (which is also the restriction of alb to Pic6(C) ⊂
Mv(A,H)).

Remark: The morphism associated to the linear system |2Θ| is the quotient
morphism q : A → A/ ± 1 ⊂ P3 onto the singular Kummer surface of A. Let
p : S → A/± 1 be the minimal resolution of A, it is a K3 surface.

Remark: S come naturally equipped with the degree 4 nef line bundle D obtained
by pulling back the hyperplane section of A/± 1 ⊂ P3.

There is Ã, the blow up of A at its 16 2–torsion points or, equivalently, the
ramified cover of S along the exceptional curves E1, ..., E16 of p. Consider the
moduli space Mw(S) of sheaves on S with Mukai vector w = (0, D, 1) that are
stable with respect to a choosen, sufficiently general, polarization.

Fact: This is an IHS manifold birational to the Hilbert cube of S and it has
a natural morphism Mw(S) → |D| = P3 realizing it as the relative compactified
Jacobian of the linear system |D| (also a Lagrangian fibration).

We have a rational generically 2 : 1 map q∗p∗ :Mw(S) 99KMv(A,H).
Remark: Since Mw(S) is simply connected, the image of this map lies in a

fiber of alb, giving a 2 : 1 morphism Φ :Mw(S) 99K Kv(A,H).
On the smooth fibers, this maps restricts to the natural 2 : 1 pull back morphism

Pic3(C ′) → Pic6(C), whose image is precisely ker[Pic6(C) → A]. Recall that∑
iEi is divisible by 2 in H2(S,Z) and that the line bundle eta := OS( 1

2

∑
Ei)

determines the double cover q. Then the involution on Mw(S) corresponding to
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Φ is given tensoring by η and Kv(A,H) is a birational model of the “quotient” of
Mw(S) by the birational involution induced by tensorization by η.

Theorem 1.11. (Sacca, Rapagnetta, Mongardi) This construction is well-
determined and the resulting manifold is indeed an irreducible holomorphic sym-
plectic of type OG6.
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1.5. Exercises.

(1) (Eichler’s criterion) Let Λ be an even lattice that contains at least two
orthogonal copies of U . The O(Λ)-orbit of a primitive vector x ∈ Λ is
determined by the integer q(x) and the element x∗ of discriminant group
D(Λ) = Λ∨/Λ.

(2) Prove that by the Baily–Borel theory, P2e is an irreducible quasi-projective
normal non-compact variety of dimension 19.

(3) Let (M, g) be a HK. Then for any (a, b, c) ∈ R3 with a2 + b2 + c2 = 1 the
complex manifold (M,aI + bJ + cK) is an IHS. Thus, for any HK (M, g)
there exists a two-sphere S2 ⊂ R3 of complex structures compatible with
the Riemannian metric g.

(4) (a) The complex analytic pair (S
(n)
∗ , D∗) is locally isomorphic to (B×C,B×

O), where B is a ball,C is a cone with vertex O over a smooth conic in P2.
(b)The complex manifold S[n] is the blow up of S(n) along D.
(c) If we denote Bl∆(Sn∗ ) the blow up of Sn∗ along the union of its diag-

onals, then the action of symmetric group Σn lifts to Bl∆(Sn∗ ) and

S
[n]
∗ = Bl∆(Sn∗ )/Σn

(5) Show that H1(T [n+1],Q) 6= 0.
(6) Show the surjectivity of H2(T [n+1],Q) � H2(Kn(T ),Q) using the irre-

ducibility of ∆n+1|Kn(T ) (n ≥ 2)
(7) Let S be a smooth complex projective surface. Assume that H∗(S,Z) has

no torsion. Then

H2(S[n],Z) = H2(S,Z)
⊕

Λ2H1(S,Z)
⊕

Z

(8) Prove that the map Kn(T ) × T → T [n+1], (Z, a) 7→ τa(Z), where τa :
T → T is a translation by a is Galois with the group T [n+1].

(9) Recall that rank 1 bundles on P1 are parametrized by Picard scheme. Prove
that MP1(2, 0) (where r = 2 is rank, c1 = 0 is chern class) is not of finite
type.

(10) Let X be a complex projective surface.
(a) Then a sheaf is pure of dimension 2 if and only if it is torsion-free.
(b) Prove that the sheaf F := i∗V , is pure of dimension 1 where i : C ↪→

X is the inclusion of an irreducible curve, and V is a torsion-free sheaf on
C.

(11) Let S be a symplectic projective surface with an ample divisor H. Suppose
that F is an H-stable sheaf on S.

(a) Then Hom(F, F ) = CIdF
(b) Prove that

−2 ≤ v(F )2.

(12) Let S be a K3 surface and ϕ ∈ H0(Ω2S). The Hilbert scheme S[n] is
identified with the moduli space MS(1 − (n − 1)η) as in the example 1.8.
Define 2-form τ(ϕ) on MS(v)2 by setting τ(ϕ)(α, β) :=

∫
S
ϕ ∧ Tr2(α ∪ β).

So we have the holomorphic 2-forms ϕ[n] and τ(ϕ). Prove that the relation
between the forms is the following:

τ(ϕ) = −4π2ϕ[n].

(13) If (v, v) = −2 then MH(v) is empty or a single point (SpecC).
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