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Different discretizations of complex analysis

Triangular lattice

z1
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f (z1) + f (z2) + f (z3) = 0

Dynnikov–Novikov
↓

integrable systems
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Main notions of discrete complex analysis

A graph Q ⊂ C is a quadrilateral lattice ⇔
each bounded face is a quadrilateral.
A function f : Q → C is discrete analytic ⇔

f (z1)−f (z3)
z1−z3

= f (z2)−f (z4)
z2−z4

for each face z1z2z3z4 with the vertices listed
clockwise. Re f is called discrete harmonic.
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Isaacs,Ferrand (1940s) Duffin (1960s) Mercat (2000s)
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The convergence problem in discrete complex analysis

Problem. Prove convergence of discrete harmonic functions
to their continuous counterparts as maximal edge length → 0.

Square lattices, C 0: Lusternik, 1926.

Square lattices, C∞: Courant–Friedrichs–Lewy, 1928.

Rhombic lattices, C 0: Ciarlet–Raviart, 1973 (implicitly).

Rhombic lattices, C 1: Chelkak–Smirnov, 2008.

Non-rhombic lattices: open problem by Smirnov, 2010.

The Dirichlet problem in a domain Ω is to
find a continuous function uΩ,g : ClΩ → R
having given boundary values g : ∂Ω → R
and such that ∆uΩ,g = 0 in Ω.

The Dirichlet problem on Q is to find a dis-
crete harmonic function uQ,g : Q → R hav-
ing given boundary values g : ∂Q → R. (∃!)

Ω

∂Ω

Q

∂Q
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Convergence theorem for the Dirichlet problem

A sequence {Qn} is nondegenerate uniform ⇔ ∃ const > 0:

the angle between the diagonals and the ratio of the
diagonals in each quadrilateral face are > const,

the number of vertices in each disk of radius Step(Qn) is
< const−1, where Step(Qn) :=maximal edge length.

Convergence Theorem for BVP (S. 2013). Let Ω ⊂ C be
a bounded simply-connected domain. Let g : C → R be a
smooth function. Take a nondegenerate uniform sequence of
finite orthogonal lattices {Qn} such that Step(Qn),
Dist(∂Qn, ∂Ω) → 0. Then the solution uQn,g : Qn → R of
the Dirichlet problem on Qn uniformly converges to the
solution uΩ,g : Ω → R of the Dirichlet problem in Ω.
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Method of the proof: energy estimates

The energy of a function u : Ω → R is EΩ(u) :=
∫
Ω
|∇u|2dA.

The gradient of a function u : Q0 → R at a face z1z2z3z4 is
the unique vector ∇Qu(z1z2z3z4) ∈ R2 such that

∇Qu(z1z2z3z4) · −−→z1z3 = u(z1)− u(z3),

∇Qu(z1z2z3z4) · −−→z2z4 = u(z2)− u(z4).

The energy of the function u : Q0 → R is

EQ(u) :=
∑

z1z2z3z4⊂Q

|∇Qu(z1z2z3z4)|2 · Area(z1z2z3z4).

Convexity Principle. The energy EQ(u) is a strictly convex
functional on the affine space RQ0−∂Q of functions u : Q0 → R
having fixed values at the boundary ∂Q.
Variational principle. A function u : Q0 → R has minimal
energy EQ(u) among all the functions with the same boundary
values if and only if it is discrete harmonic.
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Method of the proof: energy estimates

Equicontinuity Lemma. Let Q be an orthogonal lattice. Let
u : Q0 → R be a discrete harmonic function. Let z ,w ∈ B0 be
two vertices with |z − w | ≥ Step(Q). Let R be a square of
side length r > 3|z − w | with the center at z+w

2
and the sides

parallel and orthogonal to zw. Then ∃Const:

|u(z)− u(w)| ≤ Const · EQ(u)
1/2 · log−1/2 r

3|z − w |
+

+ max
z ′,w ′∈R∩∂Q∩B0

|u(z ′)− u(w ′)| .

z w

R

∂Q
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2
Discrete analytic functions

in Riemann surfaces
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Riemann surfaces

Riemann surface Analytic functions
planar domain functions u(x , y) + iv(x , y) s.t.

∂u
∂x

= ∂v
∂y
, ∂u

∂y
= −∂v

∂x

quotient C by a lattice doubly periodic analytic functions

complex algebraic curve analytic functions in both w and z
anmz

nwm + · · ·+ a00 = 0

polyhedral surface continuous functions which are
analytic on each face

3/23/23/2

dα

dβ β β

α

α

β

α

M. Skopenkov Discrete complex analysis



Discrete Riemann surfaces

R a polyhedral surface
T its triangulation
T 0 the set of vertices

T⃗ 1 the set of oriented edges
T 2 the set faces

A discrete analytic function is a pair

(u : T 0 → R, v : T 2 → R) such that ∀e ∈ T⃗ 1

v(le)− v(re) =
cotαe + cot βe

2
(u(he)− u(te)).

te he

T

le

re

βe

αe

e

(Duffin, Pinkall–Polthier, Desbrun–Meyer–Schröder, Mercat)

Remark. T is a Delauney triangulation of R2 ⇒ u ⊔ iv is
discrete analytic on Q (in the sense of Part 1 of the slides).
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Discrete Abelian integrals of the 1st kind

p : R̃ → R the universal covering
{α, β} the basis of π1(R)
{dα, dβ} the automorphisms of p

3/2

3/2

3/2

3/23/2

3/2

1/2

3/2

1/2

1/2

1/2

10

1

0

2

2
dα

0

1

2

dβ

β β

α

α

β

α

T̃ p→ T ≈ S1 × S1

A discrete Abelian integral of the 1st kind with periods
A,B ∈ C is a discrete analytic function
(Ref : T̃ 0 → R, Imf : T̃ 2 → R) such that ∀z ∈ T̃ 0,∀w ∈ T̃ 2

[Ref ](dαz)− [Ref ](z) = ReA; [Ref ](dβz)− [Ref ](z) = ReB ;

[Imf ](dαw)− [Imf ](w) = ImA; [Imf ](dβw)− [Imf ](w) = ImB .

M. Skopenkov Discrete complex analysis



Discrete Abelian integrals of the 1st kind

p : R̃ → R the universal covering
{αk , βk}gk=1 the basis of π1(R)
{dαk

, dβk
}gk=1 the automorphisms of p

3/2

3/2

3/2

3/23/2

3/2

1/2

3/2

1/2

1/2

1/2

10

1

0

2

2
dα1

0

1

2

dβ1

β1 β1

α1

α1

β1

α1

T̃ p→ T ≈ S1 × S1

A discrete Abelian integral of the 1st kind with periods
A1, . . . ,Ag ,B1, . . . ,Bg ∈ C is a discrete analytic function

(Ref : T̃ 0 → R, Imf : T̃ 2 → R) such that ∀z ∈ T̃ 0,∀w ∈ T̃ 2

Ref (dαk
z)− Ref (z) = ReAk ; Ref (dβk

z)− Ref (z) = ReBk ;

Imf (dαk
w)− Imf (w) = ImAk ; Imf (dβk

w)− Imf (w) = ImBk .
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Period matrix

Existence & Uniqueness Theorem (Bobenko–S. 2012)
∀A ∈ C there is a discrete Abelian integral of the 1st kind
with the A-period A. It is unique up to constant.

The discrete period matrix ΠT (period matrix ΠT ) is the
B-period of the discrete Abelian integral (Abelian integral) of
the 1st kind with the A-period 1.
It is a 1× 1 matrix for a surface of genus 1.

Notation.
γz := 2π(the sum of angles meeting at z)−1

γz > 1 ⇔ “curvature” > 0
γR := minz∈T 0{1, γz}

3/2

3/2

3/2

3/23/2

3/2

1/2

3/2

1/2

1/2

1/2

10

1

0

2

2
dα

0

1

2

dβ

ΠT = i = ΠR
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Existence and Uniqueness Theorem

Existence & Uniqueness Theorem (Bobenko–S. 2012)
For any numbers A1, . . . ,Ag ∈ C there exist a discrete Abelian
integral of the 1st kind with A-periods A1, . . . ,Ag . It is unique
up to constant.

Let ϕl
T = (Reϕl

T : T̃ 0 → R, Imϕl
T : T̃ 2 → R) be the unique

(up to constant) discrete Abelian integral of the 1st kind with
A-periods Ak = δkl .
The discrete period matrix ΠT is the g × g matrix whose
columns are the B-periods of ϕ1

T , . . . , ϕ
g
T .

Example. For R = C/(Z+ ηZ):
Reϕ1

T (z) = Re z ,
Imϕ1

T (w) = Imw ∗,
where w ∗ is the circumcenter of a face w .

3/2

3/2

3/2

3/23/2

3/2

1/2

3/2

1/2

1/2

1/2

10

1

0

2

2

0

1

2
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The complex structure on polyhedral surfaces

Polyhedral metric ; complex structure

Identify each face w ∈ T̃ 2 with a triangle in C by an
orientation-preserving isometry.
A function f : R̃ → C is analytic, if it is continuous and its
restriction to the interior of each face is analytic.
Let ϕl

R : R̃ → C be the unique (up to constant) Abelian
integral of the 1st kind with A-periods Ak = δkl .
The period matrix ΠR is the g × g matrix whose columns are
the B-periods of ϕ1

R, . . . , ϕ
g
R.

γz := 2π(the sum of angles meeting at z)−1

γz > 1 ⇔ “curvature” > 0
γR := minz∈T 0{1, γz}
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Convergence Theorem for Period Matrices

Convergence Theorem for Period Matrices (Bobenko–S.
2013) ∀δ > 0 ∃Constδ,R, constδ,R > 0 such that for any
triangulation T of R with the maximal edge length
h < constδ,R and with the minimal face angle > δ we have

∥ΠT − ΠR∥ ≤ Constδ,R ·


h, if γR > 1/2;

h| log h|, if γR = 1/2;

h2γR , if γR < 1/2.

Corollary. The discrete period matrices of a sequence of
triangulations of the surface with the maximal edge length
tending to zero and with face angles bounded from zero
converge to the period matrix of the surface.
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Numerical computation

Model surface:

TnR
β−1
2

α2

α1 n

n

β1

Computations using a software by S. Tikhomirov:
n ∥ΠTn − ΠR∥ ∥ΠTn − ΠR∥ · h−2γR

8 0.611 1.22
16 0.363 1.15
32 0.220 1.11
64 0.136 1.08
128 0.084 1.07
256 0.053 1.06
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Convergence Theorem for Abelian integrals

A sequence {Tn} is nondegenerate uniform ⇔ ∃const > 0:

the minimal face angle is > const;

∀e ∈ T⃗n

1
we have αe + βe < π − const;

the number of vertices in an arbitrary disk of radius equal
to the maximal edge length (=: Size(Tn)) is < const−1.

Convergence Theorem for Abelian integrals
(Bobenko–S. 2013) Let {Tn} be a nondegenerate uniform
sequence of triangulations of R with Size(Tn) → 0. Let

zn ∈ T̃ 0
n converge to z0 ∈ R̃ and wn ∈ T̃ 2

n contain zn. Then
the discrete Abelian integrals of the 1st kind
ϕl
Tn = (Reϕl

Tn : T̃
0
n → R, Imϕl

Tn : T̃
2
n → R) normalized by

Reϕl
T (zn) = Imϕl

T (wn) = 0 converge to the Abelian

integral of the 1st kind ϕl
R : R̃ → C normalized by

ϕl
R(z0) = 0 uniformly on compact subsets.
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Discrete Riemann–Roch theorem

A discrete meromorphic function is an arbitrary pair
(Ref : T 0 → R, Imf : T 2 → R).
rese f :=Imf (re)− Imf (le) + ν(e)Ref (he)− ν(e)Ref (te)

A divisor is a map D : T 0 ⊔ T 1 ⊔ T 2 → {0,±1}.
(f ):=IRef=0 − Irese f ̸=0 + IImf=0; l(D):=dim{f : (f ) ≥ D}

A discrete Abelian differential is an odd map ω : T⃗ 1 → R.
resw ω:=

∑
e∈T⃗ 1 : le=w ω(e); resz ω:=i

∑
e∈T⃗ 1 : he=z ν(e)ω(e).

(ω):=−Ireszω ̸=0 + Iω=0 − Ireswω ̸=0; i(D):=dim{ω : (ω) ≥ D}
D is admissible ⇔ (−1)kD(T k) ≤ 0; degD:=

∑
z D(z).

Discrete Riemann–Roch Theorem (Bobenko–S. 2012)
For admissible divisors D on a triangulated surface of genus g

l(−D) = degD − 2g + 2 + i(D).
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3
Convergence

via energy estimates
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Main concept: energy

The energy of a function u : Ω → R is EΩ(u) :=
∫
Ω
|∇u|2dA.

The gradient of a function u : Q0 → R at a face z1z2z3z4 is
the unique vector ∇Qu(z1z2z3z4) ∈ R2 such that

∇Qu(z1z2z3z4) · −−→z1z3 = u(z1)− u(z3),

∇Qu(z1z2z3z4) · −−→z2z4 = u(z2)− u(z4).

The energy of the function u : Q0 → R is

EQ(u) :=
∑

z1z2z3z4⊂Q

|∇Qu(z1z2z3z4)|2 · Area(z1z2z3z4).

Convexity Principle. The energy EQ(u) is a strictly convex
functional on the affine space RQ0−∂Q of functions u : Q0 → R
having fixed values at the boundary ∂Q.
Variational principle. A function u : Q0 → R has minimal
energy EQ(u) among all the functions with the same boundary
values if and only if it is discrete harmonic.
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Physical interpretation

A direct-current network/alternating-current network is a
connected graph with a marked subset of vertices (boundary)
and a positive number/complex number with positive real part
(conductance/admittance) assigned to each edge.

z1
z3

z2

z4

Q

z1
B z3

z2

z4

W

The graph B is naturally an alternating-current network

Admittance c(z1z3) := i z2−z4
z1−z3

⇒ Re c(z1z3) > 0

Voltage V (z1z3) := f (z1)− f (z3)

Current I (z1z3) := if (z2)− if (z4)

Energy E (f ) := Re
∑

z1z3
V (z1z3)Ī (z1z3).
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Convergence of gradient

Gradient Convergence Lemma.
|∇g −∇Q(g |Q0 )| ≤ Const · ehmaxz∈Conv(∂Q) |D2g(z)|.
Proof. Consider a face z1z2z3z4 of the lattice Q. By the Rolle
theorem there is a point z ∈ z1z3 (possibly outside z1z2z3z4
but inside the convex hull Conv(∂Q)) such that
(∇g(z)− [∇Qg ](z1z2z3z4)) · −−→z1z3/|−−→z1z3| = 0. Thus
(∇g−∇Qg)·−−→z1z3/|−−→z1z3| ≤ Const·hmaxz∈Conv(z1z2z3z4) |D2g(z)|
in z1z2z3z4. The same inequality holds with z1z3 replaced by
z2z4. By projection the lemma follows.
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Convergence of energy

Energy Convergence Lemma. Let ∂Ω be smooth and
{Qn} ⊂ Ω be a nondegenerate uniform sequence of
quadrilateral lattices such that Size(Qn), Dist(∂Qn, ∂Ω) → 0.
Let g : C → R be a C 2 function. Then EQn(g

∣∣
Q0

n
) → EΩ(g).

Proof idea. Discontinuous piecewise-linear “interpolation”:
IQg : z1z2z3z4 → R is the linear function s.t.

IQg(z1) = g(z1),

IQg(z3) = g(z3),

IQg(z2)− IQg(z4) = g(z2)− g(z4).

Thus ∇Qg = ∇IQg ,EQ(g) = EΩ∩Q(IQg) ⇒ convergence.

Remark. Discontinuity ⇒ usual finite element method
helpless!
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Proof of the convergence of energy

Proof of Energy Convergence Lemma. Denote by Q̂n the
domain enclosed by the curve ∂Qn. Since Qn approximates Ω
and ∂Ω is smooth it follows that some neighborhood Ω′ of Ω
contains all the lattices Qn and
Area(Ω− Q̂n),Area(Q̂n − Ω) → 0 as n → ∞. Since the
domain Ω is bounded and the function g : C → R is smooth it
follows that ∇g is bounded in Conv(Ω′). Thus the integrals
EΩ(g), EQ̂n

(g) exist and
EΩ(g)− EQ̂n

(g) = EΩ−Q̂n
(g)− EQ̂n−Ω(g) → 0 as n → ∞. By

Gradient Approximation Lemma we get
EQ̂n

(g)− EQn(g
∣∣
Q0

n
) → 0 as n → ∞, and the lemma follows.
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Hölderness

u : B0 → R is Hölder ⇔ |u(z)− u(w)| ≤ const · |z − w |p.
Discrete harmonic functions are Hölder:

with p = 1/2 on square lattices (Courant et al 1928);

with p = 1 on rhombic lattices
(Chelkak–Smirnov, Kenyon 2008 Integrability!);

with some p on orthogonal lattices (Saloff-Coste 1997).

Remark. (Informal meaning of integrability)
For any discrete analytic function f : Q0 → C its primitive
F (zm) :=

∑m−1
k=1

f (zk )+f (zk+1)
2

(zk+1 − zk) is discrete analytic ⇔
Q is parallelogrammic.

Problem (Chelkak, 2011). Are discrete harmonic functions
Hölder with p = 1 on orthogonal lattices?
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The main energy estimate

Equicontinuity Lemma. Let Q be an orthogonal lattice. Let
u : Q0 → R be a discrete harmonic function. Let z ,w ∈ B0 be
two vertices with |z − w | ≥ Size(Q). Let R be a square of
side length r > 3|z − w | with the center at z+w

2
and the sides

parallel and orthogonal to zw. Then ∃Const: |u(z)− u(w)| ≤

Const·EQ(u)
1/2·log−1/2 r

3|z − w |
+ max

z ′,w ′∈R∩∂Q∩B0
|u(z ′)− u(w ′)| .

Proof for a square lattice (cf. Lusternik 1926).
Assume R ∩ ∂Q = ∅, u(z) ≥ u(w).
Rm := rectangle 2mh× (2mh+ |z −w |).

m ≤ r−|z−w |
2h

⇒ Rm ⊂ R ⇒ ∃zm,wm ∈
∂Rm : u(zm)≥u(z), u(wm)≤u(w) Thus

z w
R0

R1

R2
w3z3

h

EQ(u) ≥
∑[(r−|z−w |)/2h]

m=0
|u(zm)−u(wm)|2
8m+2|z−w |/h ≥ |u(z)−u(w)|2

8
log r

3|z−w | .
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Approximation of laplacian

The laplacian of a function u : Q0 → R: [∆Qu](z) := −∂EQ(u)
∂u(z)

.

Remark. For a parallelogrammic lattice Q and a quadratic
function g we have ∆Qg = ∆g .

Laplacian Approximation Lemma Let Q be a quadrilateral
lattice, R be a square of side length r > Size(Q) inside ∂Q,
and g : C → R be a smooth function. Then ∃Const such that∣∣∣∣∣ ∑

z∈R∩B0

[∆Q(g |Q0 )] (z)−
∫
R

∆g dA

∣∣∣∣∣ ≤
Const ·

(
r · Size(Q)max

z∈R
|D2g(z)|+ r 3max

z∈R
|D3g(z)|

)
.
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Energy on Riemann surfaces

The energy of a function u : R̃ → R is ER(u) :=
∫
R |∇u|2dA.

The energy of a function u : T̃ 0 → R is

ET (u) :=
∑
e∈T 1

cotαe + cot βe

2
(u(he)− u(te))

2 = ER(IT u),

where IT u is the piecewise-linear interpolation of u.

Energy Convergence Lemma for Abelian Integrals.
∀δ > 0 and ∀u : R̃ → R — smooth multi-valued function
∃Constu,δ,R, constu,δ,R > 0 such that for any triangulation T
of R with the maximal edge length h < constu,δ,R and with
the minimal face angle > δ we have

|ET (u
∣∣
T̃ 0 )− ER(u)| ≤ Constu,δ,R ·


h, if γR > 1/2;

h| log h|, if γR = 1/2;

h2γR , if γR < 1/2.
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Convergence of period matrices

Energy Conservation Principle. Let f be a discrete
Abelian integral of the 1st kind with periods
A1, . . . ,Ag ,B1, . . . ,Bg . Then ET (Ref ) = −Im

∑g
k=1 AkB̄k .

Corollary. ∃ discrete harmonic uT ,A1,...,Ag ,B1,...,Bg : T̃ 0 → R
with arbitrary periods A1, . . . ,Ag ,B1, . . . ,Bg ∈ R.
Variational Principle. uT ,A1,...,Ag ,B1,...,Bg has minimal energy
among all the multi-valued functions with the same periods.
Lemma. ET (uT ,P) and ER(uR,P) are quadratic forms in

P ∈ R2g with the block matrices

ET :=

(
ReΠT ∗(ImΠT ∗)−1ReΠT + ImΠT (ImΠT ∗)−1ReΠT

ReΠT ∗(ImΠT ∗)−1 (ImΠT ∗)−1

)
,

ER :=

(
ReΠR(ImΠR)

−1ReΠR + ImΠR (ImΠR)
−1ReΠR

ReΠR(ImΠR)
−1 (ImΠR)

−1

)
.
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Proof of the convergence of period matrices

Convergence Theorem for Period Matrices. ∀δ > 0
∃Constδ,R, constδ,R > 0 such that for any triangulation T of
R with the maximal edge length h < constδ,R and with the
minimal face angle > δ we have

∥ΠT − ΠR∥ ≤ λ(h) := Constδ,R ·


h, if γR > 1/2;

h| log h|, if γR = 1/2;

h2γR , if γR < 1/2.

Proof modulo the above lemmas.
0 ≤ ET (uT ,P)−ER(uR,P) ≤ ET (uR,P

∣∣
T̃ 0 )−ER(uR,P) ≤ λ(h)

=⇒ ∥ET − ER∥ ≤ λ(h) =⇒ ∥ΠT − ΠR∥ ≤ λ(h).
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Riemann bilinear identity

Lemma. Let u : T̃ 0 → R and u′ : T̃ 2 → R be multi-valued
functions with periods A1, . . . ,Ag ,B1, . . . ,Bg and
A′
1, . . . ,A

′
g ,B

′
1, . . . ,B

′
g , respectively. Then∑

e∈T 1

(u′(le)− u′(re))(u(he)− u(te)) =

g∑
k=1

(AkB
′
k − BkA

′
k).

Proof plan.
1. Check the identity
for the canonical cell-
decomposition.
2. Perform edge subdivi-
sions.

. . .

. . .

re4k−2

re4k−1
le4k−2 = le4k−1

te4k−2

he4k−2 = te4k−1

he4k−1

e4k−1

e4k

e4k−3

e4k−2

dα̂k

d
β̂k

dα̂k

d
β̂k
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O
Open problems
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Probabilistic interpretation

Ω

z1
z3

z2

z4

Q

Ω

z1
B z3

z2

z4

W

Let Q be an orthogonal lattice. Set c(z1z3) := i z2−z4
z1−z3

> 0.
Consider a random walk on the graph B with transition
probabilities proportional to c(z1z3).
Problem. The trajectories of a loop-erased random walk on B
converge to SLE2 curves in the scaling limit.
Remark. Rhombic lattices: Chelkak–Smirnov, 2008.
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Open problems

Problem. Generalize Convergence Theorem to:
1 nonorthogonal quadrilateral lattices;
2 discontinuous boundary values (for convergence of

discrete harmonic measure, the Green function, the
Cauchy and the Poisson kernels);

3 mixed boundary conditions;
4 infinite lattices and unbounded domains;
5 higher dimensions;
6 other elliptic PDE.
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