Discrete complex analysis Convergence results

M. Skopenkov¹²³

¹National Research University Higher School of Economics

²Institute for Information Transmission Problems RAS

³King Abdullah University of Science and Technology

Research Seminar on Discrete Geometry and Geometry of Numbers 21.11.2023

-

Main notions of discrete complex analysis

A graph $Q \subset \mathbb{C}$ is a *quadrilateral lattice* \Leftrightarrow each bounded face is a quadrilateral. A function $f: Q \to \mathbb{C}$ is *discrete analytic* \Leftrightarrow

$$\frac{f(z_1)-f(z_3)}{z_1-z_3} = \frac{f(z_2)-f(z_4)}{z_2-z_4}$$

for each face $z_1 z_2 z_3 z_4$ with the vertices listed clockwise. Re *f* is called *discrete harmonic*.

Main notions of discrete complex analysis

A graph $Q \subset \mathbb{C}$ is a *quadrilateral lattice* \Leftrightarrow each bounded face is a quadrilateral. A function $f: Q \to \mathbb{C}$ is *discrete analytic* \Leftrightarrow

$$\frac{f(z_1)-f(z_3)}{z_1-z_3} = \frac{f(z_2)-f(z_4)}{z_2-z_4}$$

for each face $z_1 z_2 z_3 z_4$ with the vertices listed clockwise. Re *f* is called *discrete harmonic*.

square latticerhombic latticeorthogonal latticeIsaacs, Ferrand (1940s)Duffin (1960s)Mercat (2000s)

Problem. Prove convergence of discrete harmonic functions to their continuous counterparts as maximal edge length $\rightarrow 0$.

• *Square lattices*, C⁰: Lusternik, 1926.

- *Square lattices*, C⁰: Lusternik, 1926.
- Square lattices, C^{∞} : Courant–Friedrichs–Lewy, 1928.

- *Square lattices*, C⁰: Lusternik, 1926.
- Square lattices, C^{∞} : Courant–Friedrichs–Lewy, 1928.
- *Rhombic lattices*, C⁰: Ciarlet–Raviart, 1973 (implicitly).

- *Square lattices*, C⁰: Lusternik, 1926.
- Square lattices, C^{∞} : Courant–Friedrichs–Lewy, 1928.
- *Rhombic lattices*, C⁰: Ciarlet–Raviart, 1973 (implicitly).
- *Rhombic lattices*, C¹: Chelkak–Smirnov, 2008.

- *Square lattices*, *C*⁰: Lusternik, 1926.
- Square lattices, C^{∞} : Courant–Friedrichs–Lewy, 1928.
- *Rhombic lattices*, C⁰: Ciarlet–Raviart, 1973 (implicitly).
- *Rhombic lattices*, C¹: Chelkak–Smirnov, 2008.
- Non-rhombic lattices: open problem by Smirnov, 2010.

- *Square lattices*, *C*⁰: Lusternik, 1926.
- Square lattices, C^{∞} : Courant–Friedrichs–Lewy, 1928.
- *Rhombic lattices*, C⁰: Ciarlet–Raviart, 1973 (implicitly).
- *Rhombic lattices*, C¹: Chelkak–Smirnov, 2008.
- Non-rhombic lattices: open problem by Smirnov, 2010.

Problem. Prove convergence of discrete harmonic functions to their continuous counterparts as maximal edge length $\rightarrow 0$.

- *Square lattices*, C⁰: Lusternik, 1926.
- Square lattices, C^{∞} : Courant–Friedrichs–Lewy, 1928.
- *Rhombic lattices*, C⁰: Ciarlet–Raviart, 1973 (implicitly).
- *Rhombic lattices*, C¹: Chelkak–Smirnov, 2008.
- Non-rhombic lattices: open problem by Smirnov, 2010.

The *Dirichlet problem* in a domain Ω is to find a continuous function $u_{\Omega,g} \colon \mathrm{Cl}\Omega \to \mathbb{R}$ having given boundary values $g \colon \partial\Omega \to \mathbb{R}$ and such that $\Delta u_{\Omega,g} = 0$ in Ω .

The *Dirichlet problem* on Q is to find a discrete harmonic function $u_{Q,g}: Q \to \mathbb{R}$ having given boundary values $g: \partial Q \to \mathbb{R}$. (\exists !)

Ω

A sequence $\{Q_n\}$ is *nondegenerate uniform* $\Leftrightarrow \exists \text{ const} > 0$:

• the angle between the diagonals and the ratio of the diagonals in each quadrilateral face are > const,

A sequence $\{Q_n\}$ is *nondegenerate uniform* $\Leftrightarrow \exists \text{ const} > 0$:

- the angle between the diagonals and the ratio of the diagonals in each quadrilateral face are > const,
- the number of vertices in each disk of radius $\operatorname{Step}(Q_n)$ is $< \operatorname{const}^{-1}$, where $\operatorname{Step}(Q_n) :=$ maximal edge length.

A sequence $\{Q_n\}$ is *nondegenerate uniform* $\Leftrightarrow \exists \text{ const} > 0$:

- the angle between the diagonals and the ratio of the diagonals in each quadrilateral face are > const,
- the number of vertices in each disk of radius $\operatorname{Step}(Q_n)$ is $< \operatorname{const}^{-1}$, where $\operatorname{Step}(Q_n) :=$ maximal edge length.

A sequence $\{Q_n\}$ is *nondegenerate uniform* $\Leftrightarrow \exists \text{ const} > 0$:

- the angle between the diagonals and the ratio of the diagonals in each quadrilateral face are > const,
- the number of vertices in each disk of radius $\operatorname{Step}(Q_n)$ is $< \operatorname{const}^{-1}$, where $\operatorname{Step}(Q_n) :=$ maximal edge length.

Convergence Theorem for BVP (S. 2013). Let $\Omega \subset \mathbb{C}$ be a bounded simply-connected domain. Let $g : \mathbb{C} \to \mathbb{R}$ be a smooth function. Take a nondegenerate uniform sequence of finite orthogonal lattices $\{Q_n\}$ such that $\operatorname{Step}(Q_n)$, $\operatorname{Dist}(\partial Q_n, \partial \Omega) \to 0$. Then the solution $u_{Q_n,g} : Q_n \to \mathbb{R}$ of the Dirichlet problem on Q_n uniformly converges to the solution $u_{\Omega,g} : \Omega \to \mathbb{R}$ of the Dirichlet problem in Ω .

→ < Ξ → <</p>

The energy of a function $u: \Omega \to \mathbb{R}$ is $E_{\Omega}(u) := \int_{\Omega} |\nabla u|^2 dA$.

• • • • • • •

The *energy* of a function $u: \Omega \to \mathbb{R}$ is $E_{\Omega}(u) := \int_{\Omega} |\nabla u|^2 dA$. The *gradient* of a function $u: Q^0 \to \mathbb{R}$ at a face $z_1 z_2 z_3 z_4$ is the unique vector $\nabla_Q u(z_1 z_2 z_3 z_4) \in \mathbb{R}^2$ such that

$$\nabla_Q u(z_1 z_2 z_3 z_4) \cdot \overrightarrow{z_1 z_3} = u(z_1) - u(z_3),$$

$$\nabla_Q u(z_1 z_2 z_3 z_4) \cdot \overrightarrow{z_2 z_4} = u(z_2) - u(z_4).$$

The energy of a function $u: \Omega \to \mathbb{R}$ is $E_{\Omega}(u) := \int_{\Omega} |\nabla u|^2 dA$. The gradient of a function $u: Q^0 \to \mathbb{R}$ at a face $z_1 z_2 z_3 z_4$ is the unique vector $\nabla_Q u(z_1 z_2 z_3 z_4) \in \mathbb{R}^2$ such that $\nabla_Q u(z_1 z_2 z_3 z_4) \cdot \overline{z_1 z_3} = u(z_1) - u(z_3),$ $\nabla_Q u(z_1 z_2 z_3 z_4) \cdot \overline{z_2 z_4} = u(z_2) - u(z_4).$

The *energy* of the function $u: Q^0 \to \mathbb{R}$ is $E_Q(u) := \sum_{z_1 z_2 z_3 z_4 \subset Q} |\nabla_Q u(z_1 z_2 z_3 z_4)|^2 \cdot \operatorname{Area}(z_1 z_2 z_3 z_4).$

The *energy* of a function $u: \Omega \to \mathbb{R}$ is $E_{\Omega}(u) := \int_{\Omega} |\nabla u|^2 dA$. The *gradient* of a function $u: Q^0 \to \mathbb{R}$ at a face $z_1 z_2 z_3 z_4$ is the unique vector $\nabla_Q u(z_1 z_2 z_3 z_4) \in \mathbb{R}^2$ such that $\nabla_Q u(z_1 z_2 z_3 z_4) \cdot \overrightarrow{z_1 z_3} = u(z_1) - u(z_3),$ $\nabla_Q u(z_1 z_2 z_3 z_4) \cdot \overrightarrow{z_2 z_4} = u(z_2) - u(z_4).$

The *energy* of the function $u: Q^0 \to \mathbb{R}$ is $E_Q(u) := \sum_{z_1 z_2 z_3 z_4 \subset Q} |\nabla_Q u(z_1 z_2 z_3 z_4)|^2 \cdot \operatorname{Area}(z_1 z_2 z_3 z_4).$

Convexity Principle. The energy $E_Q(u)$ is a strictly convex functional on the affine space $\mathbb{R}^{Q^0 - \partial Q}$ of functions $u: Q^0 \to \mathbb{R}$ having fixed values at the boundary ∂Q .

The *energy* of a function $u: \Omega \to \mathbb{R}$ is $E_{\Omega}(u) := \int_{\Omega} |\nabla u|^2 dA$. The *gradient* of a function $u: Q^0 \to \mathbb{R}$ at a face $z_1 z_2 z_3 z_4$ is the unique vector $\nabla_Q u(z_1 z_2 z_3 z_4) \in \mathbb{R}^2$ such that $\nabla_Q u(z_1 z_2 z_3 z_4) \cdot \overrightarrow{z_1 z_3} = u(z_1) - u(z_3),$ $\nabla_Q u(z_1 z_2 z_3 z_4) \cdot \overrightarrow{z_2 z_4} = u(z_2) - u(z_4).$

The energy of the function $u: Q^0 \to \mathbb{R}$ is $E_Q(u) := \sum_{z_1 z_2 z_3 z_4 \subset Q} |\nabla_Q u(z_1 z_2 z_3 z_4)|^2 \cdot \operatorname{Area}(z_1 z_2 z_3 z_4).$

Convexity Principle. The energy $E_Q(u)$ is a strictly convex functional on the affine space $\mathbb{R}^{Q^0 - \partial Q}$ of functions $u: Q^0 \to \mathbb{R}$ having fixed values at the boundary ∂Q . **Variational principle.** A function $u: Q^0 \to \mathbb{R}$ has minimal energy $E_Q(u)$ among all the functions with the same boundary values if and only if it is discrete harmonic.

Equicontinuity Lemma. Let Q be an orthogonal lattice. Let $u: Q^0 \to \mathbb{R}$ be a discrete harmonic function. Let $z, w \in B^0$ be two vertices with $|z - w| \ge \text{Step}(Q)$. Let R be a square of side length r > 3|z - w| with the center at $\frac{z+w}{2}$ and the sides parallel and orthogonal to zw. Then $\exists \text{Const:}$

2

Discrete analytic functions in Riemann surfaces

M. Skopenkov Discrete complex analysis

Riemann surfaces

Riemann surface	Analytic functions
planar domain	functions $u(x, y) + iv(x, y)$ s.t. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
quotient ${\mathbb C}$ by a lattice	doubly periodic analytic functions
complex algebraic curve $a_{nm}z^nw^m + \cdots + a_{00} = 0$	analytic functions in both w and z
polyhedral surface	continuous functions which are analytic on each face

・日・ ・ ヨ・・

æ

-≣->

Discrete Riemann surfaces

\mathcal{R}	a polyhedral surface	
\mathcal{T}	its triangulation	
\mathcal{T}^{0}	the set of vertices	
$ec{\mathcal{T}}^1$	the set of oriented edges	
\mathcal{T}^2	the set faces	

A discrete analytic function is a pair $(u: \mathcal{T}^0 \to \mathbb{R}, v: \mathcal{T}^2 \to \mathbb{R})$ such that $\forall e \in \vec{\mathcal{T}}^1$ $v(l_e) - v(r_e) = \frac{\cot \alpha_e + \cot \beta_e}{2} (u(h_e) - u(t_e)).$

r_e

he

(Duffin, Pinkall–Polthier, Desbrun–Meyer–Schröder, Mercat) **Remark.** \mathcal{T} is a *Delauney* triangulation of $\mathbb{R}^2 \Rightarrow u \sqcup iv$ is discrete analytic on Q (in the sense of **Part 1** of the slides).

Discrete Abelian integrals of the 1st kind

A discrete Abelian integral of the 1st kind with periods $A, B \in \mathbb{C}$ is a discrete analytic function $(\operatorname{Re} f : \widetilde{T}^0 \to \mathbb{R}, \operatorname{Im} f : \widetilde{T}^2 \to \mathbb{R})$ such that $\forall z \in \widetilde{T}^0, \forall w \in \widetilde{T}^2$

$$[\operatorname{Re} f](d_{\alpha}z) - [\operatorname{Re} f](z) = \operatorname{Re} A; \quad [\operatorname{Re} f](d_{\beta}z) - [\operatorname{Re} f](z) = \operatorname{Re} B; \\ [\operatorname{Im} f](d_{\alpha}w) - [\operatorname{Im} f](w) = \operatorname{Im} A; \quad [\operatorname{Im} f](d_{\beta}w) - [\operatorname{Im} f](w) = \operatorname{Im} B.$$

Discrete Abelian integrals of the 1st kind

A discrete Abelian integral of the 1st kind with periods $A_1, \ldots, A_g, B_1, \ldots, B_g \in \mathbb{C}$ is a discrete analytic function $(\operatorname{Re} f: \widetilde{\mathcal{T}}^0 \to \mathbb{R}, \operatorname{Im} f: \widetilde{\mathcal{T}}^2 \to \mathbb{R})$ such that $\forall z \in \widetilde{\mathcal{T}}^0, \forall w \in \widetilde{\mathcal{T}}^2$

$$\begin{split} &\operatorname{Re} f(d_{\alpha_k}z) - \operatorname{Re} f(z) = \operatorname{Re} A_k; \quad \operatorname{Re} f(d_{\beta_k}z) - \operatorname{Re} f(z) = \operatorname{Re} B_k; \\ &\operatorname{Im} f(d_{\alpha_k}w) - \operatorname{Im} f(w) = \operatorname{Im} A_k; \quad \operatorname{Im} f(d_{\beta_k}w) - \operatorname{Im} f(w) = \operatorname{Im} B_k. \end{split}$$

Existence & Uniqueness Theorem (Bobenko–S. 2012) $\forall A \in \mathbb{C}$ there is a discrete Abelian integral of the 1st kind with the A-period A. It is unique up to constant.

The discrete period matrix $\Pi_{\mathcal{T}}$ (period matrix $\Pi_{\mathcal{T}}$) is the B-period of the discrete Abelian integral (Abelian integral) of the 1st kind with the A-period 1. It is a 1×1 matrix for a surface of genus 1.

Notation.

$$\begin{split} \gamma_z &:= 2\pi (\text{the sum of angles meeting at } z)^{-1} \\ \gamma_z &> 1 \Leftrightarrow \text{``curvature''} > 0 \\ \gamma_{\mathcal{R}} &:= \min_{z \in \mathcal{T}^0} \{1, \gamma_z\} \end{split}$$

Existence & Uniqueness Theorem (Bobenko–S. 2012) For any numbers $A_1, \ldots, A_g \in \mathbb{C}$ there exist a discrete Abelian integral of the 1st kind with A-periods A_1, \ldots, A_g . It is unique up to constant.

Let $\phi_{\mathcal{T}}^{\prime} = (\operatorname{Re} \phi_{\mathcal{T}}^{\prime} \colon \widetilde{\mathcal{T}}^{0} \to \mathbb{R}, \operatorname{Im} \phi_{\mathcal{T}}^{\prime} \colon \widetilde{\mathcal{T}}^{2} \to \mathbb{R})$ be the unique (up to constant) discrete Abelian integral of the 1st kind with A-periods $A_{k} = \delta_{kl}$.

The discrete period matrix $\Pi_{\mathcal{T}}$ is the $g \times g$ matrix whose columns are the B-periods of $\phi_{\mathcal{T}}^1, \ldots, \phi_{\mathcal{T}}^g$.

Example. For $\mathcal{R} = \mathbb{C}/(\mathbb{Z} + \eta\mathbb{Z})$: Re $\phi_{\mathcal{T}}^{1}(z) = \text{Re } z$, Im $\phi_{\mathcal{T}}^{1}(w) = \text{Im } w^{*}$, where w^{*} is the circumcenter of a face w.

Polyhedral metric \rightsquigarrow complex structure Identify each face $w \in \widetilde{T}^2$ with a triangle in \mathbb{C} by an orientation-preserving isometry. A function $f: \widetilde{\mathcal{R}} \to \mathbb{C}$ is *analytic*, if it is continuous and its restriction to the interior of each face is analytic. Let $\phi_{\mathcal{R}}^{I}: \widetilde{\mathcal{R}} \to \mathbb{C}$ be the unique (up to constant) Abelian integral of the 1st kind with A-periods $A_k = \delta_{kl}$. The *period matrix* $\Pi_{\mathcal{R}}$ is the $g \times g$ matrix whose columns are the B-periods of $\phi_{\mathcal{R}}^1, \ldots, \phi_{\mathcal{R}}^g$.

$$\begin{split} &\gamma_z := 2\pi (\text{the sum of angles meeting at } z)^{-1} \ &\gamma_z > 1 \Leftrightarrow \text{``curvature''} > 0 \ &\gamma_{\mathcal{R}} := \min_{z \in \mathcal{T}^0} \{1, \gamma_z\} \end{split}$$

Convergence Theorem for Period Matrices (Bobenko–S. 2013) $\forall \delta > 0 \exists \text{Const}_{\delta,\mathcal{R}}, \text{const}_{\delta,\mathcal{R}} > 0$ such that for any triangulation \mathcal{T} of \mathcal{R} with the maximal edge length $h < \text{const}_{\delta,\mathcal{R}}$ and with the minimal face angle $> \delta$ we have

$$\|\Pi_{\mathcal{T}} - \Pi_{\mathcal{R}}\| \leq \operatorname{Const}_{\delta,\mathcal{R}} \cdot \begin{cases} h, & \text{if } \gamma_{\mathcal{R}} > 1/2; \\ h|\log h|, & \text{if } \gamma_{\mathcal{R}} = 1/2; \\ h^{2\gamma_{\mathcal{R}}}, & \text{if } \gamma_{\mathcal{R}} < 1/2. \end{cases}$$

Corollary. The discrete period matrices of a sequence of triangulations of the surface with the maximal edge length tending to zero and with face angles bounded from zero converge to the period matrix of the surface.

Numerical computation

Model surface:

Computations using a software by S. Tikhomirov:

n	$\ \Pi_{\mathcal{T}_n} - \Pi_{\mathcal{R}}\ $	$\ \Pi_{\mathcal{T}_n} - \Pi_{\mathcal{R}}\ \cdot h^{-2\gamma_{\mathcal{R}}}$
8	0.611	1.22
16	0.363	1.15
32	0.220	1.11
64	0.136	1.08
128	0.084	1.07
256	0.053	1.06

Convergence Theorem for Abelian integrals

- A sequence $\{\mathcal{T}_n\}$ is *nondegenerate uniform* $\Leftrightarrow \exists \text{const} > 0$:
 - the minimal face angle is > const;
 - $\forall e \in \vec{\mathcal{T}}_n^1$ we have $\alpha_e + \beta_e < \pi \text{const}$;
 - the number of vertices in an arbitrary disk of radius equal to the maximal edge length (=: Size(𝒯_n)) is < const⁻¹.

Convergence Theorem for Abelian integrals (Bobenko–S. 2013) Let $\{\mathcal{T}_n\}$ be a nondegenerate uniform sequence of triangulations of \mathcal{R} with $\operatorname{Size}(\mathcal{T}_n) \to 0$. Let $z_n \in \widetilde{\mathcal{T}}_n^0$ converge to $z_0 \in \widetilde{\mathcal{R}}$ and $w_n \in \widetilde{\mathcal{T}}_n^2$ contain z_n . Then the discrete Abelian integrals of the 1st kind $\phi'_{\mathcal{T}_n} = (\operatorname{Re} \phi'_{\mathcal{T}_n} : \widetilde{\mathcal{T}}_n^0 \to \mathbb{R}, \operatorname{Im} \phi'_{\mathcal{T}_n} : \widetilde{\mathcal{T}}_n^2 \to \mathbb{R})$ normalized by $\operatorname{Re} \phi'_{\mathcal{T}}(z_n) = \operatorname{Im} \phi'_{\mathcal{T}}(w_n) = 0$ converge to the Abelian integral of the 1st kind $\phi'_{\mathcal{R}} : \widetilde{\mathcal{R}} \to \mathbb{C}$ normalized by $\phi'_{\mathcal{R}}(z_0) = 0$ uniformly on compact subsets.

Discrete Riemann-Roch theorem

A discrete meromorphic function is an arbitrary pair (Ref: $\mathcal{T}^0 \to \mathbb{R}$, Imf: $\mathcal{T}^2 \to \mathbb{R}$). res_e f :=Imf(r_e) - Imf(l_e) + $\nu(e)$ Ref(h_e) - $\nu(e)$ Ref(t_e) A divisor is a map D: $\mathcal{T}^0 \sqcup \mathcal{T}^1 \sqcup \mathcal{T}^2 \to \{0, \pm 1\}$. (f):= $l_{\text{Ref}=0} - l_{\text{res}_e f \neq 0} + l_{\text{Im}f=0}$; l(D):=dim $\{f : (f) \ge D\}$

A discrete Abelian differential is an odd map $\omega : \vec{\mathcal{T}}^1 \to \mathbb{R}$. $\operatorname{res}_w \omega := \sum_{e \in \vec{\mathcal{T}}^1 : I_e = w} \omega(e); \quad \operatorname{res}_z \omega := i \sum_{e \in \vec{\mathcal{T}}^1 : I_e = z} \nu(e) \omega(e).$ $(\omega) := -I_{\operatorname{res}_z \omega \neq 0} + I_{\omega = 0} - I_{\operatorname{res}_w \omega \neq 0}; \quad i(D) := \dim \{\omega : (\omega) \ge D\}$ D is admissible $\Leftrightarrow (-1)^k D(\mathcal{T}^k) \le 0; \quad \deg D := \sum_z D(z).$

Discrete Riemann–Roch Theorem (Bobenko–S. 2012) For admissible divisors D on a triangulated surface of genus g

$$I(-D) = \deg D - 2g + 2 + i(D).$$

伺 ト イヨ ト イヨ ト

3 Convergence via energy estimates

M. Skopenkov Discrete complex analysis

→ < ∃ →</p>

Main concept: energy

The energy of a function $u: \Omega \to \mathbb{R}$ is $E_{\Omega}(u) := \int_{\Omega} |\nabla u|^2 dA$. The gradient of a function $u: Q^0 \to \mathbb{R}$ at a face $z_1 z_2 z_3 z_4$ is the unique vector $\nabla_Q u(z_1 z_2 z_3 z_4) \in \mathbb{R}^2$ such that $\nabla_Q u(z_1 z_2 z_3 z_4) \cdot \overline{z_1 z_3} = u(z_1) - u(z_3),$ $\nabla_Q u(z_1 z_2 z_3 z_4) \cdot \overline{z_2 z_4} = u(z_2) - u(z_4).$

The energy of the function $u: Q^0 \to \mathbb{R}$ is $E_Q(u) := \sum_{z_1 z_2 z_3 z_4 \subset Q} |\nabla_Q u(z_1 z_2 z_3 z_4)|^2 \cdot \operatorname{Area}(z_1 z_2 z_3 z_4).$

Convexity Principle. The energy $E_Q(u)$ is a strictly convex functional on the affine space $\mathbb{R}^{Q^0 - \partial Q}$ of functions $u: Q^0 \to \mathbb{R}$ having fixed values at the boundary ∂Q . **Variational principle.** A function $u: Q^0 \to \mathbb{R}$ has minimal energy $E_Q(u)$ among all the functions with the same boundary values if and only if it is discrete harmonic.

Physical interpretation

A *direct-current network/alternating-current network* is a connected graph with a marked subset of vertices (*boundary*) and a positive number/complex number with positive real part (*conductance/admittance*) assigned to each edge.

- The graph *B* is naturally an *alternating-current network*
- Admittance $c(z_1z_3) := i \frac{z_2 z_4}{z_1 z_3} \Rightarrow \operatorname{Re} c(z_1z_3) > 0$
- Voltage $V(z_1z_3) := f(z_1) f(z_3)$
- Current $I(z_1z_3) := if(z_2) if(z_4)$
- Energy $E(f) := \operatorname{Re} \sum_{z_1 z_3} V(z_1 z_3) \overline{I}(z_1 z_3).$

Gradient Convergence Lemma.

 $\begin{aligned} |\nabla g - \nabla_Q(g \mid_{Q^0})| &\leq \operatorname{Const} \cdot eh \max_{z \in \operatorname{Conv}(\partial Q)} |D^2 g(z)|. \\ \textit{Proof. Consider a face } z_1 z_2 z_3 z_4 \text{ of the lattice } Q. By the Rolle \\ \text{theorem there is a point } z \in z_1 z_3 \text{ (possibly outside } z_1 z_2 z_3 z_4 \\ \text{but inside the convex hull } \operatorname{Conv}(\partial Q)\text{) such that} \\ (\nabla g(z) - [\nabla_Q g](z_1 z_2 z_3 z_4)) \cdot \overline{z_1 z_3} / |\overline{z_1 z_3}| = 0. \\ \text{Thus} \\ (\nabla g - \nabla_Q g) \cdot \overline{z_1 z_3} / |\overline{z_1 z_3}| \leq \operatorname{Const} \cdot h \max_{z \in \operatorname{Conv}(z_1 z_2 z_3 z_4)} |D^2 g(z)| \\ \text{in } z_1 z_2 z_3 z_4. \\ \text{The same inequality holds with } z_1 z_3 \text{ replaced by} \\ z_2 z_4. \\ \text{By projection the lemma follows.} \end{aligned}$

Energy Convergence Lemma. Let $\partial\Omega$ be smooth and $\{Q_n\} \subset \Omega$ be a nondegenerate uniform sequence of quadrilateral lattices such that $\operatorname{Size}(Q_n)$, $\operatorname{Dist}(\partial Q_n, \partial\Omega) \to 0$. Let $g : \mathbb{C} \to \mathbb{R}$ be a C^2 function. Then $E_{Q_n}(g \mid Q_n^0) \to E_{\Omega}(g)$. **Proof idea.** Discontinuous piecewise-linear "interpolation": $I_Qg : z_1z_2z_3z_4 \to \mathbb{R}$ is the linear function s.t.

$$egin{aligned} &I_Q g(z_1) = g(z_1),\ &I_Q g(z_3) = g(z_3),\ &I_Q g(z_2) - I_Q g(z_4) = g(z_2) - g(z_4). \end{aligned}$$

Thus $\nabla_Q g = \nabla I_Q g$, $E_Q(g) = E_{\Omega \cap Q}(I_Q g) \Rightarrow$ convergence.

Remark. Discontinuity \Rightarrow usual finite element method helpless!

Proof of Energy Convergence Lemma. Denote by Q_n the domain enclosed by the curve ∂Q_n . Since Q_n approximates Ω and $\partial \Omega$ is smooth it follows that some neighborhood Ω' of Ω contains all the lattices Q_n and Area $(\Omega - \widehat{Q}_n)$, Area $(\widehat{Q}_n - \Omega) \to 0$ as $n \to \infty$. Since the domain Ω is bounded and the function $g: \mathbb{C} \to \mathbb{R}$ is smooth it follows that ∇g is bounded in $\operatorname{Conv}(\Omega')$. Thus the integrals $E_{\Omega}(g)$, $E_{\widehat{\Omega}_{n}}(g)$ exist and $E_{\Omega}(g) - \widetilde{E}_{\widehat{\Omega}_n}(g) = E_{\Omega - \widehat{\Omega}_n}(g) - E_{\widehat{\Omega}_n - \Omega}(g) \to 0$ as $n \to \infty$. By Gradient Approximation Lemma we get $E_{\widehat{O}_n}(g) - E_{\mathcal{Q}_n}(g \mid_{\mathcal{Q}_n^0}) \to 0$ as $n \to \infty$, and the lemma follows.

Hölderness

 $u: B^0 \to \mathbb{R} \text{ is } \frac{H\ddot{o}lder}{|u(z) - u(w)|} \leq \operatorname{const} \cdot |z - w|^p.$

Discrete harmonic functions are Hölder:

- with p = 1/2 on square lattices (Courant et al 1928);
- with p = 1 on *rhombic* lattices (Chelkak–Smirnov, Kenyon 2008 Integrability!);
- with some p on orthogonal lattices (Saloff-Coste 1997).

Remark. (Informal meaning of integrability) For any discrete analytic function $f: Q^0 \to \mathbb{C}$ its *primitive* $F(z_m) := \sum_{k=1}^{m-1} \frac{f(z_k)+f(z_{k+1})}{2}(z_{k+1}-z_k)$ is discrete analytic $\Leftrightarrow Q$ is *parallelogrammic*.

Problem (Chelkak, 2011). Are discrete harmonic functions Hölder with p = 1 on orthogonal lattices?

伺 ト イヨト イヨ

The main energy estimate

Equicontinuity Lemma. Let Q be an orthogonal lattice. Let $u: Q^0 \to \mathbb{R}$ be a discrete harmonic function. Let $z, w \in B^0$ be two vertices with $|z - w| \ge \text{Size}(Q)$. Let R be a square of side length r > 3|z - w| with the center at $\frac{z+w}{2}$ and the sides parallel and orthogonal to zw. Then $\exists \text{Const: } |u(z) - u(w)| \le 1$

$$\operatorname{Const} \cdot E_Q(u)^{1/2} \cdot \log^{-1/2} \frac{r}{3|z-w|} + \max_{z',w' \in R \cap \partial Q \cap B^0} |u(z') - u(w')|.$$

Proof for a square lattice (cf. Lusternik 1926). Assume $R \cap \partial Q = \emptyset$, $u(z) \ge u(w)$. $R_m := \text{rectangle } 2mh \times (2mh + |z - w|)$. $m \le \frac{r - |z - w|}{2h} \Rightarrow R_m \subset R \Rightarrow \exists z_m, w_m \in \partial R_m : u(z_m) \ge u(z), u(w_m) \le u(w)$ Thus $E_Q(u) \ge \sum_{m=0}^{[(r - |z - w|)/2h]} \frac{|u(z_m) - u(w_m)|^2}{8m + 2|z - w|/h} \ge \frac{|u(z) - u(w)|^2}{8} \log \frac{r}{3|z - w|}$. The *laplacian* of a function $u: Q^0 \to \mathbb{R}: [\Delta_Q u](z) := -\frac{\partial E_Q(u)}{\partial u(z)}$.

Remark. For a *parallelogrammic lattice* Q and a quadratic function g we have $\Delta_Q g = \Delta g$.

Laplacian Approximation Lemma Let Q be a quadrilateral lattice, R be a square of side length r > Size(Q) inside ∂Q , and $g: \mathbb{C} \to \mathbb{R}$ be a smooth function. Then $\exists \text{Const}$ such that

$$egin{aligned} & \left|\sum_{z\in R\cap B^0} \left[\Delta_Q(g\mid_{Q^0})
ight](z) - \int_R \Delta g \; dA
ight| \leq & \ & ext{Const}\cdot \left(r\cdot ext{Size}(Q)\max_{z\in R} |D^2g(z)| + r^3\max_{z\in R} |D^3g(z)|
ight). \end{aligned}$$

Energy on Riemann surfaces

The energy of a function $u: \mathcal{R} \to \mathbb{R}$ is $E_{\mathcal{R}}(u) := \int_{\mathcal{R}} |\nabla u|^2 dA$. The energy of a function $u: \mathcal{T}^0 \to \mathbb{R}$ is

$$E_{\mathcal{T}}(u) := \sum_{e \in \mathcal{T}^1} \frac{\cot \alpha_e + \cot \beta_e}{2} \left(u(h_e) - u(t_e) \right)^2 = E_{\mathcal{R}}(I_{\mathcal{T}}u),$$

where $I_{\mathcal{T}}u$ is the piecewise-linear interpolation of u.

Energy Convergence Lemma for Abelian Integrals. $\forall \delta > 0 \text{ and } \forall u \colon \widetilde{\mathcal{R}} \to \mathbb{R}$ — smooth multi-valued function $\exists \text{Const}_{u,\delta,\mathcal{R}}, \text{const}_{u,\delta,\mathcal{R}} > 0$ such that for any triangulation \mathcal{T} of \mathcal{R} with the maximal edge length $h < \text{const}_{u,\delta,\mathcal{R}}$ and with the minimal face angle $> \delta$ we have

$$|E_{\mathcal{T}}(u|_{\widetilde{\mathcal{T}}^0}) - E_{\mathcal{R}}(u)| \leq \operatorname{Const}_{u,\delta,\mathcal{R}} \cdot \begin{cases} h, & \text{if } \gamma_{\mathcal{R}} > 1/2; \\ h|\log h|, & \text{if } \gamma_{\mathcal{R}} = 1/2; \\ h^{2\gamma_{\mathcal{R}}}, & \text{if } \gamma_{\mathcal{R}} < 1/2. \end{cases}$$

Convergence of period matrices

Energy Conservation Principle. Let f be a discrete Abelian integral of the 1st kind with periods $A_1, \ldots, A_g, B_1, \ldots, B_g$. Then $E_T(\operatorname{Re} f) = -\operatorname{Im} \sum_{k=1}^g A_k \overline{B}_k$. **Corollary.** \exists discrete harmonic $u_{T,A_1,\ldots,A_g,B_1,\ldots,B_g} : \widetilde{T}^0 \to \mathbb{R}$ with arbitrary periods $A_1, \ldots, A_g, B_1, \ldots, B_g \in \mathbb{R}$. **Variational Principle.** $u_{T,A_1,\ldots,A_g,B_1,\ldots,B_g}$ has minimal energy among all the multi-valued functions with the same periods. **Lemma.** $E_T(u_{T,P})$ and $E_R(u_{R,P})$ are quadratic forms in $P \in \mathbb{R}^{2g}$ with the block matrices

$$\begin{split} E_{\mathcal{T}} &:= \begin{pmatrix} \operatorname{Re}\Pi_{\mathcal{T}^*}(\operatorname{Im}\Pi_{\mathcal{T}^*})^{-1}\operatorname{Re}\Pi_{\mathcal{T}} + \operatorname{Im}\Pi_{\mathcal{T}} & (\operatorname{Im}\Pi_{\mathcal{T}^*})^{-1}\operatorname{Re}\Pi_{\mathcal{T}} \\ \operatorname{Re}\Pi_{\mathcal{T}^*}(\operatorname{Im}\Pi_{\mathcal{T}^*})^{-1} & (\operatorname{Im}\Pi_{\mathcal{T}^*})^{-1} \end{pmatrix}, \\ E_{\mathcal{R}} &:= \begin{pmatrix} \operatorname{Re}\Pi_{\mathcal{R}}(\operatorname{Im}\Pi_{\mathcal{R}})^{-1}\operatorname{Re}\Pi_{\mathcal{R}} + \operatorname{Im}\Pi_{\mathcal{R}} & (\operatorname{Im}\Pi_{\mathcal{R}})^{-1}\operatorname{Re}\Pi_{\mathcal{R}} \\ \operatorname{Re}\Pi_{\mathcal{R}}(\operatorname{Im}\Pi_{\mathcal{R}})^{-1} & (\operatorname{Im}\Pi_{\mathcal{R}})^{-1} \end{pmatrix}. \end{split}$$

Convergence Theorem for Period Matrices. $\forall \delta > 0$ $\exists \text{Const}_{\delta,\mathcal{R}}, \text{const}_{\delta,\mathcal{R}} > 0$ such that for any triangulation \mathcal{T} of \mathcal{R} with the maximal edge length $h < \text{const}_{\delta,\mathcal{R}}$ and with the minimal face angle $> \delta$ we have

$$\|\Pi_{\mathcal{T}} - \Pi_{\mathcal{R}}\| \le \lambda(h) := \operatorname{Const}_{\delta,\mathcal{R}} \cdot \begin{cases} h, & \text{if } \gamma_{\mathcal{R}} > 1/2; \\ h|\log h|, & \text{if } \gamma_{\mathcal{R}} = 1/2; \\ h^{2\gamma_{\mathcal{R}}}, & \text{if } \gamma_{\mathcal{R}} < 1/2. \end{cases}$$

Proof modulo the above lemmas. $0 \leq E_{\mathcal{T}}(u_{\mathcal{T},P}) - E_{\mathcal{R}}(u_{\mathcal{R},P}) \leq E_{\mathcal{T}}(u_{\mathcal{R},P} \mid_{\widetilde{\mathcal{T}}^0}) - E_{\mathcal{R}}(u_{\mathcal{R},P}) \leq \lambda(h)$ $\implies \|E_{\mathcal{T}} - E_{\mathcal{R}}\| \leq \lambda(h) \implies \|\Pi_{\mathcal{T}} - \Pi_{\mathcal{R}}\| \leq \lambda(h).$

Riemann bilinear identity

Lemma. Let $u: \widetilde{\mathcal{T}}^0 \to \mathbb{R}$ and $u': \widetilde{\mathcal{T}}^2 \to \mathbb{R}$ be multi-valued functions with periods $A_1, \ldots, A_g, B_1, \ldots, B_g$ and $A'_1, \ldots, A'_g, B'_1, \ldots, B'_g$, respectively. Then

$$\sum_{e\in\mathcal{T}^1} (u'(I_e) - u'(r_e))(u(h_e) - u(t_e)) = \sum_{k=1}^g (A_k B'_k - B_k A'_k).$$

Proof plan.

1. Check the identity for the *canonical celldecomposition*.

2. Perform edge subdivisions.

Open problems

э

→ < ∃ →</p>

Probabilistic interpretation

Let *Q* be an orthogonal lattice. Set $c(z_1z_3) := i\frac{z_2-z_4}{z_1-z_3} > 0$. Consider a random walk on the graph *B* with transition probabilities proportional to $c(z_1z_3)$. **Problem.** The trajectories of a loop-erased random walk on *B* converge to SLE₂ curves in the scaling limit. **Remark.** *Rhombic lattices*: Chelkak–Smirnov, 2008.

Problem. Generalize Convergence Theorem to:

- Inonorthogonal quadrilateral lattices;
- discontinuous boundary values (for convergence of discrete harmonic measure, the Green function, the Cauchy and the Poisson kernels);
- mixed boundary conditions;
- Infinite lattices and unbounded domains;
- igher dimensions;
- other elliptic PDE.

- A. Bobenko, M. S., Discrete Riemann surfaces: linear discretization and its convergence, J. Reine Angew. Math. 2016:720 (2016) 217-250. arXiv:1210.0561
- O. Gurel-Gurevich, D.C. Jerison, and A. Nachmias, The Dirichlet problem for orthodiagonal maps, Adv. Math. 374 (2020), 107379.
- M. S., The boundary value problem for discrete analytic functions, Adv. Math. 240 (2013) 61-87.
- B.M. Werness, Discrete analytic functions on non-uniform lattices without global geometric control, arXiv:1511.01209.

THANKS!

æ

▶ ∢ ≣