Ruled Laguerre minimal surfaces

P. Grohs ${ }^{4}$ H. Pottmann ${ }^{3}$ M. Skopenkov ${ }^{123}$

${ }^{1}$ HSE University
${ }^{2}$ Institute for Information Transmission Problems RAS
${ }^{3}$ King Abdullah University of Science and Technology
${ }^{4}$ ETH Zürich

Research Seminar on Discrete Geometry and Geometry of Numbers, 26.09.2023

Overview of our research on circles on surfaces

- Definition. A minimal surface Φ is a local minimizer of the area functional A.
- Proposition. A surface is minimal \Leftrightarrow mean curvature $H \equiv 0$.
- Examples.

helicoid $x=y \tan z$
catenoid $x^{2}+y^{2}=\cosh ^{2} z$
- Theorem (Catalan, 1842). The only ruled minimal surfaces are the plane and the helicoid.

Laguerre minimal surfaces

- Definition (Blaschke, 1924). An L-minimal surface Φ is a local minimizer of the functional $\int_{\Phi}\left(H^{2}-K\right) / K d A$.
- Examples. Minimal surfaces; their offsets; spheres.

- Theorem (P.Grohs-H.Pottmann-M.S., 2012). All ruled L-minimal surfaces up to isometry are the surfaces

$$
\mathbf{R}(\varphi, \lambda)=(A \varphi, B \varphi, C \varphi+D \cos 2 \varphi)+\lambda(\sin \varphi, \cos \varphi, 0)
$$

where $A, B, C, D \in \mathbb{R}$ are fixed.

Ruled L-minimal surfaces

helicoid $\mathbf{r}_{1} \quad$ cycloid \mathbf{r}_{2}
$A=B=D=0 \quad C, D \rightarrow 0$

Plücker's conoid \mathbf{r}_{3} $A=B=C=0$

- Notation:
- $\mathbf{r}_{1}(u, v)=\left(u-\frac{u}{u^{2}+v^{2}}, \frac{v}{u^{2}+v^{2}}-v, 2 \operatorname{Arctan} \frac{u}{v}\right)$
- $\mathbf{r}_{2}(u, v)=\left(\operatorname{Arctan} \frac{u}{v}-\frac{u v}{u^{2}+v^{2}}, \frac{u^{2}}{u^{2}+v^{2}}, 0\right)$
- $\mathbf{r}_{3}(u, v)=\frac{u v}{u^{2}+v^{2}}\left(\frac{v}{u^{2}+v^{2}}-v, u-\frac{u}{u^{2}+v^{2}}, \frac{u}{v}\right)$
- $R^{\theta}=$ rotation through the angle θ around the z-axis.
- Theorem. All ruled L-minimal surfaces up to isometry are $\mathbf{r}(u, v)=a_{1} \mathbf{r}_{1}(u, v)+a_{2} \mathbf{r}_{2}(u, v)+a_{3} R^{\theta} \mathbf{r}_{3}(u, v)$ for some $a_{1}, a_{2}, a_{3}, \theta$.

Main ideas of the proof briefly

- Isotropic model of Laguerre geometry: ruled L-minimal surface \rightsquigarrow graph of a biharmonic function carrying a family of isotropic circles.
- The Pencil theorem: the top view of the family is a pencil. Equivalently: all the rulings of an L-minimal surface are parallel to one plane.
- Explicit solution of the biharmonic equation in convenient coordinates associated with the pencil.

What is Laguerre geometry

Antique geometry problem.

Construct a common tangent to 2 given circles using a compass and a straightedge.

from cut-the-knot.org

What is Laguerre geometry

Antique geometry problem.

Construct a common tangent to 2 given circles using a compass and a straightedge. Solution: transform one circle to a point by an offset

from cut-the-knot.org

What is Laguerre geometry

Apollonius problem. Construct a common tangent circle to 3 given circles using a compass and a straightedge.

from wikipedia.org

What is Laguerre geometry

Apollonius problem. Construct a common tangent circle to 3 given circles using a compass and a straightedge.
Solution: transform one circle to a point by an offset, move the point to infinity by an inversion, apply the previous problem.

from wikipedia.org

What is Laguerre geometry

Definition. A Laguerre transformation is a transformation of the set of oriented hyperplanes in \mathbb{R}^{n} taking oriented tangent hyperplanes to an oriented sphere (possibly of radius 0) to oriented tangent hyperplanes to an oriented sphere (possibly of radius 0). Examples. Offsets, similarities.

- Example (of an L-transformation): offset operation.
- Definition. $S T \mathbb{R}^{3}=\left\{(r, P): P \ni r\right.$ is an or. plane in $\left.\mathbb{R}^{3}\right\}$.
- Definition. An L-transformation is a map $S T \mathbb{R}^{3} \rightarrow S T \mathbb{R}^{3}$ taking planes to planes and spheres to spheres.
- Definition. A Legendre surface is an immersed surface $(\mathbf{r} ; \mathbf{P}): \mathbb{R}^{2} \rightarrow S T \mathbb{R}^{3}$ such that $d \mathbf{r}(u ; v) \perp \mathbf{P}(u ; v)$.
- Example. An oriented surface or curve \rightsquigarrow Legendre surface.

Plucker's conoid
$z=x^{2} /\left(x^{2}+y^{2}\right)$

cycloid

$$
\mathbf{r}(t)=(t \sin t ; 1-\cos t ; 0)
$$

Surfaces enveloped by a family of cones

Isotropic model of Laguerre geometry

Isotropic model of Laguerre geometry

- oriented plane $n_{1} x+n_{2} y+n_{3} z+h=0, n_{3} \neq-1$ \rightsquigarrow point $\frac{1}{n_{3}+1}\left(n_{1}, n_{2}, h\right)$ in isotropic space
- L-transformation \rightsquigarrow i-M-transformation

Surface in Laguerre geometry	Corresponding object of isotropic geometry
oriented plane	point
oriented sphere	non-isotropic plane
cone	non-isotropic line
cone	i-circle of elliptic type
cone	i-circle of parabolic type
oriented sphere	i-sphere of parabolic type
parabolic cyclide	i-paraboloid
L-minimal surface	i-Willmore surface

Isotropic geometry

- Definition. The isotropic plane is \mathbb{R}^{2} with $\|(x, t)\|=t$.
- Definition. The isotropic space is \mathbb{R}^{3} with $\|(x, y, z)\|^{2}=x^{2}+y^{2}$.

Object	Definition
point	point in isotropic space
non-isotropic line	line non-parallel to the z-axis
non-isotropic plane	plane non-parallel to the z-axis
i-circle of elliptic type	ellipse whose top view is a circle
i-circle of parabolic type	parabola with z-parallel axis
i-sphere of parabolic type	paraboloid of revolution with z-
parallel axis	
i-paraboloid	graph of a quadratic function $z=F(x, y) \quad$ graph of a (multi-valued) i-Willmore surface
	biharmonic function $z=F(x, y)$

Isotropic geometry

i-circle of elliptic type (top view is a circle)

i-circle of parabolic type

- The Pencil theorem Let $F(x, y)$ be a biharmonic function in a region $U \subset \mathbb{R}^{2}$. Let $S_{t}, t \in I$, be an analytic family of circles in the plane. Suppose that for each $t \in I$ we have $S_{t} \cap U \neq \emptyset$ and the restriction $\left.F\right|_{s_{t} \cap U}$ is a restriction of a linear function. Then either $S_{t}, t \in I$, is a pencil of circles or

$$
\begin{aligned}
F(x, y)= & A\left((x-a)^{2}+(y-b)^{2}\right)+ \\
& +\frac{B(x-c)^{2}+C(x-c)(y-d)+D(y-d)^{2}}{(x-c)^{2}+(y-d)^{2}}
\end{aligned}
$$

for some $a, b, c, d, A, B, C, D \in \mathbb{R}$.

Lemma on crossing circles

- Lemma on crossing circles. Let $S_{t}, t \in I$, be a family of pairwise crossing circles in the plane distinct from a pencil of circles. Let F be an arbitrary function defined in the set $U=\bigcup_{t \in I} S_{t}$. Suppose that for each $t \in I$ the restriction $\left.F\right|_{S_{t}}$ is a restriction of a linear function. Then

$$
F=A\left((x-a)^{2}+(y-b)^{2}\right)+B
$$

for some $a, b, A, B \in \mathbb{R}$.

- Lemma on circles with a common point. Let $S_{t}, t \in I$, be a family of pairwise crossing circles in the plane passing through the origin O. Assume that no three circles of the family belong to one pencil. Let F be an arbitrary function defined in the set $U=\bigcup_{t \in I} S_{t}-\{O\}$. Suppose that for each $t \in I$ the restriction $\left.F\right|_{S_{t}-\{O\}}$ is a restriction of a linear function. Then

$$
F(x, y)=A\left((x-a)^{2}+(y-b)^{2}\right)+\frac{B x^{2}+C x y+D y^{2}}{x^{2}+y^{2}}
$$

for some $a, b, A, B, C, D \in \mathbb{R}$.

- Lemma on nested circles. Let S_{1} and S_{2} be the pair of circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=2$. Let F be a function biharmonic in the whole plane \mathbb{R}^{2}. Suppose that for each $t=1,2$ the restriction $\left.F\right|_{s_{t}}$ is a restriction of a linear function. Then

$$
F(x, y)=\left(x^{2}+y^{2}\right)(A x+B y+C)+a x+b y+c
$$

for some $a, b, c, A, B, C \in \mathbb{R}$.

- Proposition. Let

$$
F(x, y)=\left(x^{2}+y^{2}\right)(A x+B y+C)+a x+b y+c
$$

where $A^{2}+B^{2} \neq 0$. Suppose that the restriction of the function F to a circle $S \subset \mathbb{R}^{2}$ is linear. Then the center of the circle S is the origin.

Biharmonic continuation

- Notation. S_{1} and S_{2} - a pair of circles in \mathbb{R}^{2};
r_{1} and r_{2} - reflections w.r.t. S_{1} and S_{2};
$\Sigma_{12}=\left\{x \in \mathbb{R}^{2}: r_{1}(x)=r_{2}(x)\right\}$.
- Double symmetry principle. Let F be a function biharmonic in a simply-connected region $U \subset \mathbb{R}^{2}$ nicely arranged with respect to a pair of circles $S_{1} \neq S_{2}$. Suppose that for each $t=1,2$ the restriction $\left.F\right|_{S_{t} \cap U}$ is a restriction of a linear function. Then F extends to a function biharmonic in the open set $r_{1}(U) \cap r_{2}(U)-\Sigma_{12}$.

Biharmonic continuation

- Lemma on continuation. Let $S_{t}, t \in I$, be a family of nested circles in the plane distinct from a pencil of circles. Let $F: U \rightarrow \mathbb{R}$ be a function biharmonic in a region $U \subset \mathbb{R}^{2}$ such that $U \cap S_{t} \neq \emptyset$ for each $t \in I$. Suppose that for each $t \in I$ the restriction $\left.F\right|_{s_{t} \cap U}$ is a restriction of a linear function. Then the function F extends to a function biharmonic in the whole plane \mathbb{R}^{2}.

Corollaries of the Pencil theorem

- Corollary (on envelopes of cones). Let Φ be an L-minimal surface enveloped by an analytic family \mathcal{F} of cones. Then either the surface Φ is a parabolic cyclide or a sphere, or the Gaussian spherical image of the family \mathcal{F} is a pencil of circles in the unit sphere.
- Corollary (on ruled surfaces). A ruled L-minimal surface is a Catalan surface, i. e., contains a family of line segments parallel to one plane.

Elliptic families of cones

Elliptic families of cones

Parabolic families of cones

Parabolic families of cones

References

國 M. Skopenkov, H. Pottmann, P. Grohs, Ruled Laguerre minimal surfaces, Math. Z. 272 (2012), 645-674.

Acknowledgements

THANKS!

