Ruled Laguerre minimal surfaces

P. Grohs⁴ H. Pottmann³ M. Skopenkov¹²³

¹HSE University

²Institute for Information Transmission Problems RAS

³King Abdullah University of Science and Technology

⁴ETH Zürich

Research Seminar on Discrete Geometry and Geometry of Numbers, 26.09.2023

Overview of our research on circles on surfaces

P. Grohs, H. Pottmann, M. Skopenkov Ruled L-minimal surfaces

Ruled minimal surfaces

- **Definition.** A *minimal* surface Φ is a local minimizer of the area functional A.
- **Proposition**. A surface is minimal \Leftrightarrow mean curvature $H \equiv 0$.
- Examples.

helicoid $x = y \tan z$ catenoid $x^2 + y^2 = \cosh^2 z$

• **Theorem (Catalan, 1842).** The only ruled minimal surfaces are the plane and the helicoid.

Laguerre minimal surfaces

- Definition (Blaschke, 1924). An *L*-minimal surface Φ is a local minimizer of the functional $\int_{\Phi} (H^2 K)/K \, dA$.
- Examples. Minimal surfaces; their offsets; spheres.

• Theorem (P.Grohs-H.Pottmann-M.S., 2012). All ruled L-minimal surfaces up to isometry are the surfaces

 $\mathbf{R}(\varphi,\lambda) = (A\varphi, B\varphi, C\varphi + D\cos 2\varphi) + \lambda \left(\sin \varphi, \cos \varphi, 0\right),$

where $A, B, C, D \in \mathbb{R}$ are fixed.

Ruled L-minimal surfaces

helicoid **r**1 A = B = D = 0 $C, D \rightarrow 0$

cycloid \mathbf{r}_2 Plücker's conoid \mathbf{r}_3 A = B = C = 0

- Notation:
 - $\mathbf{r}_1(u,v) = \left(u \frac{u}{u^2 + v^2}, \frac{v}{u^2 + v^2} v, 2\operatorname{Arctan} \frac{u}{v}\right)$ • $\mathbf{r}_2(u, v) = \left(\operatorname{Arctan} \frac{u}{v} - \frac{uv}{u^2 + v^2}, \frac{u^2}{u^2 + v^2}, 0 \right)$ • $\mathbf{r}_3(u,v) = \frac{uv}{u^2+v^2} \left(\frac{v}{u^2+v^2} - v, \ u - \frac{u}{u^2+v^2}, \ \frac{u}{v} \right)$
 - R^{θ} = rotation through the angle θ around the z-axis.
- Theorem. All ruled L-minimal surfaces up to isometry are

$$\mathbf{r}(u,v) = a_1 \mathbf{r}_1(u,v) + a_2 \mathbf{r}_2(u,v) + a_3 R^{\theta} \mathbf{r}_3(u,v) \text{ for some } a_1, a_2, a_3, \theta.$$

- Isotropic model of Laguerre geometry: ruled L-minimal surface
 → graph of a biharmonic function carrying a family of isotropic circles.
- The Pencil theorem: the top view of the family is a pencil. Equivalently: all the rulings of an L-minimal surface are parallel to one plane.
- *Explicit solution* of the biharmonic equation in convenient coordinates associated with the pencil.

Antique geometry problem. Construct a common tangent to 2 given circles using a compass and a straightedge.

from cut-the-knot.org

Antique geometry problem.

Construct a common tangent to 2 given circles using a compass and a straightedge. **Solution**: transform one circle to a point by an *offset*

from cut-the-knot.org

Apollonius problem. Construct a common tangent circle to **3** given circles using a compass and a straightedge.

from wikipedia.org

Apollonius problem. Construct a common tangent circle to 3 given circles using a compass and a straightedge.
Solution: transform one circle to a point by an offset, move the point to infinity by an inversion, apply the previous problem.

from wikipedia.org

Definition. A Laguerre transformation is a transformation of the set of oriented hyperplanes in \mathbb{R}^n taking oriented tangent hyperplanes to an oriented sphere (possibly of radius 0) to oriented tangent hyperplanes to an oriented sphere (possibly of radius 0). **Examples.** Offsets, similarities.

Laguerre geometry

- Example (of an L-transformation): offset operation.
- **Definition.** $ST\mathbb{R}^3 = \{(r, P) : P \ni r \text{ is an or. plane in } \mathbb{R}^3\}.$
- Definition. An *L*-transformation is a map $ST\mathbb{R}^3 \to ST\mathbb{R}^3$ taking planes to planes and spheres to spheres.
- Definition. A Legendre surface is an immersed surface $(\mathbf{r}; \mathbf{P}) : \mathbb{R}^2 \to ST\mathbb{R}^3$ such that $d\mathbf{r}(u; v) \perp \mathbf{P}(u; v)$.
- Example. An oriented surface or curve ~ Legendre surface.

Surfaces enveloped by a family of cones

Isotropic model of Laguerre geometry

- oriented plane $n_1x + n_2y + n_3z + h = 0$, $n_3 \neq -1$ \rightarrow point $\frac{1}{n_3+1}(n_1, n_2, h)$ in isotropic space
- L-transformation \rightsquigarrow i-M-transformation

Surface	Corresponding object
in Laguerre geometry	of isotropic geometry
oriented plane	point
oriented sphere	non-isotropic plane
cone	non-isotropic line
cone	i-circle of elliptic type
cone	i-circle of parabolic type
oriented sphere	i-sphere of parabolic type
parabolic cyclide	i-paraboloid
L-minimal surface	i-Willmore surface

lsotropic geometry

- **Definition.** The *isotropic plane* is \mathbb{R}^2 with ||(x, t)|| = t.
- Definition. The isotropic space is \mathbb{R}^3 with $||(x, y, z)||^2 = x^2 + y^2$.

Object	Definition
point	point in isotropic space
non-isotropic line	line non-parallel to the <i>z</i> -axis
non-isotropic plane	plane non-parallel to the <i>z</i> -axis
i-circle of elliptic type	ellipse whose top view is a circle
i-circle of parabolic type	parabola with <i>z</i> -parallel axis
i-sphere of parabolic type	paraboloid of revolution with <i>z</i> -
	parallel axis
i-paraboloid	graph of a quadratic function
	z = F(x, y)
i-Willmore surface	graph of a (multi-valued)
	biharmonic function $z = F(x, y)$

lsotropic geometry

i-circle of elliptic type (top view is a circle) i-circle of parabolic type

The Pencil theorem

• The Pencil theorem Let F(x, y) be a biharmonic function in a region $U \subset \mathbb{R}^2$. Let S_t , $t \in I$, be an analytic family of circles in the plane. Suppose that for each $t \in I$ we have $S_t \cap U \neq \emptyset$ and the restriction $F|_{S_t \cap U}$ is a restriction of a linear function. Then either S_t , $t \in I$, is a pencil of circles or

$$F(x, y) = A((x - a)^{2} + (y - b)^{2}) + \frac{B(x - c)^{2} + C(x - c)(y - d) + D(y - d)^{2}}{(x - c)^{2} + (y - d)^{2}}$$

for some $a, b, c, d, A, B, C, D \in \mathbb{R}$.

Lemma on crossing circles. Let S_t, t ∈ I, be a family of pairwise crossing circles in the plane distinct from a pencil of circles. Let F be an arbitrary function defined in the set U = U_{t∈I} S_t. Suppose that for each t ∈ I the restriction F |_{St} is a restriction of a linear function. Then

$$F = A((x - a)^2 + (y - b)^2) + B$$

for some $a, b, A, B \in \mathbb{R}$.

Lemma on circles with a common point

• Lemma on circles with a common point. Let S_t , $t \in I$, be a family of pairwise crossing circles in the plane passing through the origin O. Assume that no three circles of the family belong to one pencil. Let F be an arbitrary function defined in the set $U = \bigcup_{t \in I} S_t - \{O\}$. Suppose that for each $t \in I$ the restriction $F|_{S_t-\{O\}}$ is a restriction of a linear function. Then

$$F(x,y) = A((x-a)^2 + (y-b)^2) + \frac{Bx^2 + Cxy + Dy^2}{x^2 + y^2}$$

for some $a, b, A, B, C, D \in \mathbb{R}$.

Lemma on nested circles

• Lemma on nested circles. Let S_1 and S_2 be the pair of circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 2$. Let F be a function biharmonic in the whole plane \mathbb{R}^2 . Suppose that for each t = 1, 2 the restriction $F|_{S_t}$ is a restriction of a linear function. Then

$$F(x, y) = (x^2 + y^2)(Ax + By + C) + ax + by + c$$

for some $a, b, c, A, B, C \in \mathbb{R}$.

Proposition Let

$$F(x, y) = (x^2 + y^2)(Ax + By + C) + ax + by + c,$$

where $A^2 + B^2 \neq 0$. Suppose that the restriction of the function F to a circle $S \subset \mathbb{R}^2$ is linear. Then the center of the circle S is the origin.

Biharmonic continuation

- Notation. S_1 and S_2 a pair of circles in \mathbb{R}^2 ; r_1 and r_2 — reflections w.r.t. S_1 and S_2 ; $\Sigma_{12} = \{ x \in \mathbb{R}^2 : r_1(x) = r_2(x) \}.$
- Double symmetry principle. Let F be a function biharmonic in a simply-connected region $U \subset \mathbb{R}^2$ nicely arranged with respect to a pair of circles $S_1 \neq S_2$. Suppose that for each t = 1, 2 the restriction $F|_{S_t \cap U}$ is a restriction of a linear function. Then F extends to a function biharmonic in the open set $r_1(U) \cap r_2(U) - \Sigma_{12}$.

• Lemma on continuation. Let S_t , $t \in I$, be a family of nested circles in the plane distinct from a pencil of circles. Let $F: U \to \mathbb{R}$ be a function biharmonic in a region $U \subset \mathbb{R}^2$ such that $U \cap S_t \neq \emptyset$ for each $t \in I$. Suppose that for each $t \in I$ the restriction $F|_{S_t \cap U}$ is a restriction of a linear function. Then the function F extends to a function biharmonic in the whole plane \mathbb{R}^2 .

- Corollary (on envelopes of cones). Let Φ be an L-minimal surface enveloped by an analytic family F of cones. Then either the surface Φ is a parabolic cyclide or a sphere, or the Gaussian spherical image of the family F is a pencil of circles in the unit sphere.
- **Corollary (on ruled surfaces).** A ruled L-minimal surface is a Catalan surface, i. e., contains a family of line segments parallel to one plane.

Elliptic families of cones

→ < ∃→

Elliptic families of cones

Hyperbolic families of cones

-ৰ ≣⇒

Hyperbolic families of cones

< ∃ >

Parabolic families of cones

э

≣ ⊁

Parabolic families of cones

- 4 ≣ ⊁ - 4

'문⊁ '문

THANKS!

P. Grohs, H. Pottmann, M. Skopenkov Ruled L-minimal surfaces