Surfaces containing two circles through each point

M. Skopenkov joint work with R. Krasauskas

Faculty of Mathematics, NRU Higher School of Economics
Institute for Information Transmission Problems RAS
Perspectives in real geometry CIRM, Luminy, 21.09.2017

Overview

- A trailer: an elementary motivation
- A theorem: examples and the statement
- The proof: a general plan

1
 A trailer:
 an elementary motivation

Motivation

M. Skopenkov

Surfaces doubly ruled by circles

Rationalization of architectural design

Rationalization is approximation of a design by a form suitable for actual fabrication

(C)Pottmann, Wallner

Rationalization of architectural design

Rationalization is approximation of a design by a form suitable for actual fabrication

© Pottmann, Wallner

Rationalization of architectural design

Rationalization is approximation of a design by a form suitable for actual fabrication

(c) wikipedia

The simplest building block

Hyperboloid structures

Vladimir Grigoryevich Shukhov (1896)

© wikipedia.org

Surfaces containing two lines through each point

One-sheeted hyperboloid of revolution is the result of revolution of a line about an axis, not in one plane with the line

©http://etudes.ru, http://divisbyzero.com

Surfaces containing two lines through each point

One-sheeted hyperboloid is the result of its dilatation in one direction

(C) N. Lubbes

Surfaces containing two lines through each point

Let 2 points move uniformly along 2 lines, not in one plane. Then the line through the points draws a hyperbolic paraboloid.

©http://ssplprints.com

Surfaces containing two lines through each point

A hyperbolic paraboloid contains 2 lines through each point

(C) N. Lubbes

All surfaces containing two lines through each point

All surfaces containing 2 lines through each point:

The next to simplest building block

What if beams have form of circular arcs?

(C)wikipedia

Surfaces containing two circles through each point

Folklore examples
 (Hilbert-Cohn-Vossen, 1932)

Villarceau circles

Villarceau circles - section of a torus by a plane touching the torus at 2 points

(Chttp:/wikipedia.org

Villarceau circles

Villarceau circles (XIX c.) in Strasburg Cathedral (XII-XV c.):

(C)http://www.dimensions-math.org

Circles on a torus

A torus contains 4 circles through each point

(C)http://www.dimensions-math.org

The image of a torus under an inversion contains 4 circles through each point

(C)http://www.dimensions-math.org

2
A theorem: examples and the statement

Darboux cyclides

A Darboux cyclide is given by the equation

$$
Q\left(x, y, z, x^{2}+y^{2}+z^{2}\right)=0,
$$

where
$Q \in \mathbb{R}[x, y, z, t]$, $\operatorname{deg} Q=2$ or 1 .

Circles on Darboux cyclides

Almost each Darboux cyclide contains ≥ 2 circles through each point

© N . Lubbes

Circles on Darboux cyclides

Some Darboux cyclides contain 6 circles through each point (R. Blum, 1980)

© D. Dreibelbis

An incomplete summary of known results

Theorem. A smooth surface containing

- 7 transversal circlular arcs through each point is a sphere (N.Takeuchi, 1995);
- 3 or 2 cospheric or 2 orthogonal transversal circlular arcs through each point is a Darboux cyclide (N.Lubbes, 2014, J.Coolidge,1906, T.Ivey,1995);

Example (H. Pottmann, 2010).
 Translation of a circle along another circle:

$$
\{p+q: p \in A, q \in B\}
$$

where $A, B \subset \mathbb{R}^{3}$ are circles. Not a cyclide!

Example (H. Pottmann, 2010).
 Translation of a circle along another circle:

© N . Lubbes

$$
\{p+q: p \in A, q \in B\}
$$

where $A, B \subset \mathbb{R}^{3}$ are circles.

Clifford translational surfaces

Example (S. Żube, 2011). The surface

$$
\left\{2 \frac{p \times q}{|p+q|^{2}}: p \in A, q \in B\right\}
$$

where $A, B \subset S^{2}$ are circles.

Clifford translational surfaces

Example (S. Żube, 2011).

$=$ the stereographic projection of the surface

© N . Lubbes
$\{p \cdot q: p \in A, q \in B\}$ (quaternion product!),
where $A, B \subset S^{2}$ are circles.

Theorem (N.Lubbes, 2014). An algebraic surface in S^{3} containing a great circle and another circle through each point is Clifford translational or the inverse stereographic projection of Darboux cyclide. Theorem (J.Kollár, 2016). An algebraic surface in S^{n} containing infinitely many transversal circles through each point is a sphere or a Veronese surface. All Veronese surfaces in S^{n} are Möbius equivalent.

By an analytic surface in \mathbb{R}^{n} we mean the image of an injective real analytic map of a planar domain into \mathbb{R}^{n} with everywhere nondegenerate differential.
A circular arc analytically depending on a point is a real analytic map of a planar domain into the variety of all circular arcs in \mathbb{R}^{n}.

Theorem (S.'15). If through each point of an analytic surface in \mathbb{R}^{3} one can draw two transversal circular arcs fully contained in the surface (and analytically depending on the point) then some composition of inversions takes the surface to a subset of one of the following sets:

- a Darboux cyclide, or
- a Euclidean translational surface, or
- a Clifford translational surface.

3

The proof: a general plan

A general plan

Step 1: reduction of finding surfaces in S^{n} to parametrization of Pythagorean ($n+2$)-tuples;
Step 2: parametrization of Pythagorean 6-tuples of small degree; this gives surfaces in S^{4};
Step 3: extraction of surfaces in \mathbb{R}^{3} from the obtained set of surfaces in S^{4}.

Remark (J. Schicho, 2000). A surface

 in $\mathbb{C} P^{n}$ containing 2 conic sections through almost each point has a parametrization$$
\Phi(u, v)=X_{1}(u, v): \cdots: X_{n+1}(u, v)
$$

where X_{1}, \ldots, X_{n+1} have degree at most 2 in each variable u and v.

Theorem (Krasauskas-S., 2015). Assume that through each point of an analytic surface in S^{n-2} one can draw two noncospheric circular arcs fully contained in the surface (and analytically depending on the point). Assume that through each point in some dense subset of the surface one can draw only finitely many circular arcs fully contained in the surface. Then the surface (possibly besides a one-dimensional subset) has a parametrization

$$
\Phi(u, v)=X_{1}(u, v): \cdots: X_{n}(u, v)
$$

where $X_{1}, \ldots, X_{n} \in \mathbb{R}[u, v]$ have degree at most 2 in each variable u and v and satisfy the equation

$$
\begin{equation*}
X_{1}^{2}+\cdots+X_{n-1}^{2}=X_{n}^{2} \tag{1}
\end{equation*}
$$

Problem on Pythagorean n-tuples.

Solve

$$
X_{1}^{2}+\cdots+X_{n-1}^{2}=X_{n}^{2}
$$

in polynomials of degree at most 2 in each variable u and v.

- $n=3$: Complete parametrization

$$
X_{1}=2 A B D, X_{2}=\left(A^{2}-B^{2}\right) D, X_{3}=\left(A^{2}+B^{2}\right) D
$$

- $n=4$: Complete parametrization
(Dietz et al., 1993)
- $n=6$: Partial -//- (Kocik, 2007)
- $n=6$ and 1 variable: still accessible
- $n=6,2$ variables, deg 2: (Kollar, 2016)
- $n=6$, 2 variables, deg 4: 1st hard case
- $n=5$: even harder.

A Möbius transformation is a linear transformation $\mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$ (not depending on the variables u, v) which preserves (1).
$\mathbb{H}_{m n} \subset \mathbb{H}[u, v]$ is the set of polynomials with quaternionic coefficients of degree at most m in u and at most n in v
(the variables commute with everything)
$\mathbb{R}_{m n} \subset \mathbb{R}[u, v]$ is defined analogously

Parametrization of Pythagorean 6-tuples

Theorem (S., 2015). Polynomials $X_{1}, \ldots, X_{6} \in \mathbb{R}_{22}$ satisfy
$X_{1}^{2}+\cdots+X_{5}^{2}=X_{6}^{2}$ if and only if up to Möbius transformation we have

$$
\begin{aligned}
X_{1}+i X_{2}+j X_{3}+k X_{4} & =2 A B C D, \\
X_{5} & =\left(|B|^{2}-|A C|^{2}\right) D, \\
X_{6} & =\left(|B|^{2}+|A C|^{2}\right) D
\end{aligned}
$$

for some $A, B, C \in \mathbb{H}_{11}, D \in \mathbb{R}_{22}$ such that $|B|^{2} D,|A C|^{2} D \in \mathbb{R}_{22}$.

Remark.

Stereographic projection $S^{4} \rightarrow \mathbb{R}^{4}=\mathbb{H}$, $X_{1}: \cdots: X_{6} \mapsto\left(X_{1}, \ldots, X_{4}\right) /\left(X_{6}-X_{5}\right)$, gives

$$
\Phi(u, v)=\bar{A}(u, v)^{-1} B(u, v) \bar{C}(u, v)^{-1}
$$

where $A, B, C \in \mathbb{H}_{11}$ and $A C \in \mathbb{H}_{11}$ quaternionic fraction-linear expression in both u and v.

Geometric description of surfaces in question

Theorem (Krasauskas-S., 2015)

 If the surface$$
\Phi(u, v)=A(u, v)^{-1} B(u, v) C(u, v)^{-1}
$$

where $A, B, C \in \mathbb{H}_{11}$ and $A C \in \mathbb{H}_{11}$, is contained in \mathbb{R}^{3} (respectively, in S^{3}) then it is a subset of either Euclidean (respectively, Clifford) translational surface or a Darboux cyclide (respectively, an intersection of S^{3} with another 3-dimensional quadric).

Pythagorean triples

Example. Let $X, Y, Z \in \mathbb{R}[u, v]$.
$X^{2}+Y^{2}=Z^{2}$
$(X+i Y)(X-i Y)=Z^{2}$ unique factorization
$X+i Y=C^{2} D, Z=|C|^{2} D$
for some $C \in \mathbb{C}[u, v], D \in \mathbb{R}[u, v]$

$Y=2 A B D$,

where $A=\operatorname{Re} C, B=\operatorname{Im} C$.

Example. Let $X, Y, Z \in \mathbb{R}[u, v]$.
$X^{2}+Y^{2}=Z^{2} \Longrightarrow$

$$
(X+i Y)(X-i Y)=Z^{2}
$$

$$
X+i Y=C^{2} D, Z=|C|^{2} D
$$

$$
\text { for some } C \in \mathbb{C}[u, v], D \in \mathbb{R}[u, v] \Longrightarrow
$$

$$
Y=2 A B D
$$

$$
Z=\left(A^{2}+B^{2}\right) D
$$

where $A=\operatorname{Re} C, B=\operatorname{Im} C$

Example. Let $X, Y, Z \in \mathbb{R}[u, v]$.
$X^{2}+Y^{2}=Z^{2} \Longrightarrow$
$(X+i Y)(X-i Y)=Z^{2}$ unique factorization
$X+i Y=C^{2} D, Z=|C|^{2} D$
for some $C \in \mathbb{C}[u, v], D \in \mathbb{R}[u, v]$

where $A=\operatorname{Re} C, B=\operatorname{Im} C$.

Pythagorean triples

Example. Let $X, Y, Z \in \mathbb{R}[u, v]$.
$X^{2}+Y^{2}=Z^{2} \Longrightarrow$
$(X+i Y)(X-i Y)=Z^{2}$ unique factorization
$X+i Y=C^{2} D, Z=|C|^{2} D$
for some $C \in \mathbb{C}[u, v], D \in \mathbb{R}[u, v] \Longrightarrow$

$$
\begin{aligned}
& X=\left(A^{2}-B^{2}\right) D, \\
& Y=2 A B D, \\
& Z=\left(A^{2}+B^{2}\right) D,
\end{aligned}
$$

where $A=\operatorname{Re} C, B=\operatorname{Im} C$.

Parametrizing Pythagorean 6-tuples

Denote:

$$
\begin{aligned}
Q & :=X_{1}+i X_{2}+j X_{3}+k X_{4}, \\
P & :=X_{6}-X_{5}, \\
R & :=X_{6}+X_{5} .
\end{aligned}
$$

Parametrizing Pythagorean 6-tuples

Denote:

$$
\begin{aligned}
Q & :=X_{1}+i X_{2}+j X_{3}+k X_{4}, \\
P & :=X_{6}-X_{5}, \\
R & :=X_{6}+X_{5} .
\end{aligned}
$$

Then:

- $X_{1}^{2}+\cdots+X_{5}^{2}=X_{6}^{2} \Leftrightarrow \bar{Q} Q=P R$;
- the required parametrization is

$$
(P, Q, R)=\left(2|A C|^{2} D, 2 A B C D, 2|B|^{2} D\right)
$$

Remark. In the unique factorization domain $\mathbb{C}[u, v]$ all solutions of the system

$$
Q \bar{Q}=P R, \bar{P}=P, \bar{R}=R
$$

are parametrized by
$(P, Q, R)=(A \bar{A} D, A B D, B \bar{B} D), \quad \bar{D}=D$.
Remark. $\mathbb{H}[u]$ is a unique factorization domain in a sense (Ore, 1933).

Example (Beauregard, 1993).

$$
Q_{B}:=u^{2} v^{2}-1+\left(u^{2}-v^{2}\right) i+2 u v j
$$

is irreducible in $\mathbb{H}[u, v]$

Example (Beauregard, 1993).

$$
Q_{B}:=u^{2} v^{2}-1+\left(u^{2}-v^{2}\right) i+2 u v j
$$

is irreducible in $\mathbb{H}[u, v]$ but

$$
\begin{aligned}
\left|Q_{B}\right|^{2} & =\overbrace{\left(u^{2}-\sqrt{2} u+1\right)\left(v^{2}-\sqrt{2} v+1\right)}^{P_{B}} \times \\
& \times \underbrace{\left(u^{2}+\sqrt{2} u+1\right)\left(v^{2}+\sqrt{2} v+1\right)}_{R_{B}} .
\end{aligned}
$$

Main idea: parametrization up to a "Möbius transformation"

$$
(R, Q, P) \mapsto(R, Q-T R, P-T \bar{Q}-Q \bar{T}+T R \bar{T})
$$

where $T \in \mathbb{H}$ (preserves the Eq. $\bar{Q} Q=P R$)

Parametrization up to Möbius transformation

Example. We have

- $R_{B}=|B|^{2}$;
- $Q_{B}=A B C-T|B|^{2}$;
- $P_{B}=|A C|^{2}-A B C \bar{T}-T \bar{C} \bar{B} \bar{A}+T|B|^{2} \bar{T}$,
where

$$
\begin{aligned}
& \text { - } A=(1-j)\left(u+\frac{-i-j}{\sqrt{2}}\right), \\
& \text { - } B=\left(v+\frac{1+k}{\sqrt{2}}\right)\left(u+\frac{1+i}{\sqrt{2}}\right), \\
& \text { - } C=v+\frac{-j-k}{\sqrt{2}}, \\
& \text { - } T=j .
\end{aligned}
$$

Splitting Lemma (Krasauskas-S.'15).

 If $|Q(u, v)|^{2}=P(v) R(u)$ for some $Q \in \mathbb{H}_{11}$, $P \in \mathbb{R}_{02}, R \in \mathbb{R}_{20}$ then either $Q(u, v)=A(u) B(v)$ or $Q(u, v)=B(v) A(u)$ for some $A \in \mathbb{H}_{10}, B \in \mathbb{H}_{01}$.
Proof of Splitting Lemma

Proof. Assume that $\operatorname{deg} P=\operatorname{deg} R=2$; otherwise Q does not depend on one of the variables and there is nothing to prove. Expand
$Q(u, v)=: Q_{0}(u)+v Q_{1}(u)=: Q_{00}+Q_{10} u+Q_{01} v+Q_{11} u v$.
We have $Q_{11} \neq 0$. Take $q \in \mathbb{H}$ such that $Q_{0}(u)+q Q_{1}(u)$ is a constant and denote the constant by p; that is, set $q:=-Q_{10} Q_{11}^{-1}$ and $p:=Q_{0}+q Q_{1}=Q_{00}-Q_{10} Q_{11}^{-1} Q_{01}$.
Consider the polynomial $|Q|^{2}(u, q)$ obtained by substitution of the quaternion q into the real polynomial $|Q|^{2}(u, v)$. On one hand, $|Q|^{2}(u, q)=P(q) R(u)$ is divisible by $R(u)$ of degree 2 .
On the other hand,
$|Q|^{2}(u, q)=q\left(q Q_{1}+Q_{0}\right) \bar{Q}_{1}+\left(q Q_{1}+Q_{0}\right) \bar{Q}_{0}=q p \bar{Q}_{1}+p \bar{Q}_{0}$ has degree ≤ 1. Thus $|Q|^{2}(u, q)=q p \bar{Q}_{1}+p \bar{Q}_{0}=0$ identically.
Now for $p \neq 0$ we get $Q_{0}=-Q_{1} \bar{p} \bar{q} \bar{p}^{-1}$, hence
$Q=Q_{1}(u)\left(v-\bar{p} \bar{q} \bar{p}^{-1}\right)$ as required. For $p=0$ we get $Q_{0}=-q Q_{1}$, hence $Q=Q_{0}+v Q_{1}=(v-q) Q_{1}(u)$ as required.

Open problems

An $n \times n$ grid is two collections of $n+1$ disjoint arcs intersecting at $(n+1)^{2}$ points. Problem (curved chess-board). Is each 8×8 grid of circular arcs contained in a surface with 2 circles through each point? Problem (constant radii or angle). Let α, r, and R be fixed.
Find all surfaces in \mathbb{R}^{3} containing 2 circles of radii r and R or intersecting at angle α through each point.

References

國 M. Skopenkov, R. Krasauskas, Surfaces containing two circles through each point, submitted, under revision http://arxiv.org/abs/1503.06481

Thanks

THANKS!

