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Foreword

Problems, exercises, circles, and olympiads

This is a translation of Chapters 17–25 of the book Mathematics Through
Problems by Mikhail B. Skopenkov and Alexey A. Zaslavsky and is part of
the AMS/MSRI Mathematical Circles Library series. The goal of this series
is to build a body of works in English that helps to spread the “Math Circle”
culture.

A mathematical circle is an Eastern European notion. Math circles are
similar to what most Americans would call a math club for kids, but with
several important distinguishing features.

First, they are vertically integrated : young students may interact with
older students, college students, graduate students, industrial mathemati-
cians, professors, even world-class researchers, all in the same room. The
circle is not so much a classroom as a gathering of young initiates with elder
tribespeople, who pass down folklore.

Second, the “curriculum,” such as it is, is dominated by problems, rather
than specific mathematical topics. A problem, in contrast to an exercise,
is a mathematical question that one doesn’t know how, at least initially,
to approach. For example, “What is 3 times 5?” is an exercise for most
people, but it is a problem for a very young child. Computing 534 is also an
exercise, conceptually very much like the first, certainly harder, but only in

a “technical” sense. And a question like “Evaluate
∫ 7
2 e5x sin 3xdx” is also

an exercise—for calculus students—a matter of “merely” knowing the right
algorithm and how to apply it.

Problems, by contrast, do not come with algorithms attached. By their
very nature, they require investigation, which is both an art and a sci-
ence, demanding technical skill along with focus, tenacity, and inventiveness.
Math circles teach students these skills, not with formal instruction, but by
doing math and observing others doing math. Students learn that a problem
worth solving may require not minutes, but possibly hours, days, or even
years of effort. They work on some of the classic folklore problems and dis-
cover how these problems can help them investigate other problems. They
learn how not to give up and how to turn errors or failures into opportunities
for more investigation. A child in a math circle learns to do exactly what a

ix
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x FOREWORD

research mathematician does; indeed, he or she does independent research,
albeit on a lower level, and often—although not always—on problems that
others have already solved.

Finally, many math circles have a culture similar to a sports team, with
intense camaraderie, respect for the “coach,” and healthy competitiveness
(managed wisely, ideally, by the leader/facilitator). The math circle culture
is often complemented by a variety of problem-solving contests, often called
olympiads. A mathematical olympiad problem is, first of all, a genuine
problem (at least for the contestant) and usually requires an answer which
is, ideally, a well-written argument (a “proof”).

Why this book and how to use it

The Math Circles Library editorial board chose to translate Skopenkov and
Zaslavsky’s work from Russian into English because this book has an au-
dacious goal—promised by its title—to develop mathematics through prob-
lems. This is not an original idea, nor just a Russian one. American uni-
versities have experimented for years with IBL (inquiry-based learning) and
Moore-method courses, structured methods for teaching advanced mathe-
matics through open-ended problem solving.1

But the authors’ massive work is an attempt to curate sequences of prob-
lems for secondary students (their stated focus is high school students, but
that can be broadly interpreted) that allow them to discover and recreate
much of “elementary” mathematics (number theory, polynomials, inequali-
ties, calculus, geometry, combinatorics, game theory, probability) and start
edging into the sophisticated world of group theory, Galois theory, etc.

The book is impossible to read from cover to cover, nor should it be.
Instead, the reader is invited to start working on problems that he or she
finds appealing and challenging. Many of the problems have hints and so-
lution sketches, but not all. No reader will solve all the problems. That’s
not the point—it is not a contest. Furthermore, some of the problems are
not supposed to be solved but should be pondered. For example, Section 6
of Chapter 6 explores the unexpected connection between electrical circuits
and random walks. In Chapter 7, the reader is encouraged to use simi-
lar ideas to analyze completely unrelated problems—dissecting squares into
similar rectangles. Just because it is “too advanced” doesn’t mean that it
shouldn’t be thought about!

Indeed, this is the philosophy of the book: mathematics is not a sequen-
tial discipline, where one is presented with a definition that leads to a lemma
which leads to a theorem which leads to a proof. Instead it is an adventure,
filled with exciting side trips as well as wild goose chases. The adventure is

1See, for example, https://en.wikipedia.org/wiki/Moore_method and http://

www.jiblm.org.
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FOREWORD xi

its own reward, but it also, fortuitously, leads to a deep understanding and
appreciation of mathematical ideas that cannot be accomplished by passive
reading.

English-language references

Most of the references cited in this book are in Russian. However, there are
many excellent books in English (some translated from Russian). Here is
a very brief list, organized by topic. There are two bibliographies in this
book. The references cited below are in the main bibliography at the end of
the book.

Problem collections: The USSR Olympiad Problem Book [SC] is a
classic collection of carefully discussed problems. Additionally, [FKh]
and [FBKYa1, FBKYa2] are good collections of olympiads from
Leningrad and Moscow, respectively. See also the collection of fairly el-
ementary Hungarian contest problems [Kur1,Kur2,Liu] and the more
advanced (undergraduate-level) Putnam Exam problems [KKPV].

Inequalities: See [St] for a comprehensive guide and [AS] for a more
elementary text.

Geometry: Geometry Revisited [CoxGr] is a classic, and [Chen] is a
more recent and very comprehensive guide to “olympiad geometry.”

Polynomials and theory of equations: See [B] for an elementary
guide and [Bew] for a historically motivated exposition of construct-
ability and solvability and unsolvability.

Combinatorics: The best book in English, and possibly any language,
is Concrete Mathematics [GKP].

Functions, limits, complex numbers, calculus: The classic book
Problems and Theorems in Analysis by Pólya and Szegő [PS] is—like
the current text—a curated selection of problems, but at a much higher
mathematical level.

Paul Zeitz
April 2019
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Introduction

What this book is about and whom it is for

A deep understanding of mathematics is useful both for mathematicians and
for a high-tech professional.

This book is intended for high school students and undergraduates (in
particular, those interested in Olympiads). For more details, see “Olympiads
and mathematics” on p. xv. The book can be used both for self-study and
for teaching. The references cited below are in the bibliography at the front
of the book.

This book attempts to build a bridge (by showing that there is no gap)
between ordinary high school exercises and the more sophisticated, intricate,
and abstract concepts in mathematics. The focus is on engaging a wide
audience of students to think creatively in applying techniques and strategies
to problems motivated by “real world or real work” [Mey]. Students are
encouraged to express their ideas, conjectures, and conclusions in writing.
Our goal is to help students develop a host of new mathematical tools and
strategies that will be useful beyond the classroom and in a number of
disciplines [IBL,Mey,RMP].

The book contains the most standard “base” material (although we ex-
pect that at least some of this material is review, that not all is being learned
for the first time). But the main content of the book is more complex ma-
terial. Some topics are not well known in the traditions of mathematical
circles but are useful both for mathematical education and for preparation
for Olympiads.

The book is based on the classes taught by the authors at different times
at the Independent University of Moscow, at various Moscow schools, in
preparing the Russian team for the International Mathematical Olympiad,
in the “Modern Mathematics” summer school, in the Kirov and Kostroma
Summer Mathematical Schools, in the Moscow visiting Olympiad School,
in the “Mathematical Seminar” and “Olympiad and Mathematics” circles,
and also in the summer Conference of The Tournament of Towns.

xiii
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xiv INTRODUCTION

Much of this book is accessible to high school students with a strong
interest in mathematics.1 We provide definitions for material that is not
standard in the school curriculum, or provide references. However, many
topics are difficult if you study them “from scratch.” Thus, the ordering of
the problems helps to provide “scaffolding.” At the same time, many topics
are independent of each other. For more details, see p. xvi, “How this book
is organized”.

Throughout this book we often use informal language when we explain
how to apply combinatorics to “practical” problems. Most of the results
can be easily made precise using the language of finite sets and operations
with them. Such formalization becomes necessary only in Chapter 6, “Prob-
ability”, where the lack of rigor would otherwise quickly lead to errors and
paradoxes.

Learning by doing problems

We ascribe to the tradition of studying mathematics by solving and dis-
cussing problems. These problems are selected so that in the process of
solving them the reader (more precisely, the solver) masters the fundamen-
tals of important ideas, both classical and modern. The main ideas are
developed incrementally with olympiad-style examples, in other words, by
the simplest special cases, free from technical details. In this way, we show
how you can explore and discover these ideas on your own.

Learning by solving problems is not just a serious approach to math-
ematics, but it also continues a venerable cultural tradition. For exam-
ple, the novices in Zen monasteries study by reflecting on riddles (“koans”)
given to them by their mentors. (However, these riddles are rather more
like paradoxes than what we consider to be problems.) See, for example,
[Su]; compare with [Pl, pp. 26–33]. Here are some “math” examples:
[Ar04,BSh,GDI,KK08,Pr07-1,PoSe, SCY,Sk09,Va87-1,Zv] which
sometimes describe not only problems, but also the principles of selecting
appropriate problems. For the American tradition, see [IBL,Mey,RMP].

Learning by solving problems is difficult, in part, because it generally
does not create the illusion of understanding. However, the readers’ ef-
forts are fully rewarded by a deep understanding of the material, at first,
with the ability to carry out similar (and sometimes rather different) rea-
soning. Eventually, while working on fascinating problems, the reader will
be following the thought processes of the great mathematicians and may see
how important concepts and theories naturally evolve. Hopefully this will
help readers to make their own equally useful discoveries (not necessarily in
math)!

1Some of the material is studied in some circles and summer schools by those who
are just getting acquainted with mathematics (for example, 6th graders). However, the
presentation is intended for a reader who already has at least a minimal mathematical
culture. Younger students need a different approach; see, for example, [GIF].
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OLYMPIADS AND MATHEMATICS xv

Solving a problem, theoretically, requires only understanding its state-
ment. Other facts and concepts are not needed. (However, useful facts and
ideas will be developed when solving selected problems.) And you may need
to know things from other parts of the book, as indicated in the instructions
and hints. For the most important problems we provide hints, instructions,
solutions, and answers, located at the end of each section. However, they
should be referred to only after attempting the problems.

As a rule, we present the formulation of a beautiful or important result
(in the form of problems) before its proof. In such cases, you may need
to solve later problems in order to fully work out the proof. This is always
explicitly mentioned in the text. Consequently, if you fail to solve a problem,
please read on. This guideline is helpful because it simulates the typical
research situation (see [ZSS, § 28]).

This book “is an attempt to demonstrate learning as dialogue based on
solving and discussing problems” (see [KK15]).

Parting words By A.Ya.Kanel–Belov

To solve difficult Olympiad problems, at the very least you must have a
robust knowledge of algebra (particularly algebraic transformations) and
geometry. Most Olympiad problems (except for the easiest ones) require
“mixed” approaches; rarely is a problem resolved by applying a method or
idea in its pure form. Approaching such mixed problems involves combining
several “crux” problems, each of which may involve single ideas in a “pure”
form.

Learning to manipulate algebraic expressions is essential. The lack of
this skill among Olympians often leads to ridiculous and annoying mistakes.

Olympiads and mathematics

To him a thinking man’s job was not to deny one reality
at the expense of the other, but to include and to connect.

U.K. Le Guin, The Dispossessed

Here are three common misconceptions: the best way to prepare for a
math olympiad is by solving last year’s problems; the best way to learn
“serious” mathematics is by reading university textbooks; the best way to
master any other skill is with no math at all. A further misconception is
that it is difficult to achieve any two of these three goals simultaneously,
because they are so divergent. The authors share the widespread belief
that these three approaches miss the point and lead to harmful side effects:
students either become too keen on emulation, or they study the language
of mathematics rather than its substance, or they underestimate the value
of robust math knowledge in other disciplines.
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xvi INTRODUCTION

We believe that these three goals are not as divergent as they might
seem. The foundation of mathematical education should be the solution
and discussion of problems interesting to the student, during which a stu-
dent learns important mathematical facts and concepts. This simultaneously
prepares the students for math Olympiads and the “serious” study of math-
ematics, and it is good for their general development. Moreover, it is more
effective for achieving success in any one of the three goals alone.

Research problems for high school students

Many talented high school and university students are interested in solving
research problems. Such problems are usually formulated as complex ques-
tions broken into incremental steps; see, e.g., [LKTG]. The final result may
even be unknown initially, appearing naturally only in the course of thinking
about the problem. Working on such questions is useful in itself and is a
good approximation to scientific research. Therefore it is useful if a teacher
or a book can support and develop this interest.

For a description of successful examples of this activity, see, for example,
projects in the Moscow Mathematical Conference of Schoolchildren [M].
While most of these projects are not completely original, sometimes they
can lead to new results.

How this book is organized

You should not read each page in this book one after the other. You can
choose a sequence of study that is convenient (or omit some topics alto-
gether). Any section (or subsubsection) of the book can be used for a math
circle session.

The book is divided into chapters and sections (some sections are divided
into subsections), with a plan of organization outlined at the start of each
section. If the material of another section is needed in a problem, then you
can either ignore it or look up the reference. This gives greater freedom to
the reader when studying the book, but at the same time it may require
careful attentiveness.

The topics of each section are arranged approximately in order of increas-
ing complexity. The numbers in parentheses after the item name indicate
its “relative level”: 1 is the simplest, and 4 is the most difficult. The first
items (not marked with an asterisk) are basic; unless indicated otherwise,
you should begin your study with them. The remaining ones (marked with
an asterisk) can be returned to later; unless otherwise stated, they are in-
dependent of each other. As you read, try to return to old material, but at
a new level. Thus you should end up studying different levels of a topic not
sequentially, but as part of a mixture of topics.
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The notation used throughout the book is given on p. xviii. Notations
and conventions particular to a specific section are introduced at the begin-
ning of that section. The book concludes with a subject index. The numbers
in bold are the pages on which formal definitions of concepts are given.

Resources and literature

Besides sources for specialized material, we also tried to include the very best
popular writing on the topics studied. We hope that this bibliography, at
least as a first approximation, can guide readers through the sea of popular
scientific literature in mathematics. However, the great size of this genre
guarantees that many remarkable works were omitted. Please note that
items in the bibliography are not necessary for solving problems in this
book, unless explicitly stated otherwise.

Many of the problems are not original, but the source (even if it is
known) is usually not specified. When a reference is provided, it comes
after the statement of the problem, so that the readers can compare their
solution with the one given there. When we know that many problems in a
section come from one source, then we mentioned this.

We do not provide links to online versions of articles in the popular
magazines Quantum and Mathematical Enlightenment ; they can be found
on the websites http://kvant.ras.ru, http://kvant.mccme.ru and
http://www.mccme.ru/free-books/matpros.html.
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xviii INTRODUCTION

Numbering and notation

The items inside each section are arranged approximately in order of in-
creasing complexity of the material. The numbers in parentheses after the
item name indicate its “relative level”: 1 is the simplest, and 4 is the most
difficult. The first items (not marked with an asterisk) are basic; unless
indicated otherwise, you can begin to study the chapter with them. The
rest of the items (marked with an asterisk) can be returned to later; unless
otherwise stated, they are independent of each other.

Problem numbers are indicated in bold. If the statement of the prob-
lem involves creating the formulation of an assertion, then it is required to
prove this assertion in the problem. More open-ended questions are called
challenges; here you must come up with a clear wording and a proof; cf., for
example, [VIN] found at the back of the book. In problems marked with
the circle ◦ the reader is asked to provide just the answer without a proof.

The most difficult problems are marked with asterisks (*). If the state-
ment of the problem asks you to “find” something, then you need to give
a “closed form” answer (as opposed to, say, an unevaluated sum of many
terms). Again, if you are unable to solve a problem, read on; later problems
may turn out to be hints.

Notation

• �x� = [x] — (lower) integer part of number x (“floor”), that is, the
maximal integer not exceeding x.

• �x� — the upper integer part of number x (“ceiling”), that is, the
minimal integer, not less than x.

• {x} — fractional part of number x, equal to x− �x�.
• d | n, or n

... d — d divides n; that is, d �= 0 and there exists such an
integer k, such that n = kd (the number d is called a divisor of the number
n).

• R, Q, Z, N — the sets of all real, rational, integer, and natural (that
is, positive integer) numbers, respectively.

• Z2 — the set {0, 1} of remainders upon division by 2 with the opera-
tions of addition and multiplication (modulo 2).

• Zm — the set {0, 1, . . . ,m − 1} of remainders upon division by m
with the operations of addition and multiplication (modulo m). (Specialists
in algebra often write this set as Z/mZ and use Zm for the set of m-adic
integers for the prime m.)

•
(
n
k

)
— the number of k-element subsets of n-element set (also denoted

by Ck
n).
• |X| — the number of elements in set X.
• A−B = {x | x ∈ A and x /∈ B} — the difference of the sets A and B.
• A 	B — the disjoint union of the sets A and B, that is, the union of

the sets A and B, if they have no common elements.
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NUMBERING AND NOTATION xix

• A ⊂ B — means the set A is contained in the set B. In some books,
this is denoted by A ⊆ B, and A ⊂ B means “the set A is in the set B and
is not equal to B.”

• We abbreviate the phrase “Define x by a” with x := a.
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Chapter 1

Counting

This introductory chapter focuses on the question, “How many objects are
there with given properties?” For further study, we recommend Chapter 1
of [GDI].

1. How many ways? (1)
By A.A.Gavrilyuk and D.A.Permyakov

1.1.1. (a) Call a positive integer nice if it contains only even digits. Write
down all the nice two-digit numbers; how many are there?

(b) How many five-digit numbers are nice?
(c) How many six-digit numbers have at least one even digit?
(d) Which are there more of: seven-digit numbers that contain a 1 or

seven-digit numbers that have no 1’s?

1.1.2. We wish to form a committee of eight people, chosen from two math-
ematicians and ten economists. In how many ways can this be done if at
least one mathematician is to be included on the committee?

1.1.3. (a) Find the sum of all seven-digit numbers that can be obtained by
permuting the digits 1, . . . ,7.

(b) Find the sum of all four-digit numbers with no zeros and no repeating
digits.

(c) Find the sum of all four-digit numbers that do not contain repeating
digits.

1.1.4. (a) Black and white kings occupy two squares of a chessboard. The
player moves a king (alternating between black and white king) to an adja-
cent square (horizontally, vertically, or diagonally). The kings are friends,
so they can occupy neighboring squares but not be in the the same square.
Is it possible to get the kings to occupy every pair of squares (s1, s2) with
the white king on s1 and the black king on s2, exactly once?

(b) The same question, but now the kings are unable to move diagonally.

1
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2 1. COUNTING

1.1.5. (a) Find the sum of all six-digit numbers obtained by all permutations
of the digits 4, 5, 5, 6, 6, 6.

(b) Find the sum of all ten-digit numbers obtained by all permutations
of the digits 4, 5, 5, 6, 6, 6, 7, 7, 7, 7.

1.1.6. (a) Tom Sawyer was commissioned to paint 8 boards of a fence white.
He is lazy, so he will paint no more than 3 boards. In how many ways can
he do this?

(b) How many ways are there to paint no more than 5 boards?
(c) How many ways are there to paint any number of boards?

Suggestions, solutions, and answers

1.1.1. Answers: (b) 2500; (c) 884 375; (d) the numbers containing a 1.
(b) Solution (A.Kolochenkov). The first digit of a nice number can be

2, 4, 6, or 8, so there are just 4 options. For each digit in the second to fifth
place, there are 5 options: 0, 2, 4, 6, 8. So the total amount of nice numbers
is 4 · 5 · 5 · 5 · 5 = 2500.

This reasoning is called the product rule in combinatorics and is discussed
in detail in [Vil71b].

(c) Solution (A. Kolochenkov). Subtract from the total number of six-
digit numbers the number of six-digit numbers consisting entirely of odd
digits. Then there will remain numbers in which at least one digit is even.
Since there are only five odd digits, the product rule yields 9 · 10 · 10 · 10 ·
10 · 10− 5 · 5 · 5 · 5 · 5 · 5 = 884 375.

This reasoning (the total quantity of numbers is equal to the sum of the
quantity of numbers from odd digits and the quantity of numbers with even
digit) is called the sum rule and is discussed in detail in article [Vil71b].

1.1.2. Answer : 450.
1.1.3. Answers: (a) 22 399 997 760; (b) 16 798 320; (c) 24 917 760.
(a) Solution (T.Cherganov). There are 7! permutations of seven digits.

Each digit will occur in all positions the same number times, equal to 7!
7 = 6!.

Then the sum of the digits in each position is equal to 6! · (1+2+ · · ·+7) =
20160. So the sum of all numbers is equal to

20160 + 20160 · 10 + 20160 · 100 + · · ·+ 20160 · 1000000
= 20160 · 1111111 = 22399997760.

(b) Solution (S.Kudrya). We calculate the sum of the digits in each
position. Each digit is included in the sum 8 · 7 · 6 times; indeed, for the
first of the remaining positions there are 8 possibilities to place a digit, for
the second one there are 7, for the third there are 6. Therefore, the amount
in each position is 8 · 7 · 6 · 1 + 8 · 7 · 6 · 2 + 8 · 7 · 6 · 3 + · · · + 8 · 7 · 6 · 9 =
8 · 7 · 6 · (1+2+3+ · · ·+9) = 8 · 7 · 6 · 9·102 =15120. Multiplying this by 1111
produces the desired sum of numbers.

1.1.4. (a) Answer : yes. Hint : explicitly construct an example.

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



2. SETS OF SUBSETS 3

(b) Answer : no. Hint : count the number of positions.
Suggestion. Suppose they can. The number of “one-color” positions for

which the kings stand on the cells of the same color is 64 ·31. The number of
“multi-colored” positions is 64·32. The type of position flips after each move
of a king (they cannot move diagonally). If all these positions appear once,
then quantities 64 ·32 and 64 ·31 differ by no more than one. Contradiction.

1.1.5. Answers: (a) 35 555 520; (b) 83 999 999 991 600.
(a) Six digits can be arranged in a row in 6! = 720 ways. However, since

the sixes are indistinguishable and the fives are indistinguishable, the total
number of distinguishable rearrangements of these six digits is 6!

3!·2! = 60.
Each digit occurs an equal number of times in each of the six positions. The
four occurs 60 times, which means that in each position it occurs 10 times.
Five occurs 120 times, which means that in each position it occurs 20 times.
The six occurs 180 times, which means that in each position it occurs 30
times. The sum of the digits in each position is 4 · 10 + 5 · 20 + 6 · 30 = 320.
So the sum of all numbers is 320 + 320 · 10 + 320 · 100 + 320 · 1000 + 320 ·
10 000 + 320 · 100 000 = 320 · 111 111.

(b) First solution (V.Tsepelev). We will count the number of occur-
rences of each of the digits in a specific position. Having fixed one of the
digits, we may freely arrange the digits in the remaining nine. Note that
5 occurs twice, 6 three times, and 7 four times. Permutations of identical
digits give identical numbers, so 4 will occur 9!

2!3!4! times. Similarly, 5 will

occur 9!
1!3!4! times, and 6 and 7 will occur 9!

1!2!2!4! and
9!

1!2!3!3! times.

Now we compute the sum of the digits in each position: 4 · 9!
2!3!4! + 5 ·

9!
3!4! + 6 · 9!

2!2!4! + 7 · 9!
2!3!3! = 75 600. Finally, multiply by 111 111 111.

Second solution (V.Tsepelev). The answer can be obtained faster if
you notice that the average of all digits of the set 4, 5, 5, 6, 6, 6, 7, 7, 7, 7 is
equal to 6. Therefore, the sum will be the same as for the same quantity of
repeats of 6 666 666 666. The total number of repeats is 10!

1!2!3!4! , so the sum

is 6 666 666 666 · 10!
1!2!3!4! = 83 999 999 991 600.

1.1.6. (a) Answer : 93.
Suggestion. If Tom paints no more than three boards, then he can paint

0, 1, 2, or 3 boards. He can do it in
(8
0

)
+

(8
1

)
+

(8
2

)
+

(8
3

)
= 93 ways.

(b) Answer : 219.

Similarly, no more than 5 boards can be painted in
(8
0

)
+
(8
1

)
+
(8
2

)
+
(8
3

)
+(

8
4

)
+

(
8
5

)
= 219 ways.

(c) Answer : 256
(
= 28 =

(8
0

)
+
(8
1

)
+
(8
2

)
+
(8
3

)
+
(8
4

)
+
(8
5

)
+
(8
6

)
+
(8
7

)
+
(8
8

))
.

2. Sets of subsets (2) By D.A.Permyakov

1.2.1. Every evening, Uncle Chernomor selects 9 or 10 bogatyrs (hero war-
riors) from his company of 33 for guard duty. What are the fewest number
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4 1. COUNTING

of evenings such that it is possible that each of the bogatyrs went on duty
for the same number of times?

1.2.2. A classroom has 33 students. Each student was asked how many
students there are with the same first name as his in the class and how many
students there are with the same last name as his (including relatives). It
turned out that all integers from 0 to 10, inclusive, were reported. Must the
classroom contain two students with the same first and last names?

1.2.3. (a) What is the maximum number of pairwise intersecting subsets
that can be chosen from a set of 100 elements?

(b) In how many ways can a set of n elements be decomposed into 2
subsets?

(c) How many different unordered pairs of disjoint subsets can be chosen
from a set of n elements?

1.2.4. One is given 2007 sets, each of which contains 40 elements. Any
two of these sets have exactly one common element. Is there necessarily an
element belonging to each of these sets?

1.2.5. In the set consisting of 100 elements, choose 101 distinct three-element
subsets. Must there exist two subsets among them that have exactly one
common element?

1.2.6. A questionnaire was conducted in a country in which the respondent
was required to name his favorite writer, artist, and composer. It turned
out that each writer, artist, or composer was mentioned as a favorite by no
more than k people. Is it true that all of the surveyed people can always
be divided into no more than 3k − 2 groups, so that in each group any two
people have completely different tastes?

1.2.7. Consider all nonempty subsets of the set {1, 2, . . . , N} that do not
contain consecutive numbers. For each subset, calculate the product of its
elements. Find the sum of the squares of these products.

Suggestions, solutions, and answers

1.2.1. Answer : 7.
Suggestion. Let 9 warriors be on duty form ≥ 0 days, and let 10 warriors

be on duty for n ≥ 0 days. Then (since each of the warriors went on duty the
same number of times) the number 9m+10n must be divisible by 33. Case
by case analysis of all possible values of n shows that 9m+10n = 33 has no
solutions in nonnegative integers. However, 9m+10n = 66 has the solution
m = 4, n = 3. It is easy to construct an example spanning m + n = 7

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



2. SETS OF SUBSETS 5

days where each warrior serves exactly 2 times. If 9m + 10n ≥ 99, then
m+ n ≥ 99

10 > 7. Therefore, the minimum number of days is 7.
1.2.2. Answer : yes.
Solution (T.Cherganov). Divide the students into groups by first and

last name. Then each student will fall into exactly two groups. There
are at least 11 such groups, since all numbers from 0 to 10 inclusive were
reported. The total number of people in the 11 groups is not less than
1+2+···+11

2 = 33. This means that there are exactly 11 groups, and the
number of people in them is 1, 2, . . . , 11, respectively. Consider the group
of 11 students. Without loss of generality, assume that 11 people have the
same last name. Each of them is a member of one of the remaining 10 groups
(by first name). By the pigeonhole principle, at least one of these groups
(by first name) includes 2 people that have the same last name.

1.2.3. (a) Answer : 299.
Suggestion. The set has 2100 subsets. Divide them in pairs: put each

subset in a pair with its complement. Then there will be a total of 299

pairs, and from each pair we can choose no more than one subset. To find
299 pairwise intersecting subsets, just take all subsets containing some fixed
element.

(b)Answer : 2n−1.
Consider the partition of the set into two subsets to be the choice of

some subset and its complement. Choosing a subset, we can either select or
not select a particular element. So the number of ways to choose a subset
is 2n. But we counted each partition twice, since we can reverse the role of
“subset” and “complement”. Therefore, there are 2n−1 different partitions.

(c)Answer : 3n−1
2 .

Suggestion. First calculate the number of ways to select an ordered pair
of disjoint subsets. There are three options for each element: it either lies
in the first subset, the second one, or neither subset. There will be 3n such
ordered pairs. An unordered pair of two empty subsets corresponds to one
ordered pair of empty subsets. Any other unordered pair corresponds to two
ordered pairs of subsets. This means that a total number of unordered pairs
is 3n−1

2 .
1.2.4. Answer : yes.
Solution (V.Tsepelev). We denote given sets J1, . . . , J2007. Let J1 =

(a1, . . . , a40). Split the numbers corresponding to the indices in the family
J2, . . . , J2007 into sets of the form Xi = {j ≥ 2: ai ∈ Jj}, i = 1, . . . , 40, since
each pair of sets has exactly one common element.

Since 2007−1
40 = 50.15, one of Xi—without loss of generality, suppose

it is X1—contains at least 51 elements. Consider two cases. If X1 =
{2, . . . , 2007}, then the statement is proved (a1 belongs to all sets; there
are no other common elements). If not, then assume without loss of gener-
ality that 2007 /∈ X1 and that 2, . . . , 52 ∈ X1. Then for all j = 2, . . . , 52 the
intersection Xj ∩X2007 will contain exactly one element, and this element is
diferent for different indices j (since any two sets have exactly one common
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6 1. COUNTING

element). But this is not possible because X2007 consists of only 40 elements,
which is less than 51.

1.2.5. Answer : yes.
1.2.6. Answer : yes.
1.2.7. Answer : (N + 1)!− 1.

3. The principle of inclusion-exclusion (2)
By D.A.Permyakov

This section is devoted to the proof and application of the inclusion-exclusion
formula, also known as the principle of inclusion-exclusion. It allows you to
answer the question, “How many objects are there with given properties?”
in many difficult cases. It will require basic skills for solving combinatorics
problems. In particular, one must be able to give rigorous proofs using one-
to-one correspondences and the rules of sums and products. For example, it
is useful to solve problems from Section 1 of this chapter or problems from
article [Vil71b].

1.3.1. In how many ways can you rearrange the numbers from 1 to n so
that

(a) neither 1 nor 2 occurred in its original position;
(b) exactly one of the numbers 1, 2, and 3 stayed in its original position;
(c) none of the numbers 1, 2, and 3 occurred in their original positions;
(d) none of the numbers 1, 2, 3, and 4 occurred in its original position?

Define the Euler function ϕ(n) to be the number of integers between 1
and n relatively prime to the number n.

1.3.2. (a) Find the number of integers from 1 to 1001 not divisible by any
of the numbers 7, 11, 13.

(b) Find ϕ(1), ϕ(p), ϕ(p2), ϕ(pα), where p is a prime, α > 2.

(c) Prove that ϕ(n) = n
(
1− 1

p1

)
. . .

(
1− 1

ps

)
, where n = pα1

1 · · · · · pαs
s is

the canonical decomposition of the number n into distinct primes pk.

1.3.3. (a) On the floor of a room with area 24m2 there are three area rugs
(of arbitrary shape) each with area 12m2. Then there exist two rugs with
the area of the intersection at least 4m2.

(b) There are five patches (of arbitrary shape) on a caftan.1 The area
of each patch is more than three-fifths of the area of caftan. Then there are
two patches such that the area of their intersection is more than one-fifth
the area of the caftan.

(c)∗ Same as in part (b), but the area of each patch is assumed to be
greater than half the area of the caftan.

1A caftan is an old-fashioned Russian cloth similar to a jacket.
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3. THE PRINCIPLE OF INCLUSION-EXCLUSION 7

In this section, we encounter problems of the following type: a finite set
U and a set of properties (subsets) Ak ⊂ U , k = 1, . . . , n, are given. We wish
to find the number of elements for which at least one of the Ak properties is
satisfied (i.e., |A1∪· · ·∪An|), or the number of elements for which none of the
properties Ak is satisfied (i.e., |U−(A1∪· · ·∪An)|). For this, two versions of
the inclusion-exclusion principle are used (see problem 1.3.5(b)). Moreover,
if in all intersections of the sets of the family the number of elements depends
only on the number of intersected sets, then the formula can be simplified
(see problem 1.3.5(a)).

1.3.4. Consider the subsets A1, A2, A3, A4 of a finite set U . Prove the fol-
lowing equalities:

(a) A1 ∪A2 = (A1\A2) 	 (A1 ∩A2) 	 (A2\A1);
(b) |A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|;
(c) |A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A2 ∩ A3| −

|A1 ∩A3|+ |A1 ∩A2 ∩A3|.
(d) The number of elements in U that do not belong to any of the subsets

A1, A2, A3 is

|U | − |A1| − |A2| − |A3|+ |A1 ∩A2|+ |A2 ∩A3|+ |A1 ∩A3| − |A1 ∩A2 ∩A3|.

(e) For k = 1, 2, 3, 4 define

Mk :=
∑

1≤i1<···<ik≤4

|Ai1 ∩Ai2 ∩ · · · ∩Aik |.

Prove that the number of elements in A that do not belong to any of Ai is
equal to |U | −M1 +M2 −M3 +M4.

(f) Using the above notation, the number of elements belonging to ex-
actly one of the sets Ai is M1 − 2M2 + 3M3 − 4M4.

1.3.5. Inclusion-exclusion principle. Consider the subsets A1, . . . , An of
a finite set U . By definition set

⋂
j∈∅

Aj := U .

(a) Suppose that the number α|S| :=
∣∣∣ ⋂
j∈S

Aj

∣∣∣ depends only on the size

|S| of the set S ⊂ {1, . . . , n} of indices, but not on the set itself. Then

|A1 ∪ · · · ∪ An| =
n∑

k=1

(−1)k+1

(
n

k

)
αk,

|U − (A1 ∪ · · · ∪An)| =
n∑

k=0

(−1)k
(
n

k

)
αk.
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8 1. COUNTING

(b) Define Mk :=
∑

S∈(nk)

∣∣∣ ⋂
j∈S

Aj

∣∣∣, where the indicated summation is over

all k-element subsets of the set {1, . . . , n}. In particular, M0 := |U |. Then

|A1 ∪ · · · ∪ An| = M1 −M2 +M3 − · · ·+ (−1)n+1Mn,

|U − (A1 ∪ · · · ∪ An)| = M0 −M1 +M2 + · · ·+ (−1)nMn.

(c) Bonferroni Inequalities. For any 0 ≤ s < n/2, the following
inequalities hold:

M1 −M2 +M3 − · · · −M2s ≤ |A1 ∪ · · · ∪An|
≤ M1 −M2 +M3 − · · ·+M2s+1,

M0 −M1 +M2 − · · ·+M2s ≥ |U − (A1 ∪ · · · ∪An)|
≥ M0 −M1 +M2 − · · · −M2s+1.

(d) The number of elements belonging to exactly r from the subsets

A1, . . . , An is equal to
n∑

k=r

(−1)k−r
(
k
r

)
Mk.

1.3.6. A shelf holds 10 different books.
(a) In how many ways can they be rearranged so that none of the books

stays in place?
(b) Prove that the number of rearrangements for which exactly 4 books

stay in place is more than 50 000.

In the next problem, the answer can be in terms of sums (similar to the
inclusion-exclusion principle).

1.3.7. (a) In how many ways can you arrange 20 tourists into 5 different
houses so that not a single house is empty?

(b) How many different surjections f : Zk → Zn are there?

1.3.8. The numbers 1, 2, . . . , n are placed on a circle. Find the number of
ways to select k of them so that no two selected numbers were adjacent.

(b) Find the number of ways to seat n pairs of warring knights at a
round table with numbered seats so that no two warring knights sit next to
one another.

1.3.9. A cube with edge of length 20 is divided into 8000 unit cubes, and
each unit cube is given a numerical label. It is known that in each row of 20
cubes parallel to an edge of the cube, the sum of the labels is 1 (rows in all
three directions are considered). The label 10 is used on at least one cube.
Three layers of 1×20×20 pass through this cube parallel to the faces of the
cube. Find the sum of all the labels not contained in any of these layers.
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3. THE PRINCIPLE OF INCLUSION-EXCLUSION 9

1.3.10.* How many six-digit numbers are there with no two 7’s adjacent
and with

(a) no more than three 7’s;
(b) not more than four 7’s;
(c) any number of 7’s?

1.3.11.* Prove the following formula:

n! · x1x2 . . . xn = (x1 + x2 + · · ·+ xn)
n

−
∑

1≤i1<i2<···<in−1≤n

(xi1 + xi2 + · · ·+ xin−1)
n

+
∑

1≤i1<i2<···<in−2≤n

(xi1 + xi2 + · · ·+ xin−2)
n − · · ·+ (−1)n−1

n∑
i=1

xni .

Suggestions, solutions, and answers

1.3.1. (a)Answer : n!− 2(n− 1)! + (n− 2)!.
Suggestion. There are n! ways in total to rearrange our numbers. Sub-

tract from them the (n− 1)! permutations for which the number 1 remains
in place. Subtract also the (n − 1)! permutations for which the number 2
remains in place. However, there are (n− 2)! permutations for which both
numbers 1 and 2 remain in place, which we “subtracted twice”. Thus, the
number (n− 2)! needs to be added, yielding n!− 2(n− 1)! + (n− 2)!.

Comment. This solution is formalized by the principle of inclusion-
exclusion, problem 1.3.5, which we assume you have proved and will use in
subsequent problems.

1.3.2. (a)Answer : 720.
First suggestion. For each divisor j of 1001, let Aj denote the set of

numbers from 1 to 1001 divisible by j. Then

|Aj | =
1001

j
and Ap1 ∩ · · · ∩Apk = Ap1·····pk

for distinct primes p1, . . . , pk. Therefore, we wish to compute

|{1, . . . , 1001} − (A7 ∪A11 ∪A13)|
= 1001− |A7| − |A11| − |A13|+ |A7 ∩A11|+ |A7 ∩A13|
+ |A11 ∩A13| − |A7 ∩A11 ∩A13|

= 1001− |A7| − |A11| − |A13|+ |A77|+ |A91|+ |A143| − |A1001|
= 1001− 143− 91− 77 + 7 + 11 + 13− 1 = 720.
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10 1. COUNTING

Second suggestion. Use the equality ϕ(1001) = ϕ(7)ϕ(11)ϕ(13).
(c) Suggestion. For any j | n, define Aj as a subset of the set {1, . . . , n},

consisting of numbers that are divisible by j. Clearly

|Aj | =
n

j
and Ap1 ∩ · · · ∩Apk = Ap1·····pk

for distinct primes p1, . . . , pk.
Define

Mk :=
∑

1≤j1<···<jk≤s

n

pj1pj2 · · · · · pjk
for k ≥ 1 and M0 := n.

By definition, ϕ(n) = |{1, . . . , n}−(Ap1∪· · ·∪Aps)|, whence the inclusion-
exclusion principle (1.3.5(b)) yields

ϕ(n) = M0 −M1 +M2 − · · ·+ (−1)sMs = n
(
1− 1

p1

)
· · ·

(
1− 1

ps

)
.

1.3.3. (a) Let Aj denote the set of points covered by the jth rug, and
let |Aj | be the area of the jth rug.

Suppose the statement is false; i.e., for any distinct j, k we have
|Aj ∩Ak| < 4. Consequently,

24 ≥ |A1 ∪A2 ∪A3|
≥ |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A2 ∩A3| − |A1 ∩A3|
> 12 + 12 + 12− 4− 4− 4 = 24,

where the second inequality follows from the analogue of the Bonferroni
inequality for areas (1.3.5(c)), which produces a contradiction.

(b), (c) These problems are discussed in detail in the article [Yag74].
1.3.6. (a) Answer : 1 334 961 = round(10!/e), where

e := 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
+ · · ·

and round(x) is the nearest integer to a real number x.
Suggestion. Set n := 10. Let U be the set of all book permutations, and

let Aj be the set of book permutations for which the jth book remains in
its original place. Consider an arbitrary k-element subset S ⊂ {1, . . . , n}.
Then

⋂
j∈S

Aj consists of those permutations of books for which each of the

books j ∈ S remains in its original place. Therefore∣∣∣ ⋂
j∈S

Aj

∣∣∣ = (n− k)(n− k − 1) . . . 1 = (n− k)!.

Using the principle of inclusion-exclusion, we obtain

|U − (A1 ∪ · · · ∪An)| =
n∑

k=0

(−1)k
(
n

k

)
(n− k)!

= n!− n!

1!
+

n!

2!
− n!

3!
+ · · ·+ (−1)n

n!

n!
= round(n!/e).
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3. THE PRINCIPLE OF INCLUSION-EXCLUSION 11

(b) To construct the desired permutation, select those 4 books from
10 that remain in their original places, and then rearrange the remaining
books, so that no book remains in its original place. Using (a), the required
quantity is equal to(

10

4

)(
6!− 6!

1!
+

6!

2!
− 6!

3!
+ · · ·+ 6!

6!

)

>
10 · 9 · 8 · 7

24

(6!
2
− 6!

6

)
= 210 · 240 = 7 · 7200 > 50 000.

1.3.7. (a) Let U be the set of all tourist arrangements, and let Aj be the
set of tourist arrangements for which the jth house is empty.

The number of arrangements for which all houses with numbers from

the set S are empty is equal to
∣∣∣ ⋂
j∈S

Aj

∣∣∣ = (5 − |S|)20. Inclusion-exclusion

yields

|U − (A1 ∪ · · · ∪ A5)| =
5∑

k=0

(−1)k
(
n

k

)
(5− k)20

= 520 −
(
5

1

)
420 +

(
5

2

)
320 −

(
5

3

)
220 +

(
5

4

)
120.

(b) Let U = ZZk
n be the set of all mappings from Zk to Zn. For each

j = 1, . . . , n, let Aj = (Zn − {j})Zk be the set of all mappings Zk to Zn,
whose image does not contain j. Then the set of surjections from Zk to Zn

is the set U − (A1 ∪ A2 ∪ · · · ∪ An). Observe that
∣∣∣ ⋂
j∈S

Aj

∣∣∣ = (n − |S|)k.

Inclusion-exclusion yields

|U − (A1 ∪A2 ∪ · · · ∪ An)|

= nk −
(
n

1

)
(n− 1)k +

(
n

2

)
(n− 2)k − · · ·+

(
n

n

)
· 1k.

1.3.8. (a) Answer : n
n−k

(n−k
k

)
.

(b) Use part (a).
1.3.9. Answer : 333.
First suggestion. Inclusion-exclusion yields 400−3 ·20+3 ·1−10 = 333.
Second suggestion (from site http://problems.ru). One horizontal

layer G and two vertical layers pass through a given unit cube K. The
sum of all numbers in the 361 vertical columns that are not in the other two
vertical layers is 361. Then we must subtract the sum S of labels of the 361
cubes lying in the intersection of these columns with G. These cubes are
completely covered by 19 columns lying in G. The sum of all the labels in
these columns (it is equal to 19) exceeds S by the sum of the 19 labels lying
in the column containing K that is perpendicular to them. The last amount
is obviously 1− 10 = −9. Hence S = 19− (−9) = 28. Our final sum is thus
361− 28 = 333.
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Chapter 2

Finite sets

This topic can be accessible for students in grades 6–7, but we suggest that
instead of this chapter, you consult the relevant sections in the book [FGI].
General methodological guidelines are also given there.

1. The pigeonhole principle (1)
By A.Ya.Kanel-Belov

Part 1

The pigeonhole principle is a very simple statement. Here are three formu-
lations.

2.1.1. (a) The pigeonhole principle. If more than n rabbits occupy n
cages, then there is a cage containing at least two rabbits.

(b) The generalized pigeonhole principle. If N rabbits occupy n
cages, then at least one cage contains at least N/n rabbits.

(c) The continuous pigeonhole principle. If the sum of n real num-
bers is N , then at least one number is greater than or equal to N/n and at
least one number is less than or equal to N/n.

Surprisingly, these simple ideas turns out to be crucial in many difficult
problems.

Let’s start with easy problems.

2.1.2. A 10-question quiz was taken by 27 students. Prove that there are
3 students who solved the same number of problems and that there are 7
students who got the same score. (Quiz grade can be 5, 4, 3, 2.)

2.1.3. On Earth, there are more than 7 billion people, of whom more than
99% are less than 100 years old. Prove that there are 2 people on Earth
born within an interval of less than one second.

2.1.4. Prove that among any 11 numbers you can find 2 whose difference is
divisible by 10.

13
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14 2. FINITE SETS

2.1.5. Prove that among any 5 people there are 2 with the same number of
acquaintances among these 5 people.

2.1.6. Prove that among any 5 numbers there are several numbers whose
sum is divisible by 5.

2.1.7. On the plane, there are selected 5 distinct points with integer coor-
dinates. Prove that the midpoint of one of the segments connecting these
points also has integer coordinates.

2.1.8. Twenty-one boys together gathered 200 nuts. Prove that there are
two boys who gathered the same number of nuts.

2.1.9. Prove that you can write a multiple of 1991 using only the digit 1.

2.1.10. In each cell of a 5 × 5 board sits a bug. Suddenly, each bug jumps
to a horizontally or vertically adjacent cell. Prove that at least two bugs
will land in the same cell.

2.1.11. Prove that from any k + 2 natural numbers, where k ≥ 1, you can
choose two numbers whose sum or difference is divisible by

(a) 2; (b) 2k + 1.

2.1.12. On the plane, 12 lines are drawn. Prove that there are two of them
that form an angle of at most π/12.

2.1.13. Six asterisks are placed in the cells of the 4 × 4 table. Prove that
it is possible to cross out two rows and two columns from the table so that
there will be no asterisks in the remaining cells.

Part 2 (2)

Now we turn to more complex problems, where the pigeonhole principle is
combined with other ideas.

2.1.14. In the game of Battleship, what is the fewest number of shots that
guarantees you will hit a four-cell ship?

2.1.15. Each of nine lines divides a square into two quadrilaterals whose
areas are in the ratio 2 : 3. Prove that at least three of these lines are
concurrent.

2.1.16. Is it possible to label the vertices of a regular 45-gon with the num-
bers 0, 1, . . . , 9 so that for any pair of different numbers, there is a side whose
endpoints are labeled with these numbers?
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1. THE PIGEONHOLE PRINCIPLE 15

2.1.17. A committee of 60 people held 40 meetings, and each meeting was
attended by exactly 10 committee members. Prove that two members were
at the same meeting at least twice.

2.1.18. Prove that among any 2k + 1 different integers of absolute value at
most 2k − 1, you can find three numbers whose sum is zero.

Now for harder problems.

2.1.19.* Consider an infinite sequence {an} of natural numbers greater than
1, where no number appears in the sequence {an} twice. Prove that there
are infinitely many n such that an > n.

2.1.20.* On a 1000 × 1000 chessboard, place a black king and 499 white
rooks. Prove that for any initial arrangement of the pieces, the king will get
in check by a white rook, no matter how white plays.

2.1.21.* On a table lie 50 properly running watches. Prove that at some
time, the sum of the distances from the center of the table to the ends of
the minute hands will exceed the sum of the distances from the center of
the table to the centers of the clocks.

The so-called pigeonhole principle for lengths and areas is described in
Sections 4 and 5 in Chapter 7.

Suggestions, solutions, and answers

2.1.2. Each student solved between 0 and 10 problems, inclusive; that is,
there are 11 total possible values. There are 27 students; therefore, by
the generalized pigeonhole principle there are at least 27

11 students with the

same number of problems solved. Since 27
11 = 2 5

11 > 2, there are more than
two (that is, at least three) students who have solved the same number of
problems. Similarly, the number of students who received the same grade
(out of four possible grades) is at least 27

4 = 61
4 > 6, that is, at least 7.

2.1.5. Note that the number of acquaintances of each person (among
this group of 5) can be any number from 0 to 4 inclusive (only 5 options).
Observe that a person with 4 acquaintances and a person with 0 acquain-
tances cannot both be in the company at the same time since the former
would know everyone, and the latter would not know anyone, which is im-
possible. This means that at least one of these two options (0 acquaintances
and 4 acquaintances) does not occur, and no more than 4 options remain for
the group. Since there are 5 people in the group, the pigeonhole principle
implies that two people have the same number of acquaintances.

2.1.9. See article [Kor].
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16 2. FINITE SETS

2.1.13. First, we show that it is possible to cross out two columns that
contain at least 4 asterisks: by the pigeonhole principle, in a column with
the maximum number of asterisks there are at least 6

4 = 11
2 > 1, that is,

at least 2 asterisks. If there are 3 or 4, then we take as the second column
an arbitrary one containing at least one asterisk. In two selected columns
there will be at least 4 asterisks, which we need. If the first column contains
exactly 2 asterisks, then the remaining 3 columns contain 4 asterisks; the
pigeonhole principle implies that among them there is a column containing
at least 2 asterisks. Take this as the second column and again we get two
columns with 4 asterisks.

In the remaining two columns, no more than two asterisks are left. They
occupy no more than two lines. We delete these two lines and get the desired
result.

2. The extremal principle (2)
By A.Ya.Kanel-Belov

The key to solving many problems is to consider “extremal” values of some
of the entities in the problem. This may be the largest of the numbers in the
problem, the segment with the longest length, the circle with the smallest
radius, and so on.

2.2.1. Place numbers at the vertices of a regular 100-gon, each of which
equals the arithmetic mean of their two neighbors. Prove that all the num-
bers are equal.

2.2.2. Numbers are placed in each square of a chessboard so that each num-
ber is equal to the arithmetic mean of the numbers in neighboring squares
(sharing sides). Prove that all the numbers are equal.

2.2.3. The vertices of the cube are numbered 1, 2, . . . , 8. Prove that there
is an edge whose endpoint labels differ by at least three.

2.2.4. Prove that any 10 points in the plane are endpoints of some 5 non-
intersecting segments.

2.2.5. Prove that it is not possible to arrange 100 distinct points in space
so that each point lies at the midpoint of the line segment joining two other
points.
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2.2.6. Perpendiculars are dropped from a point inside a convex polygon
to each of its sides or to the extension of a side. Prove that at least one
perpendicular must land on a side, not on the extension of it.

2.2.7. On each of the planets of a certain planetary system sits an as-
tronomer who observes the nearest planet. The distances between planets
are pairwise distinct. Prove that if the number of planets is odd, then some
planet will not be observed.

2.2.8. Several identical coins lie on a table. Prove that at least one coin is
tangent to at most three other coins.

2.2.9. In the kingdom of Far Far Away, every two cities are connected by
a one-way road. Prove that there is a city from which you can reach any
other city by traveling on no more than two roads.

2.2.10. Distinct integers are placed in the cells of as 8×8 chessboard. Prove
that there are two neighboring (having a common side) cells whose numbers
differ by at least 5.

2.2.11. A number is written in each cell in an infinite grid. Prove that there
is a number that is less than or equal to at least four of eight numbers in
the neighboring cells.

Suggestions, solutions, and answers

2.2.1. Consider the maximum of the numbers. It is equal to half the sum
of its neighbors and is no less than each of them. Consequently, each of the
neighbors of this number is equal to this maximum number. Similarly, their
neighbors are equal to the maximum number, etc. Repeating this argument
50 more times implies that all the numbers are equal.

2.2.4. Consider all the ways to connect these points with 5 segments,
and focus on the configuration for which the total length of the segments
is minimal. Another way to solve this problem is discussed in Section 5 in
Chapter 4; in particular, see the solution to problem 4.5.8.

2.2.5. This problem (in an equivalent formulation) is discussed in detail
in [Ros].

2.2.7. We use induction on the number of planets. For three planets the
statement is obvious. If every planet is observed by someone, then no more
than one astronomer observes the planet. Consider the two closest planets.
Their astronomers look at each other, and no one else watches them. Now
apply the induction hypothesis to the remaining planets.
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18 2. FINITE SETS

3. Periodicity I (2)
By A.Ya.Kanel-Belov

Problems in this section follow [K-BS].

2.3.1. Find the last digit of 21000.

An infinite sequence of numbers a1, a2, . . . is called cyclic (or periodic)
if, starting at some term, the sequence then is just an infinite repeat of one
finite sequence. For example, 1, 2, 3, 4, 1, 2, 3, 4, . . . is a periodic sequence.

The repeated finite sequence is called the period of the sequence. In
the example above the period is clearly not unique: both 1, 2, 3, 4 and
1, 2, 3, 4, 1, 2, 3, 4 (and also infinitely many others) are periods.

The repeating part of a periodic sequence may not start at the first term;
there may be a number of terms before the repeats. The preperiod is the
shortest initial term of the sequence after which it repeats. For example,
2, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3 . . . is a sequence with a preperiod of 2, 2 and period
1, 2, 3.

2.3.2. Prove that the remainders of the powers of 7 upon division by 1990
form a periodic sequence and that the length of its smallest period is at most
1990.

2.3.3. The inhabitants of the Lawaiian Islands pride themselves on having,
from times immemorial, a presidential form of government. Every 4 years,
either a Republican or a Democrat is elected president. Local sociologists
have discovered a strict law that predicts the partisanship of the next pres-
ident. Although this law is classified, information has leaked into the press
that the party membership of the next president is fully determined by the
partisanship of the previous ten. The last three presidents were Republican.
Prove that there will be an infinite number of repeats of the rule of three
Republicans in a row.

2.3.4.* The Fibonacci sequence {fn} is defined by the conditions f1 = f2 =
1 and fn+1 = fn + fn−1 for n ≥ 2. Prove that there is a member of the
Fibonacci sequence divisible by 1990.

2.3.5.* Recurrent sequences. A sequence u1, u2, . . . is called recurrent if for
some k, a1, . . . , ak and all n > k, the equality un = a1 · un−1 + a2 · un−2 +
· · ·+ ak · un−k holds. Suppose all ai and un are integers.

(a) Prove that for each integer l, the remainders of un when divided by
l are periodic.

(b) Estimate the length of this period.
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3. PERIODICITY I 19

(c) Give an example for which there is a nonempty preperiod.
(d) Find a criterion for the presence of a nonempty preperiod.

The idea of periodicity may appear in different guises.

2.3.6. A combination of face rotations scrambled a Rubik’s Cube from its
initial correct position. Prove that this initial position can be restored by
repeating this combination several more times.

2.3.7. A mathematics olympiad had 20 problems, and after the competition,
20 students gathered to discuss their solutions. Each of them solved two
problems, and it turned out that each problem was solved by two students
among these 20 students. Prove that you can organize the discussion so that
each student explains the solution of one of the problems he solved and all
problems are discussed.

2.3.8. Each term of a sequence, starting with the second term, is equal to
the sum of the squares of the digits of the previous term. Prove that this
sequence is periodic.

2.3.9. An English text is printed on an infinite tape (infinite in both direc-
tions). It turns out that the number of distinct 15-character strings is equal
to the number of distinct 16-character strings. Prove that the text must be
periodic; for example: . . .Mom washed the window frame Mom washed the
window frame. . . .

Let us turn to more complex problems requiring research.

2.3.10. There are an unlimited number of black and white cubes, from which
we wish to build a continuous tower in the shape of a parallelepiped so that
each black cube shares a face with an even number of white cubes, and each
white cube shares a face with an odd number of black cubes. Is it true that
any arrangement of cubes on the “first floor” (i.e., the lowest layer of the
tower, with a height of one cube) can be extended to such a tower of a finite
height?

2.3.11.* A strip of grid paper, endless in both directions, consists of black
and white cells. Every second each cell with an even number of black neigh-
bors turns white, and each cell having an odd number of black neighbors
turns black. Prove that:

(a) If after 2n seconds the original coloring is repeated, then it is periodic
with period 3 · 2n.

(b) The original coloring is periodically repeated if and only if it is itself
periodic (i.e., periodicity in time is equivalent to periodicity in space).
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20 2. FINITE SETS

2.3.12.* Starting with any number, we append digits on the right, one at a
time. We can append any digit except for 9. Prove that sooner or later you
get a composite number.

2.3.13. One is given a rectangle with the side ratio equal to
√
7. From it

we cut the square of side equal to the shorter side of the rectangle. With
the remaining rectangle we perform the same procedure. Prove that the
sequence of side ratios of the constructed rectangles is periodic.

Suggestions, solutions, and answers

Problems 2.3.1–2.3.4 and 2.3.6 are considered in details in article [K-BS].
2.3.1. Consider the sequence of the last digits of the powers of two:

1, 2, 4, 8, 6, 2, 4, 8, 6, . . .. Note that each term in the sequence completely
determines the next term. Therefore, after any 2 there will be a 4 and so
on, so 2, 4, 8, 6 is the period. Then it is easy to determine that 21000 ends
with 6.

2.3.4. Write down the sequence of remainders of the Fibonacci numbers
upon division by m: r1 = 1, r2 = 1, . . .. There is a finite set of ordered pairs
of remainders, so there are numbers i �= j such that ri = rj and ri+1 = rj+1.
The remainders ri and ri+1 uniquely determine subsequent and previous
remainders; therefore the sequence of the remainders is periodic with period
l := j−i (without a preperiod). The periodicity implies that rl+1 = rl+2 = 1,
so rl = 0.

4. Periodicity II (2) By P.A.Kozhevnikov

2.4.1. Solve the system of equations x1 +
√
x2 = x2 +

√
x3 = · · · = xn +√

x1 = 2 for n = 9.

2.4.2. In a given convex polygon, all angles are equal. The polygon has an
interior point from which all sides subtend at equal angles. Prove that this
polygon is regular. (K.Kokhas, The problems from “Kvant”, 1988, Nos.
11–12.)

2.4.3. Twenty teams participate in a round robin football championship.
Prove that after two rounds, you can choose ten teams, among which no
two have played each other. (S.Genkin, Tournament of Towns, 1986.)

2.4.4. An infinite sequence of digits 9, 6, 2, 4, . . . is constructed by the fol-
lowing rule: each digit is equal to the last digit of the sum of the previous
four digits. Will the sequence 2, 0, 0, 7 ever appear in this sequence?

2.4.5. A five-pointed star is obtained by intersecting five straight lines (no
two lines are parallel, and no three lines coincide). The boundary of the
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4. PERIODICITY II 21

star consists of ten segments. Color each boundary segment red or blue,
alternating as you go around the star. Could it happen that each red segment
is longer than any blue segment?

2.4.6. A circular necklace is made of n beads, colored red and blue. For
a fixed number k, we call the necklace good if between any two red beads
there are never exactly k− 1 beads. For the following cases, find the largest
number of red beads that a good necklace can have: (a) n = 15, k = 4; (b)
n = 15, k = 6; (c) any n and k < n.

2.4.7. In a certain city, each family lives in a separate apartment, but they
are permitted to swap apartments with another family, provided that they
do not do any other types of switching and they cannot do more than one
swap per day. Prove that any permutation of apartments among any number
of families in this city can be completed in two days. (A. Schnirelman and
N.Konstantinov Tournament of Towns, 1987.)

2.4.8. N point size balls move around the circle. Each ball has speed v
(clockwise or counterclockwise). If two balls collide, then they scatter in
opposite directions so that their speeds remain equal to v. Prove that even-
tually all the balls will return to their initial position at the same time.

Suggestions, solutions, and answers

2.4.1. Note that x1 = x2 = · · · = xn = 1 is a solution. Suppose that x1 > 1.
From the equalities we successively obtain that x2 < 1, x3 > 1, . . . , x9 > 1,
x1 < 1, which is a contradiction. Likewise, we arrive at a contradiction if
we assume that x1 < 1.

Comment. In fact, x1 = x2 = · · · = xn = 1 is the only solution regardless
of the parity of n. The equations xi +

√
xi+1 = 2 (i = 1, 2, . . . , n− 1) imply

that for x1 �= 1 the distance from xk to 1 increases with increasing k.
2.4.2. Let A1A2 . . . An be a polygon, and let O be a point inside it. From

∠A1A2A3 = ∠A2A3A4 = · · · = ∠AnA1A2 =
π(n− 2)

n
,

∠A1OA2 = ∠A2OA3 = · · · = ∠AnOA1 =
2π

n

it follows that ∠OA1A2 = ∠OA2A3 = · · · = ∠OAnA1. Triangles OA1A2,
OA2A3, . . . , OAnA1 are similar; therefore OA1/OA2 = k, OA2/OA3 = k,
. . . , OAn/OA1 = k, where k is the coefficient of similarity. Multiplying the
equalities we get k = 1, and, therefore, OA1 = OA2 = · · · = OAn.

2.4.3. Construct a graph of the played games. Two edges come out of
each vertex; therefore, the graph is a union of disjoint cycles (round dances!).
These are cycles of even length (a cycle of odd length cannot be played in
two rounds). From each cycle, just select half of the teams that did not play
with each other.
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2.4.4. Answer : the sequence 2, 0, 0, 7 will occur.
Suggestion. Each 4-digit block determines both the next and the previ-

ous digit in this sequence. Since there are only finitely many ordered 4-digit
blocks, eventually two identical blocks will appear. This implies that the se-
quence is periodic and has no preperiod. Thus the block 9, 6, 2, 4 will repeat,
not just appearing at the start. It is easy to see that the digits preceding
9, 6, 2, 4 must be 2, 0, 0, 7.

2.4.5. Answer : cannot.
Hint. For five triangles containing a red side and a blue side, apply the

theorem that the angle opposite the larger side of a triangle has the larger
angle.

2.4.6. (c)Answer : d
⌊

n
2d

⌋
, where d = LCM(n, k).

Suggestion. Connect beads with an edge if there are k−1 beads between
them. This is the “prohibition graph”: two red beads cannot be connected
by an edge. Let d = GCD(n, k). Then the graph decomposes into d cycles
of length n/d. In each cycle, there can be no more than half of the red bead,

and exactly
⌊

n
2d

⌋
red beads can be painted.

2.4.7. Any permutation is a union of disjoint cycles. It remains to
be show that a cycle can be carried out in two days: any rotation can be
represented as a sequential application of two axial symmetries.

2.4.8. We show that after each time interval d/v, where d is the length
of the circumference, at the initial position of each ball A there will be found
some ball B (not necessarily A = B).

Indeed, if we assume that the balls are indistinguishable, then we can
assume that no collisions occur (that is, at the time of the collision, the balls
“pass through each other”), and thus, in time d/v the balls will resume their
initial positions, and in each position the direction of the velocity of the ball
coincides with the initial direction of the velocity of the ball in this position.

Now recall that the balls are different. Then in time d/v there is a
permutation of the balls. Some power of this permutation is the identity
permutation.

Comment. The structure of this permutation can be determined knowing
the number of balls that move in clockwise and counterclockwise directions
(see Problem M2291 from [PROB2]).

5. Finite and countable sets (2)
By P.A.Kozhevnikov

2.5.1. The set of natural numbers is partitioned into infinite arithmetic
progressions with differences d1, d2, . . . .

(a) Prove that if the number of progressions is finite, then 1
d1
+ 1

d2
+ · · · =

1.
(b) Is (a) true if the number of progressions is infinite? (A.Tolpygo,

Tournament of Towns, 1989.)
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2.5.2. The entire plane is illuminated by spotlights, each illuminating an
angle with vertex at the spotlight.

(a) Prove that if the number of spotlights is finite, then the sum of the
angles is at least 360◦.

(b) Is (a) true if the number of angles is infinite (countable)?

2.5.3. Is it possible to place all natural numbers in each cell of an infinite
2-dimensional grid so that each number occurs exactly once and any two
numbers in a row or column are relatively prime?

2.5.4. The set of natural numbers is partitioned into two sets A and B.
It is known that A does not contain a three-term arithmetic progression.
Could it be that B does not contain an infinite arithmetic progression?
(A. Skopenkov, Problems of Kvant, 1990, No. 8.)

2.5.5. Is there a subset M of the set of natural numbers such that each
natural number in M is uniquely represented as a difference of two numbers
from M?

2.5.6. Is it possible to color integer points of the plane in 2007 colors so that
all colors are present on each line (that passes through at least two, and thus
infinitely many integer points) and the coloring on each line is periodic, yet
the coloring on the plane was not periodic? (The coloring of the plane is
periodic if there is a nonzero integer vector, such that when you translate
by this vector, the coloring of all points is invariant.)

2.5.7. Does there exist a function f : Q×Q → Q, which is not a polynomial
in two variables, yet for any a ∈ Q, both functions f(a, x) and f(x, a) are
polynomials?

2.5.8. Is it possible to arrange queens on an infinite chessboard so that each
of them threatens exactly 7 others?

2.5.9. Does there exist a sequence a1, a2, . . . of natural numbers such that
every natural number appears in it exactly once and for each n, the sum
a1 + · · ·+ an is divisible by n?

Suggestions, solutions, and answers

2.5.1. (a) Let a1, a2, . . . , an be the first members of the progressions.
Take N consecutive natural numbers A + 1, A + 2, . . . , A + N , where A >
max{a1, a2, . . . , an} and N = d1d2 . . . dn. It is easy to see that among the
selected N numbers, exactly N

di
numbers (exactly one for each di consecutive

numbers) lie in the ith progression. It follows that N = N
d1

+ N
d2

+ · · ·+ N
dn
.

Dividing both sides by N , we get the desired result.

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



24 2. FINITE SETS

(b) Answer : no.
Suggestion. We will construct a partition of the natural numbers that

satisfies 1
d1

+ 1
d2

+ · · · = 1
2k
, where k is a fixed natural number. To do this,

we construct progressions with differences di = 2i+k.
Here is a way to construct the first term ai of the ith progression. Let

a1 = 1. If a1, . . . , an are already selected, then let an+1 be the smallest
natural number not included in any of the progressions (it can be shown
that such a number exists even among the first dn numbers). Since dn+1

is divisible by d1, d2, . . . , dn, the (n + 1)st progression is disjoint from the
previously defined progressions (prove it!).

2.5.2. (a) Using parallel translations, move the spotlight so that they all
have the common vertex O. Let the sum of the angles be less than 360◦.
Then there is a ray starting at O that is not illuminated by the translated
spotlights. It is easy to prove that before the translation each spotlight
illuminated a limited part on this ray (a segment or an empty set), so part
of the ray was unlit; a contradiction.

(b) Answer : not true.

Suggestion. Let us describe the covering with angles of size αi =
(

1
2i+k

)◦

so that
∞∑
i=1

αi =
( 1

2k

)◦
.

Consider circles with radii 1, 2, . . . centered at the origin. Clearly, if each
of these circles is covered by some spotlight, then the whole plane will be
covered. Now place the ith spotlight far enough from the origin to cover the
circle with radius i.

For problems 2.5.3–2.5.9, the answer is always positive. As in prob-
lems 2.5.1(b), 2.5.2(b), the object whose existence is to be proved can be
“constructed” in a countable number of steps. Suppose that after the nth
step, we have constructed the set Kn. At the (n + 1)st step, the set Kn

“is extended” to the set Kn+1 ⊃ Kn. The desired construction is the union

K =
∞⋃
i=1

Ki.

Below we use the fact that for countable sets Ai the set A1×A2×· · ·×Ak,
i.e., the set of ordered k-tuples {(a1, a2, . . . , ak) : ai ∈ Ai}, is countable.

2.5.3. Label the cells arbitrarily. Arrange the numbers 1, 2, 3, . . . in
order, guided by the following rule. In the first step, put the number 1 in
the cell labeled 1. Suppose that after n steps, the numbers 1, 2, . . . , n, are
already placed; let k be the minimum label of the cell in which there is no
number yet. Put the number n+1 in the cell with label k if n+1 is prime.
Otherwise, we put n + 1 in any cell with no other numbers in its row and
column. Eventually, the cell with the label k will be occupied, since there
are infinitely many primes.

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



5. FINITE AND COUNTABLE SETS 25

2.5.4. We will arbitrarily enumerate all infinite arithmetic progressions
consisting of natural numbers (there are countably many, since each pro-
gression is determined by its first term and difference). Construct A =
{a1, a2, . . .}, where the numbers a1, a2, . . . are defined as follows. Let a1 be
any number from the 1st progression. If an is already defined, then select
an+1 from the (n+ 1)st progression such that an+1 > 2an holds. It is easy
to see that the sets A and B := N−A satisfy the condition.

2.5.5. We describe the construction of the desired sequence M =
{a1, a2, . . .}. For each natural number k, define an initial piece Ak of the
sequence a1 < a2 < · · · < am (where m = m(k)) so that differences of the
form aj − ai for 1 ≤ i < j ≤ m are pairwise distinct and the set Rk of these
differences contains the numbers 1, 2, . . . , k. If Rk also contains the number
k + 1, then we do nothing; i.e., put Ak+1 = Ak. Otherwise, we add two
numbers am+1 and am+2 = am+1 + k + 1 such that am+1 > 10am. Then
all differences of the form am+1 − ai, where i = 1, 2, . . . ,m, are pairwise
distinct, greater than any number from Rk and greater than k + 1. The
same is true for differences of the form am+2 − aj , where j = 1, 2, . . . ,m.
The equality of the differences am+1−ai = am+2−aj for i, j ∈ {1, 2, . . . ,m}
implies that aj − ai = k+1; a contradiction. Thus, we have extended Ak to
Ak+1, fulfilling the necessary conditions.

2.5.6. We enumerate the lines containing infinitely many integer points
and enumerate the nonzero integer vectors (both sets are countable). In the
first step, we color the first line periodically using 2007 colors. On the ith
(i ≥ 2) step we periodically color the ith line (this is possible, since only
finitely many points on it have been painted), and then we find two points
in the plane that have not yet been painted, separated from each other by
the (i − 1)st vector, and color them in different colors. It follows from the
definition of the procedure that the color of each line is periodic, but the
color of the plane cannot be periodic, since no translation by an integer
vector will leave all the colors invariant.

2.5.7. We describe the construction of the desired function f . Enumerate
the rational numbers q1, q2, . . .. In the first step, set f(q1, y) = f(x, q1) = 0
for all x, y ∈ Q. At the ith (i ≥ 2) step we will set the values of f(x, y)
on the lines x = qi and y = qi. Before the ith steps, the values of the
function f are already determined only in the finite number of points on the
line x = qi (namely, at points (qi, q1), (qi, q2), . . . , (qi, qi−1)). We choose a
polynomial Pi(y) of degree greater than i such that Pi(qk) = f(qi, qk) for
k = 1, 2, . . . , i−1 (such a polynomial exists; this can be proved, for example,
by using Lagrange interpolation), and we set f(qi, y) = Pi(y). Further, let
f(x, qi) = hi(x), where hi(x) is a polynomial of a degree greater than i such
that hi(qk) = f(qk, qi) for k = 1, 2, . . . , i. This completes the ith step of
construction.

If the function f(x, y) we constructed was a polynomial in two variables,
then the degrees of the polynomials f(x, qi) (i = 1, 2, . . .) would be bounded,
a contradiction.
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Comments about the solutions of problems 2.5.1 and 2.5.2

2.5.1. Let M be a subset of the natural numbers. Consider the sequence

qn = k(n)
n , where k(n) is the number of members of the set M among the

numbers 1, 2, . . . , n. If the limit Q = lim
n→∞

qn exists, then we call Q a measure

or density of the subset M , and we denote it by μ(M).
(Of course, this concept does not coincide with the classical definition

of measure spaces. For example, with our definition the union of two mea-
surable sets, i.e., sets for which a measure is defined, is not necessarily
measurable.)

In a sense, the measure μ(M) represents the probability that a randomly
selected natural number will be a number from the set M .

It is easy to verify the following properties of this measure:
• μ(N) = 1;
• the measure of a finite set is 0;
• the measure of an infinite arithmetic progression with difference d

equals 1/d.
Consider the following problems:
(c) show that there are nonmeasurable subsets;
(d) find the measure of the set of exact squares;
(e) find the measure of the set of primes.
It is easy to prove that μ is additive, i.e., for measurable disjoint subsets

A and B, the set A ∪ B is measurable, and μ(A ∪ B) = μ(A) + μ(B). The
additivity of the measure μ implies equality in problem 2.5.1(a).

However, the measure μ is not σ-additive; i.e., for pairwise disjoint mea-

surable subsets of A1, A2, . . ., the equality μ
( ∞⋃

i=1
Ai

)
=

∞∑
i=1

μ(Ai) is not

always satisfied (and in general,
∞⋃
i=1

Ai may not be measurable). For exam-

ple, N is a union of sets each consisting of one number, but 1 = μ(N) �=
∞∑
i=1

μ({i}) = 0. An example from problem 2.5.1(b) also proves the absence

of σ-additivity of the measure μ.
2.5.2. Analogously to the previous problem, we can try to define the

measure of some subsets M of the plane. Let qR = SR
πR2 , where SR is the

intersection area of M ∩ CR with the circle CR of radius R with the center
at the origin (definition of the area discussed in Section 5 of Chapter 7). If
the limit Q = lim

R→+∞
qR exists, then we call Q the measure of the subset M ,

denoted by μ(M).
In a sense, the measure μ(M) is the probability that a randomly chosen

point on the plane will be a point from the set M .
It is easy to verify the following properties of a measure:
• the measure of the entire plane is 1;
• the measure of a bounded subset of a plane is 0;
• the measure of the interior of the angle of α◦ is α/360.
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Consider the following problems:
(c) Show that there are nonmeasurable subsets of the plane.
(d) Will the concept of measurability and measure change if we change

the location of the origin?
(e) Will the notion of measurability and measure change if CR are not

circles, but, say, the squares |x|+ |y| ≤ R?
As in problem 2.5.1, measure μ turns out to be additive, but not σ-

additive. Ponder another solution to the problem 2.5.2(a).
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Chapter 3

Graphs
By D.A.Permyakov
and A.B. Skopenkov

This chapter contains materials for an introduction to graphs. We recom-
mend continuing the study of graphs in Chapters 2, 3, and 4 of [GDI2].

1. Graphs (2)

Solving problems from this and the next section does not require any prior
knowledge and is suitable for an introduction to graphs.

3.1.1. Is it possible, after making several moves with the chess knights from
the starting position shown in Fig. 1 on the left, to arrange them as shown
in Fig. 1 on the right?

Figure 1

3.1.2. (a) Draw how to connect 12 computers by cables in a network so that
the following conditions are met:

• each cable connects two computers;
• exactly 3 cables are connected to each computer;
• any computer can send a message via cable to any other computer so
that it passes through at most 2 other computers along the way.

(b) The same, only instead of computers, processors on one side of the
printed circuit board are considered; it is additionally required that the

29
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cables are located on the same side of the circuit board and do not cross
each other.

3.1.3. (a) Some pairs of (a finite number of) cities are connected by (non-
stop) flights. Are there necessarily two cities from which you can fly nonstop
to the same number of cities?

(b) A foreign intelligence agent reported that each of the 15 former
republics of the USSR concluded an agreement with exactly 3 others. Can
you trust him?

(c) In a kingdom there is the capital, the city of Dalniy, and several other
cities. Some pairs of cities are connected by roads (roads may intersect).
There are 21 roads that leave the capital, one road that leaves Dalniy, and
20 roads that leave each of the remaining cities. On each road, there is a
bus line. Is it possible to ride a bus from the capital to Dalniy (possibly
with transfers)?

3.1.4. A convex polygon (different from a triangle) is divided into triangles
by several diagonals that do not intersect anywhere except at vertices. A
triangle is called good if two of its sides are sides of the original polygon. Is
it true that there always exist at least two good triangles?

3.1.5. Is it true that in any company of six people there are either three
pairwise acquaintances or three pairwise unfamiliar people?

The following problem is interesting only if the solution contains rigorous
reasoning.

3.1.6. In a group of several people, some people are familiar with each other
(i.e., they are friends), and some are not. Every evening one of them arranges
dinner for all his friends and introduces them to each other. After each
person has arranged at least one dinner, it turns out that there are two
people who still are not friends. Prove that at the next dinner they will not
be able to meet either.

3.1.7. (a) In the Duma there are 450 deputies, each of whom threatens
exactly one other deputy. Prove that you can choose 150 deputies so that
among them no one threatens any other.

(b) In an infinite group of gangsters, each one hunts after exactly one
other. Prove that there is an infinite subset of gangsters in which no one is
hunting for any other.

(c) In elections to the City Duma, each voter, if he comes to the polls,
votes for himself (if he is a candidate) and for all those candidates who are
his friends (the list of candidates and their friends is fixed). The forecast
of the political service of the mayor’s office is considered good if it correctly
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predicts the number of votes cast for at least one of the candidates, and it
is not good otherwise. Prove that with any forecast, voters can turn up in
such a way that this forecast will turn out to be not good.

3.1.8. A tourist who arrived in Moscow by train wandered around the city
all day. Having dined in a cafe in one of the street intersections she decided
to return to the train station along the streets which she had walked an odd
number of times before. Prove that she can always do this.

3.1.9. In some community, any two acquaintances do not have common
acquaintances, but any two strangers have exactly two common acquain-
tances. Prove that in this community everyone has the same number of
acquaintances.

Suggestions, solutions, and answers

Some solutions in this section were written by S. Erlykov and edited by
A.Gavrilyuk. It is assumed that the reader has already become familiar
with the definitions introduced at the beginning of Section 3 of this chapter,
“Paths in graphs”.

3.1.1. Answer : no. Solution. See [FGI, ch. 6, § 1, problem2].
3.1.2. (a), (b) See Fig. 2. This and other similar problems are discussed

in [CF].

Figure 2. Graph in problem 3.1.2.

3.1.3. (a) Answer : yes, there certainly are.
Solution. We associate with each city a vertex of the graph, and with

each flight an edge connecting the corresponding vertices (cities). We get a
graph with n vertices. (However, the following solution can also be refor-
mulated starting with flights.)
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Assume first that each vertex is an endpoint of some edge. Then the
maximum possible number of edges emerging from one vertex is n− 1, and
the minimum possible is 1, so that there are n − 1 options for the degree
of an arbitrary vertex. Since there are n vertices in the graph, there are
two vertices for which the degrees are equal, that is, from which the same
number of edges comes out.

If there are isolated vertices (with degree 0), then we exclude them from
consideration. The problem reduces to the previous case.

Comment. In essence, this is problem 2.1.5 from Section 1 in Chapter
2, “The Pigeonhole Principle”.

(b) Answer : the agent cannot be trusted.
Solution. Suppose, on the contrary, that each of the 15 countries par-

ticipated in the conclusion of three bilateral treaties. The total number of
treaties is 15/2, since each treaty involves two countries. But this number
is not an integer. Contradiction.

(c) Answer : yes.
3.1.4. Answer : yes.
Suggestion (Written by M. Skopenkov). Put a chip in an arbitrary tri-

angle. At each step, move it to the neighboring triangle, but not to the
one from which it just came. The chip will never be able to return to any
triangle for a second time; at each step it intersects a certain diagonal, and
the movement continues in another half-plane relative to this diagonal. The
triangle from which further movement of the chip is impossible is one of the
desired ones. Now we repeat the process, starting from the triangle found.

3.1.5. Construct a graph as follows. The vertices of the graph corre-
spond to members of our company. Connect the vertices by a red edge if
corresponding members know each other, and with a blue edge otherwise.
Note that any pair of vertices will be connected by an edge. Therefore, from
each vertex of this graph exactly five edges come out.

Therefore, for each vertex at least three edges AB, AC, AD have the
same color. Let is assume that these three edges are red. (It is clear how to
modify the arguments if there are three blue edges.)

If one of the edges BC, CD, and BD, for example BC, is also red, then
the triangle ABC is red. If all the edges BC, CD, and BD are blue, then
the triangle BCD is blue.

So, in any case there is a triangle with sides of the same color.
3.1.7. Solution (Written by A.Kutsenko). (a) We denote the set of

deputies by D. Let A be the largest (by size) subset of the set D in which
no deputy threatens another.

Assume, contrary to what we need to prove, that a = |A| < 150. Note
that each deputy from A threaten some deputy from D − A. We denote
by X the set of deputies from D − A who are not threatened by anyone
from A. The set of D − A contains 450 − a elements, while no more than
a deputies from D − A were threatened by someone from A. Therefore
|X| ≥ 450− 2a > 150.
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Suppose a deputy from the set X does not threaten any deputy from
the set A. Then this deputy can be added to the set A and it will become
larger (while maintaining the condition that no one threatens anyone in it),
which contradicts the maximality of the set A. This means that there is no
such deputy, and each deputy from X threatens some deputy from A.

In particular, this means that deputies from X do not threaten each
other. But we know that |X| > 150 > |A|, and this contradicts the maxi-
mality of the set A.

(b) We will argue similarly to part (a). Let D be the set of all gangsters.
We will use contradiction. Suppose that any subset of gangsters where no
one is hunting for anyone is finite. Now let A be the maximal (by inclusion)
subset of gangsters in which no gangster hunts for any other from A. (It’s
not so easy to justify why such a set A exists, and we won’t do it. To do
this, we would need the Axiom of Choice, one of the most subtle axioms of
set theory.)

Denote by X the set of gangsters from D − A such that no one from A
hunts any of them. Since D is infinite and A is finite (in particular, gangsters
from A hunt for a finite number of gangsters), X is infinite. Suppose there
are gangsters in X who hunt for no one from A. But then these gangsters
can be added to A (while maintaining the condition that no one is hunting
for anyone in it), which contradicts the maximality of A. So every gangster
from X is hunting for someone from A. In particular, this means that
gangsters from the set X do not hunt for each other. But X is infinite, a
contradiction. So, there exists an infinite set of gangsters not hunting each
other.

3.1.8. Let us call “even” those streets along which the tourist walked
an even number of times on the way to the cafe; the rest we call “odd”.
On her way to the cafe the tourist left the station one time more than she
returned, which means that she took the streets coming out of the station an
odd number of times. Therefore, an odd number of odd streets are coming
out of the station. Similarly, an odd number of odd streets also are coming
out of the cafe, and there is an even number of odd streets from any other
intersection.

Let the tourist go from the cafe along an arbitrary odd street passing
each street at most once. When she enters an intersection other than the
train station, there remains an odd number of unused odd streets coming
out of this intersection. Therefore, she can leave this intersection. So, at the
moment when the tourist has nowhere to go, she is already at the station.

3.1.9. Consider the person A with the maximum number of acquain-
tances. Let his friends be B1, B2, . . . , Bn. Every two people Bi and Bj have
a common friend A, so Bi and Bj do not know each other. B1 and Bi

(i = 2, 3, . . . , n) have a common friend Ci different from A. If Ci and Cj

for some i �= j are the same person, then Ci and A have common friends
B1, Bi, and Bj , which is impossible by hypothesis. So B1 has at least
n acquaintances: A,C2, C3, . . . , Cn. Due to the maximality of n, B1 has
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exactly n acquaintances. Similarly, all Bi, i = 2, 3, . . . , n, have exactly n
acquaintances, from which, in turn, it follows that all friends of Bi also have
n acquaintances. Each person is familiar with either A or one of the Bi’s,
which means that everyone in the society has exactly n acquaintances.

2. Counting in graphs (2)

3.2.1. A person is called noncommunicative if she has less than 10 friends.
A person is called eccentric if all her friends are noncommunicative. Prove
that the number of eccentric people does not exceed the number of noncom-
municative people.

3.2.2. Ten people came to a party. Those who do not know any of the
other people leave. Then those who know exactly one person among those
remaining also leave. Then, similarly, those who know exactly 2, 3, 4, . . . , 9
among those remaining at the time leave. What is the maximal number of
people that can remain at the end?

3.2.3. There are 2007 teams that participated in a tournament where every
team plays every other and there are no draws. Find the maximal possible
number of triples of teams such that the first team defeated the second, the
second defeated the third, and the third defeated the first.

3.2.4. Some pairs of cities are connected by (nonstop) flights. Cities con-
nected by a flight are called adjacent. Could there be exactly 100 flights in
this country if for any two adjacent cities there is exactly

(a) one city adjacent to both of them;
(b) two cities adjacent to both of them?

3.2.5. A company employs 50 000 people. For each of them, the sum of
the number of her immediate supervisors and her immediate subordinates
is 7. On Monday, each employee issues an order and gives a copy of this
order to each of her immediate subordinates (if any). Further, every day
the employee takes all the orders she received in the previous days and
either distributes copies of them to all her immediate subordinates or, if she
doesn’t have any, carries out the orders herself. It turned out that on Friday
no papers in the company have been distributed. Prove that the company
has at least 97 employees who have no supervisors.

3.2.6.* In each of the three schools, there are n students. Any student has
exactly n+1 friends among students from two other schools. Prove that you
can choose one student from each school so that each of the three selected
students is a friend of the other two.
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Suggestion. To solve the problems of this section, you need not study the
structure of the company, the flight network, or the tournament, but just
count the number of some objects: couples (manager, subordinate), couples
of adjacent cities, couples of acquaintances, triples of acquaintances, etc.

Suggestions, solutions, and answers

3.2.1. We will call noncommunicative people who are not eccentrics “just
noncommunicative”, and eccentrics who are not noncommunicative, we will
call “just eccentrics”. Noncommunicative eccentrics cannot be familiar with
just eccentrics, which means that just eccentrics are familiar only with just
noncommunicative people. Everyone who is just eccentric is familiar with at
least 10 just noncommunicative people, and every noncommunicative person
is familiar with at most 9 just eccentrics.

Let there be n acquaintances between just eccentrics and just noncom-
municative people. The number of just eccentrics is at most n/10, since the
number of just noncommunicative people is at least n/9. We see that there
are at most as many just eccentrics as just noncommunicative people, which
means that the total number of eccentrics cannot exceed the total number
of noncommunicative people.

3.2.2. Answer : 8.
Suggestion. It is easy to verify that if all who came, except for two

people A and B, are familiar with each other, then at the end all except A
and B stay; i.e., 8 people stay. We prove that 9 people could not stay. It
is clear that the person A, who initially had the smallest number of friends
(k), will leave at some point. If no one else leaves, then everyone else (except
A) had more than k acquaintances before A left and less than k + 1 after
he left. But then A should be familiar with everyone else, i.e., k = 9, which
contradicts the strict minimality of k.

3.2.4. (a) Answer : no.
Hint. In such a graph, the number of edges E is divisible by 3.
(b) Answer : no.
Hint. In such a graph, the number of edges E is divisible by 3. Indeed,

we calculate in two ways the total number of pairs (the edge and the triangle
containing it). Since there are two triangles adjacent to each edge, then the
number of such pairs is 2E. Since each triangle has three edges, the amount
of 2E is equal to three times the number of triangles. So E is divisible by 3.

3.2.5. Solution (from the site http://problems.ru). If the company has
k supreme bosses (i.e., employees with no supervisors), then every employee
should finally see at least one of the k orders issued by these bosses on
Monday. On Monday no more than 7k workers saw them, on Tuesday there
are no more than 7k ·6, on Wednesday there are no more than 7k ·36 workers.
Everyone who saw these orders on Thursday has no subordinates; that means
they all have 7 supervisors each. These supevisors could see one of k orders
only on Wednesday. Therefore, the number of these supevisors does not
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exceed 7k · 36, and each of these supervisors has at most 6 subordinates.
Thus, on Thursday, orders have been seen by at most (7k · 36) · 6/7 = 6k · 36
employees. Therefore 50 000 ≤ k + 7k + 42k + 252k + 216k = 518k, which
means that k ≥ 97.

3. Paths in graphs (2)

A graph can be thought of as a set of points (for example, on a plane), some
pairs of which are connected by broken lines.1 The points are called vertices
of the graph, and the broken lines are called edges. Only the endpoints of
each broken line are the vertices of the graph; broken lines can intersect at
nonendpoints, but such intersection points are not considered as vertices.

We assume that each edge connects different vertices and each pair of
vertices is not connected by more than one edge. The common name for
such graphs is graphs without loops and multiple edges or simple graphs.

A common example of a graph is a dating graph. The vertices of this
graph correspond to people; two vertices are connected by an edge if the
corresponding two people are dating.

The number of vertices and the number of edges of the graph in question
are denoted by V and E, respectively.

The degree of a vertex of a graph is the number of edges coming out of
it.

3.3.1. Degrees of vertices. (a) In any graph there are always two vertices of
the same degree.

(b) The sum of the degrees of the vertices in any graph is even and is
equal to 2E.

A path in a graph is a sequence of vertices such that any two consecutive
vertices are connected by an edge. A cycle is a path in which the first and last
vertices coincide. A path (cycle) is called nonself-intersecting (or simple) if
it passes through each vertex at most once and does not pass any edge twice
in a row.

A graph is called connected if any two of its vertices can be connected
by a path.

3.3.2. Suppose we are given a graph with degree of any vertex at least k,
where k ≥ 2. Prove that in this graph there is a simple cycle of length not
less than k + 1.

3.3.3. Let a 2-connected graph, i.e., a connected graph which remains con-
nected if any of its edges is removed, be given. Two players take turns

1A formal definition of a graph, path, and cycle is given, for example, in [GDI2].
The presented problems can be solved using the informal definitions given here. In this
section, only undirected graphs are considered.
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putting arrows on the edges. The player loses if after her move it becomes
impossible to go from some vertex to some other vertex, moving only along
arrows in the direction they point at and along edges without arrows. Prove
that if both players choose optimal moves the game will end in a draw.

3.3.4. (a) In the city there are no bridges, no tunnels, no dead ends. All
intersections are formed by the intersection of exactly two streets (streets
are not necessarily straight). When making an inspection tour of the city,
the governor, at each intersection, instructs the driver to turn either right
or left. After some time the governor’s driver noticed that they were driving
along the road along which they had already driven. Prove that they are
traveling along this road in the same direction as they did the first time.

(b)∗ Two climbers stand at sea level on opposite sides of a ridge (broken
line with a finite number of sides) entirely above sea level. Prove that they
can meet staying all the time at the same height above sea level.

The distance between two vertices of a connected graph is the minimal
number of edges in the path connecting them (the minimum is taken over
all paths connecting these vertices). The distance in the graph satisfies
the triangle inequality. The diameter of a connected graph is the largest
distance between vertices of the graph.

3.3.5.* Suppose that in a connected graph of diameter d the minimal cycle
length is 2d+ 1. Prove that the degrees of all vertices are equal.

Suggestions, solutions, and answers

3.3.1. (a), (b) These problems are reformulations of the problems 3.1.3(a),
(b).

3.3.2 (Written by M. Skopenkov). Put the chip on an arbitrary vertex.
At each step, we will move it to the neighboring vertex, which it has not
visited yet. Consider a position from which further movement of the chip is
impossible.

3.3.4 (Written by M. Skopenkov). (a) Color the areas in a checkerboard
pattern. Then the governor goes around the black areas clockwise, and
around the white ones counterclockwise.

(b) Let the ridge be the graph of the function f(x). Consider the graph
{(x, y) : f(x) = f(y)}. See also §6 in Chapter 7, “Phase Spaces”.

3.3.5. See solution in the article [Kru].
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Chapter 4

Constructions and invariants

This topic is also appropriate for students of grades 6 and 7, but they need
to use not this chapter, but the article [LT] and the corresponding chapter
of the book [FGI].

1. Constructions1 (1) By A.V. Shapovalov

If, when asked the question “Can it happen?”, you suspect that the answer
is “It can”, then it is worth asking yourself: “How can this happen?” Clarify
the question: “What properties should this construction have?” Additional
knowledge will greatly narrow your search. Ask questions throughout the
construction. You will be surprised to see how many constructions turn out
to be logical and the only ones possible.

Often there are many examples, but only one is needed. An excess of
freedom can be confusing: it is not clear where to start. Apply common sense
and natural considerations. They limit the field to search for an example,
but then the search speeds up and is easier. Generally your experience is
much bigger than you think. The answer may be a well-known object ; you
just need to look at it at the right angle.

4.1.1. Two triangles have two sides equal, and also the altitudes drawn to
their third sides are equal. Are these triangles necessarily congruent?

4.1.2. Is it true that positive numbers can be put at the vertices of an
arbitrary triangle so that the length of each side is equal to the sum of the
numbers at its endpoints?

4.1.3. In a math circle, each participant has exactly 6 friends. Can each
pair of participants have exactly two mutual friends?

A construction with a large number of parts is easier to build from
identical “bricks”. Even if they all cannot be the same, try to take more

1This collection of problems is based on the books [Sha14] and [Sha15].
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similar ones. You can still choose two types of parts and calculate how many
parts of each types are needed.

If the parts “for assembly” are given and they are distinct, then it is
worth trying to combine these parts into identical blocks and to build from
these blocks.

4.1.4. A nonnegative integer is called a zebra if its digits alternate in par-
ity (even and odd) and there are at least three different digits. Can the
difference of two 100-digit zebras be a 100-digit zebra?

4.1.5. The faces of the parallelepiped with edges 3, 4, and 5 are divided into
unit squares. In each square was entered a natural number. Consider all
possible rings one square wide, parallel to some face. Can the sums of the
numbers in the squares in each such ring be the same?

In problems where equal parts are required, you have to choose a form for
the parts. This might help: the parts are obviously equal if they are obtained
from each other by symmetry, translation, or rotation For example, in the
case of the square, cuts preserved by a rotation through 90◦ are popular, and
in the case of a regular triangle, the cuts preserved by a rotation through
120◦ are popular. For symmetric objects the search of an example starts with
symmetrical or “almost symmetrical” constructions. Symmetry and the
idea of “arranging objects in a circle” are also applicable in nongeometrical
problems.

4.1.6. Is it possible to number the edges of a cube with numbers −6, −5,
−4, −3, −2, −1, 1, 2, 3, 4, 5, 6 so that for each triple of edges coming from
a vertex, the sum would be the same?

4.1.7. The circle was cut into several congruent parts. Does the boundary
of each part necessarily pass through the center of the circle?

If conflicting requirements are imposed on the design, take a closer look.
Often these contradictions are imaginary. E.g., large perimeter does not
contradict small area. In general, for the words like “a lot” and “a little”,
you need to be able to give exact mathematical meaning in the solution
using equalities and inequalities.

4.1.8.* An iceberg having the form of a convex polytope floats in the sea.
Can it happens that 90% of its volume is below the water level and at the
same time more than half of its surface is above the water level?

4.1.9. Let A and B be two cubic dice with nonstandard sets of numbers on
the faces. Let t(A) be the result of throwing A, and let t(B) be the result
of throwing B. We throw dice independently of one another and say that
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the die A wins over the die B if the probability that t(A) > t(B) is greater
than the probability that t(B) > t(A). Can there be three dice A, B, and
C such that A wins over B, B wins over C, and C wins over A?

Here is an equivalent definition of when A wins over B that does not use
probability. For a pair of dice A and B we have 36 ordered pairs (number
on a face of A, number on a face of B). Die A wins against die B if the
number of pairs where the first number is greater than the second exceeds
the number of pairs where the second number is greater than the first.

Invisible barriers in the solver’s head can interfere with solving the prob-
lem. If the obvious solution is not visible, you need to expand the list of
options until it is complete (if possible). Inertia of thinking manifests itself
in the fact that one might miss the key option or might not suspect that
there is more than one option. Use the “Sherlock Holmes Method”: “When
you have eliminated all that is impossible, whatever remains, however im-
probable, must be the truth.”

Figure 1

4.1.10. There are 9 apples on the table, forming 10 rows of 3 apples in each
(see Fig. 1). Nine rows are known to have the same weight, but the weight
of the tenth row is different. There are electronic scales on which for 1
dollar you can find out the weight of any group of apples. What is the least
amount of money that must be paid to find out the weight of the row that
is different?

4.1.11. Can a line break a hexagon into four congruent triangles?

Reduction is the procedure that reduces a complicated problem to a sim-
pler one. So, if a complex structure cannot be built immediately, construct
its necessary part. Even if this part cannot be completed to the whole, solv-
ing a simplified problem can serve as a warm-up, after which you will return
to the difficult problem already with accumulated experience.
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4.1.12. Baron Munchausen says he has a multidigit palindrome (that is, a
number that reads the same from left to right and from right to left). Having
written it down on a paper tape, the baron made several cuts between digits.
The tape broke into N pieces. By arranging pieces in a different order, the
baron saw that the numbers 1, 2, . . ., N were recorded on the pieces (each
number exactly once). Can the baron’s claim be true?

When creating a construction, ambiguity of choice may interfere. In a
bottleneck, everything is clear or uncertainty is minimal, which reduces the
brute-force search. Starting from a bottleneck, we will either quickly arrive
at a contradiction or we will build a large piece of construction. How do
we look for bottlenecks? Take a closer look: they serve as obstacles to the
construction of the structure or they seem to be such.

4.1.13. Having written down the numbers 1, 1
2 ,

1
3 , . . .,

1
10 in some order,

connect them with the four arithmetic signs so that the resulting expression
is equal to 0. (Parentheses cannot be used.)

4.1.14. Do there exist three congruent heptagons, all of whose vertices
match but none of whose sides match?

4.1.15. Is it possible to cut a triangle into four convex figures: triangle,
quadrilateral, pentagon, and hexagon?

Creating a gradual construction one goes step by step through auxiliary
constructions — blanks. On each step, the construction is improved to the
next. In the workpiece, the requirements for the final design are fulfilled only
partially. We keep principle conditions but temporarily forget or weaken
technical ones.

4.1.16. Can all sides and all altitudes of an acute triangle have integer
length?

4.1.17. Prove that there exists a palindrome divisible by 6100. (Recall that
a palindrome is a number that does not change when writing its digits in
reverse order.)

Finally, with construction by induction, the result is obtained gradually,
but in an infinite number of steps. Section 5 of Chapter 2, titled “Finite
and countable sets”, is devoted to such constructions.

Continue your acquaintance with constructions using article [GK] and
books [Sha14,Sha15,Sha08].
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Suggestions, solutions, and answers

Below, problem solutions and paths to solution are carefully separated. A
solution is what the problem solver ideally should write. A path to the
solution must remain in the heading; here it explains how a solution could
be devised. In construction problems, a solution and a path to a solution
usually have little in common.

The solution of a construction problem consists of two parts: an example,
that is, a description of the construction, and proof that the construction
satisfies the condition of the problem. For our problems, the second part
is not difficult and is usually omitted. But sometimes from many possible
examples one still needs to choose one for which the proof is simpler.

4.1.1. Answer : not necessarily.
Solution. Consider the isosceles triangle ACD and the point B on the

extension of the base DC. In triangles ABC and ABD, the sides AB and
altitude AH are common, and the sides AC and AD are equal. However,
these triangles are not equal: one is a part of the other.

Path to solution. Let’s try to construct a triangle with two sides b, c
and the altitude h drawn to the third side. To do this, draw a line l (a third
side will lie on it) and build the vertex A at a distance of h from l. Two
other vertices of the triangle must lie on this line at distances b and c from
point A. Drawing circles of the indicated radii with center at point A, we
obtain (for b > h and c > h) two points of intersection of each of the circles
with l. We see that, up to symmetry, there are two fundamentally different
triangles: when the vertices are selected on one side of the point of the line
nearest to A and on different sides of it.

4.1.2. Answer : it is true.
Solution. We inscribe a circle in the triangle. Segments of tangents from

each vertex to the circle are equal. We write down the length of such a
segment at the vertex. Since each side consists of two such segments, the
sums are at its endpoints and will be equal to its length.

Path to solution. It is natural for a geometer to look not just at num-
bers, but at the lengths of the segments. This reduces the problem to the
following: break up each side into two smaller segments so that for each
vertex the lengths of two adjacent segments are equal. Pairs of equal seg-
ments in geometry are not rare, but the solution for three pairs of equal
segments suggests itself: these, of course, are the segments of the tangents
to the inscribed circle.

But you can also solve this problem algebraically: compose a system of
linear equations for the desired numbers, solve it, and check positivity of
solutions with the help of the triangle inequality.

4.1.3. Answer : they can.
Solution. Let 16 people stand in the cells of a 4× 4 square, and assume

that everyone is a friend only with people in his column and his row.
4.1.4. Answer : it can.
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Solution. For example, 50945094 . . . 5094−25472547 . . . 2547 = 25472547
. . . 2547.

Path to solution. Let’s look for a zebra equal to the sum of two zebras.
It will be simpler to take equal terms. For two-digit numbers, there are such
examples: 25+ 25 = 50, 47+ 47 = 94. (Of course, for two-digit numbers we
do not require three different digits.) From these blocks we can assemble a
100-digit example.

4.1.5. Answer : they can.
Solution. In all squares of a 3×4 face we write the number 5, in squares

of a 3× 5 face we write 8, and in all squares of a 4× 5 face we write 9.
Path to solution. Let us look for a solution where in all squares of a 3×5

face the same number x is written, in squares of a 4×5 face y is written, and
in squares of a 3×4 face z is written. Comparing the sums in rings parallel to
different faces, we obtain the system of equations 5x+4z = 3z+5y = 4y+3x.
One of the solutions of this system is (8, 9, 5).

4.1.6. Answer : it is possible.
Solution. See Fig. 2.

−5

5

−4

4

2

1
−1

−2

−3

3

−6

6

Figure 2

Path to solution. Adding sums at all vertices, we get twice the sum of
numbers at all edges, i.e., 0. Hence, the sum at the vertices is zero. The
endpoints of edges with opposite numbers cannot coincide; otherwise the
sum at such an endpoint is not 0. Also endpoints of edges with numbers
6 and −6 cannot be connected by an edge because otherwise in one of its
endpoints, the sum is not 0. This leads to the following idea: one should
search for a symmetric solution by placing opposite numbers at opposite
edges.

4.1.7. Answer : not necessary.
Solution. See Fig. 3. First we divide the circle into six equal arcs; then

using the same arcs we connect the division points with the center of the
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Figure 3

circle. We get six equal symmetrical parts. Divide each part into two equal
smaller parts with a line segment.

Path to solution. A bottleneck is a piece of the boundary of a part that
is congruent to an arc of the original circle. It is clear that each part has
such pieces. If all of them are parts of the original circles, then most likely
all parts are obtained from each other by turning around the center. At
least one of the parts contains the center, so each of them will contain the
center. So there should be arcs on the boundary of each piece that do not
lie on the original circle. Connecting equidistant points with the center of
a circle by such arcs we split a circle into n equal parts for any n. Every
part is bounded, among other things, by two convex arcs; the one going
to the center is 1/6 of the circle, and the other one is 1/n. If we want to
cut further, it would be worth making these arcs equal. And indeed, when
divided into 6 parts, the figure turns out to be symmetrical, and it can be
divided into two equal parts by a segment.

4.1.8. Answer : it can.
Example. A regular pyramid floating with its apex down. The base of

the pyramid is parallel to the surface of water and is located so that 90% of
the volume is in the water. The angle of inclination of the lateral faces to
the base is taken to be less than arccos(2

3
√
0.92 − 1).

Proof that the given example satisfies the condition. Let the area of
the side surface of the pyramid be equal to S. Then the area of the base is
S · cosα, where α is the angle of inclination of the lateral faces to the base.
By construction, part of the pyramid in the water is the pyramid similar to
the original one with the similarity coefficient k = 3

√
0.9. The area of the

side surface of this part is k2S. By construction, cosα > 2k2−1 (such angle
α exists because 2k2 − 1 < 1). But then 2k2S < S + S · cosα; that is, less
than half the surface of the pyramid is in the water.

Path to solution. At first sight, this is impossible; after all, only a small
hat of a spherical iceberg is above the water. However, the cube will have a
larger area since it does not get fatter in the middle like a ball. Now, why
should an iceberg expand when going down, or stay the same? Why can it
not get narrower going down?! Take the inverted pyramid. Only a flat piece
near the base will stick out above the water level, and most of the side faces
will be under water. Why most? Well, because the lateral surface is larger
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than the base area, and much larger, and 90% (or so) of it is in the water.
And why, in fact, most? Indeed, if you flatten the pyramid, then the side
surface will be close to the area of the base, but part of it is still above the
water! And well, let’s calculate this carefully. . . .

4.1.9. Answer : it can.
Solution. Suppose, for example, that die A has the number 3 on all

faces, the die B has 2, 2, 2, 2, 5, 5, and the die C has 1, 1, 4, 4, 4, 4. When
comparing the dice A and B, the pair (3, 2) will appear 24 times and the pair
(3, 5) will appear 12 times. When comparing the dice B and C, the winning
pairs for B are the pair (2, 1) (appears 8 times), the pair (5, 1) (appears 4
times), and the pair (5, 4) (appears 8 times), for a total of 20 wins, which is
more than half. Finally, when comparing dice C and A, the pair (4, 3) will
appear 24 times, so C wins over A.

Path to solution. It is clear that a die with a big sum of points on
all faces has an advantage; therefore it is more convenient to look for an
example where the sums on all dice are the same. A brute-force search of
options is shorter if among the numbers on faces many are equal. Finally,
the following idea helps to construct an example: “Since the number of wins
is more important than the point difference of each particular win, try to
win a little and to lose a lot.”

4.1.10. Answer : 0 dollars.
Solution. The sum V of weights of the three vertical rows is equal to the

sum of weights of all apples. The sum D of the weights of the six diagonal
rows is equal to twice the sum of the weights of all apples. So 2V = D. If in
this equality 8 of the nine terms are equal, then the ninth is equal to each
of them. So, the horizontal row is different.

Comment. Deviation of one row is possible; for example, see Fig. 4.

4

1

4

44

44

1 1

Figure 4

4.1.11. Answer : it can.
Solution. See Fig. 5. The line divides the hexagon into 4 right triangles

with legs m and n.
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Path to solution. It seems unbelievable even that one line can split a
hexagon into four triangles. For starters, it is good to understand how in
general this can happen! But if it can, then this is an explicit bottleneck. In
triangles, one side belongs to the section, but the rest should be sides of the
hexagon. There are already 8 sides! However, the sides of the triangles can
also be parts of the sides of the hexagon. So, the cut intersects at least two
sides of the hexagon.

m
m

m

m

n

n
n

n

Figure 5 Figure 6

In this case, pairs of angles with the sum of 180◦ are formed. Now we
use that the triangles are congruent. If the angles in the pair are not equal,
then in one of the congruent triangles there is a pair of angles with the
sum of 180◦, which is impossible. This means that the angles are equal;
that is, the cut intersects the sides at right angles. So, four right-angled
triangles adjoin legs to the section in pairs; the vertices with right angles
are pairwise equal. It remains to see that the adjacent legs of the triangles
are not equal; otherwise the pair would form an isosceles triangle, which
would be connected to the rest of the hexagon by one vertex. This means
that each pair of triangles forms a quadrilateral, as in Fig. 6, and by gluing
two such quadrilaterals along the side that extends the cut, we obtain the
desired hexagon.

4.1.12. Answer : they can.
Solution. Here is an example for N = 19 (points mark the location of

the cut):
9.18.7.16.5.14.3.12.1.10.11.2.13.4.15.6.17.8.19.

Path to solution. In a palindrome, all digits (except, perhaps, the middle
one) can be divided into pairs of equal ones. Therefore, at most one digit
appears an odd number of times, and all other digits must appear an even
number of times. We will look for the minimum N such that for a set of
digits in writing the numbers 1, 2, . . . , N this parity condition is satisfied.
However, if N = 2, . . . , 9, then the numbers 1, 2, . . . occur once in a set, and
if N = 10, . . . , 18, then the numbers 0 and 9 occur once. So, the smallest N
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for which the parity condition is satisfied is N = 19; in the record 1, 2, . . . , 19
the digit 0 occurs 1 time, the digit 1 occurs 12 times, the rest of the digits
occur 2 times each. Now, starting from the middle, you can construct a
palindrome.

4.1.13. Answer : for example, 1
5 ÷ 1

10 ÷
1
7 − 1

3 ÷ 1
9 ÷ 1

2 − 1÷ 1
6 − 1

4 ÷ 1
8 .

Path to solution. The bottleneck is the fraction 1
7 . We must divide

by it; otherwise it, and possibly its multiple, forms a single fraction with
a denominator that is a multiple of 7. Then, when reduced to a common
denominator, the denominator must be a multiple of 7, and all but one of
the numerators is a multiple of 7. As a result, the algebraic sum will be a
fraction which is irreducible by 7 and, therefore, will not be an integer.

4.1.14. Answer : they do.
Solution. In Fig. 7 the solid, dashed, and dot heptagons are obtained

from each other by rotations around a central point.

Figure 7

Path to solution. There are many bottlenecks in this design. In three
heptagons there are 21 sides. Between seven points there are

(7
2

)
= 21

segments. So, each segment should become the side of a heptagon.
Consider the convex hull of 7 vertices. Suppose that at least 4 of them

are on the boundary. Then some diagonal AB of the convex hull separates
some two vertices C and D. As shown above, the segment AB will be a
side of one of the heptagons, and C and D will be vertices of this heptagon.
Since C and D lie on opposite sides of AB and the heptagon lies entirely
inside the hull, it intersects itself. We get a contradiction. Therefore, the
convex hull is a triangle.

The repetition of the triple (three vertices, three heptagons) suggests
looking for an example where heptagons transform into each other with a
rotation by a third of a full turn. Place three vertices at the vertices of a
regular triangle, one in its center, and three more at the vertices of a smaller
regular triangle with the same center. Further it remains to color the edges
in three colors so that edges of each color make a heptagon. It’s more
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convenient to preset how colors turn into each other when turned clockwise
and to paint edges turning into each other by triples.

4.1.15. Answer : yes.
Solution. For example, see Fig. 8.

Figure 8

Path to solution. The first bottleneck will be the contact of parts between
themselves and with the sides of the original triangle. Indeed, due to the
convexity, each of the parts is in contact with no more than three other
parts. So the remaining sides of a part must lie on the sides of the original
triangle. There are three such sides for the hexagon, at least two for the
pentagon, and at least one for the quadrilateral.

Second bottleneck: this is the connection of parts to the angles. It
is important to understand that removal of any part should not lead to a
breakdown of the original triangle into disconnected parts. This is obvious
for nonhexagonal parts; all other parts are connected through the hexagon.
Well, if the original triangle falls apart after removing the hexagon, then the
pentagon touches no more than two sides and not more than two other parts,
which is a contradiction. From this property it follows that the adjacency
of the parts to the original triangle can be only like this: two vertices of
the original triangle belong to the hexagon, and the third belongs to the
pentagon. All further adjacencies and the main picture are determined
unambiguously.

From the same considerations, we can prove that a triangle cannot be cut
into more than 4 convex polygons with different numbers of sides (see [Z]).

4.1.16. Answer : they can.
Solution. For example, in an isosceles triangle with base 30 cm and sides

25. The altitude dropped to the base divides it into two right triangles, and
by the Pythagorean theorem it is 20. In these triangles, the angle against
the leg of length 15 is less than 45◦; therefore the angle at the apex of the
isosceles triangle is acute. Its area is S = 300. So, the altitude dropped to
the side is 2 · 300/25 = 24.

Path to solution. Weaken the condition: let the triangle be acute or
right. Among the right triangles with integer sides, Egyptian is the most well
known with legs 3 and 4 and hypotenuse 5. There are already two heights
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that are integers, but the third height is not an integer; it is 3 · 4/5 = 2.4.
We use this example as a workpiece. If all sides are increased proportionally
by 10 times, then not only will the sides remain integers, but also the height
will become integer. The essential thing in the workpiece was that both sides
and the area were integers. But then it is easy to make an acute triangle
out of two right ones.

4.1.17. Solution. We show first that there is a palindrome Π, divisible by
2100. Let A be the number obtained by writing the digits of 2100 in reverse
order. We write down the digits of the number A, then 100 zeros, and,
finally, we write 2100 on the right. This gives us a palindrome. It is equal
to the sum of a number that ends in more than 100 zeros and the number
2100. Both terms are divisible by 2100; therefore their sum is also divisible
by 2100.

Write the palindrome Π three times in a row. Get a palindrome Π1,
divisible by 3. Then we write the palindrome Π1 three times in a row.
We get that the palindrome Π2, divisible by Π1, with the quotient written
using three units and several zeros, is divisible by 3, so Π2 is divisible by 9.
Continuing similarly, after 100 steps we get the palindrome Π100, divisible
by 3100. It remains to notice that all palindromes built along the way are
also divisible by Π, which means that they are also divisible by 2100.

2. Invariants I (1)
By A.Ya.Kanel-Belov

When solving various classes of problems, it often helps to apply a very
useful trick, based on the observation that during some transformations a
certain quantity does not change, i.e., is invariant.

Here is a simple illustration.

4.2.1. The cells of the square n × n table have plus signs and one minus
sign, as shown in Fig. 9. One can simultaneously change the sign in all cells
located in one row or in one column. Prove that no matter how much we
carry out such sign changes, we will not be able to get a table consisting of
just plus signs (a) for n = 4 and (b) for n = 5.

+ − + +

+ + + +

+ + + +

+ + + +

Figure 9
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4.2.2. The circle is divided into 6 sectors, in which the numbers 0, 0, 1, 0, 1, 0
are written. One can simultaneously add ones to the numbers standing in
two neighboring sectors. Is it possible by several such steps to make the
numbers in all sectors equal?

4.2.3. Each vertex of the cube contains a number. In one step increase both
numbers placed at (any) one edge by one. Is it possible in several such steps
to make all eight numbers equal, if the numbers were originally placed, as
shown (a) in Fig. 10 and (b) in Fig. 11?

1 0

0 0

0 0

0 0

Figure 10

1 0

0 1

0 0

0 0

Figure 11

In the previous problems, the invariant was used to prove the impossi-
bility of moving from one position to another. Sometimes an invariant is
used differently, as a means of avoiding a brute-force search.

4.2.4. Two people play on a 1× 30 strip. At the beginning of the game, at
one edge of the strip stands a white checker, at the other stands the black
one. They go in turn, each with the checker of their own color. In one move,
the checker moves by one square forward or backward if this square is not
occupied by the other checker. The player that cannot make a move loses.
Prove that the first player cannot win in this game regardless of the moves
she makes.

4.2.5. On the blackboard 10 pluses and 15 minuses are written. One can
erase any two signs and write instead of them a plus sign if the same signs
are erased, and a minus sign if different signs are erased. What sign will
remain last on the board and why does it not depend on the order in which
the signs are erased?

4.2.6. Several zeros, ones, and twos are written on the blackboard. One can
delete two different numbers and write the third number instead (instead of
0 and 1 write 2 and so on). Prove that if in the result of several erasures
only one number is left, then it does not depend on the order in which the
erasures were made.
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In the previous problems, we made sure that for the proof of the inability
to move from one position to another it suffices to present an invariant taking
different values in these positions. However, it is clear that if the invariant
you constructed gets the same value in two positions, this does not prove
the possibility of transition from one position to another, as some obstacles
may occur.

4.2.7. Computer BK-0000 has only 2 memory cells, each of which may store
a single integer. The computer language includes 3 operations: operation
P : (a, b) → (a+b, b); operation M : (a, b) → (a−b, b); operation S : (a, b) →
(b, a). Initially, the cells contained numbers 93 and 81.

(a) Is it possible after a certain sequence of operations to get the numbers
1 and 0 in cells?

(b) Under what condition can 1 and 0 be obtained from the numbers a
and b?

(c) Under what condition can c and d be obtained from the numbers a
and b?

Suggestions, solutions, and answers

4.2.1. (a) Replace the character “+” with the number 1 and the character
“−” with the number −1. Note that the product of all the numbers in the
table does not change after changing the sign of all the numbers in a column
or in a row, since they simultaneously change the sign of 4 numbers. In the
initial position, this product is equal to −1, and in the table consisting only
of pluses the product is +1, which proves the impossibility of transition.

(b) The method from part (a) now fails, since the evenness of the number
of minuses is changing. Therefore, we apply the reduction; notice that it is
impossible to change exactly one character in the 2 × 2 “corner” table. It
follows that in the larger table only one sign cannot be changed.

4.2.2. Answer : not possible.
Suggestion. We enumerate the sectors counterclockwise starting with

any of them. Add up the numbers in sectors 1, 3, 5, and subtract from this
sum the numbers in sectors 2, 4, 6. The obtained value does not change
under valid operations (in other words, it is an invariant). At the initial
moment, it is equal to 2. If the numbers in all sectors became the same,
then our value would become 0. So, the numbers cannot become equal.

4.2.3. (a)Answer : not possible.
Suggestion. An invariant is the parity of the sum of the numbers in all

vertices.
(b)Answer : not possible.
Suggestion. Color the vertices of the cube in black and white so that the

endpoints of each edge are colored distinctly. An invariant is the sum of the
numbers in white vertices minus the sum of the numbers in black vertices.
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4.2.4. The distance between the pieces will be measured by the number
of free cells between them. Then, after White’s move, the distance between
the pieces is always odd. If some player does not have a move, then the
distance between the checkers is certainly equal to 0. This means that such
a situation can arise only after Black moves.

4.2.5. Answer : “−”.
Suggestion. Replace the character “+” with the number 1 and the char-

acter “−” with the number −1. An invariant is the product of all numbers
on the board.

4.2.6. Suggestion (N. Kodaneva). Let a zeroes, b ones, and c twos be
written on the blackboard. The invariants are the parities of a+b, b+c, c+a.

4.2.7. (a) Answer : no.
Suggestion. The invariant is the divisibility of both numbers by 3.
(b) Answer : if and only if a and b are relatively prime.
Suggestion. Use the Euclidean algorithm.
(c) Answer : if and only if either GCD(a, b) = GCD(c, d) or (a, b) =

(c, d) = (0, 0).
Suggestion. The invariant is GCD(a, b).

3. Invariants II (1)2By A.V. Shapovalov

The word “invariant” means “invariable”. It happens that when we change
an object, some property of the objects is preserved. Most often, a certain
number does not change. For example, when cutting shapes into parts and
assembling new shapes, the total area of the parts does not change. This
means, for example, that it is impossible to cut a square with side 1 into parts
and to assemble from them the equilateral triangle with side 1.5. Indeed,
the total area of the parts is 1, and the area of the triangle is greater.

A little more formal: suppose we can change an object using allowed
operations and suppose that we were able to associate with each object
a quantity that is preserved under any allowed transformation. Then this
quantity is called an invariant3. However, below we will also see nonnumeric
invariants.

In typical problems “on an invariant” you are asked to prove the impos-
sibility of constructing objects. To do this, find an invariant of all objects
that can be constructed, and verify that for the objects the value of the
invariant is different.

But how do we find the invariant? Start with checking some natural
ones: sums, products, areas, perimeters, and their combinations. If the
object depends on integers, then the remainder of division by some number,
most often it is checking for parity, can be an invariant.

2The ideological predecessors of the problems in “Invariants” and “Semi-invariants”
collections were, among others, the corresponding sections in [K-BK08].

3This sentence is not a formal definition of an invariant. But to solve problems, a
formal definition of this concept is not necessary.
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4.3.1. Prove that the checkered 99 × 99 square cannot be cut along the
borders of cells into rectangles (possibly not congruent), with the perimeter
of each rectangle not divisible by 4.

4.3.2. There is a rigid wire border of a square of area 1 dm2. It was cut into
three parts and soldered again. The result is the border of a planar polygon.
What is the largest possible area of this polygon?

An important special case: problems where it is necessary to prove that
in a given process some result is unattainable. Usually the process consists
of a step-by-step transition from one position to another. Here it is sufficient
to find an invariant associated with the position; then positions with values
of the invariant that are different from the value in the initial position will
be unattainable. Invariance needs to be checked at each individual step.

4.3.3. One can replace a triple of numbers (a, b, c) with the triple (a+ b −
c, a+c−b, b+c−a). Is it possible, starting with the triple (2013, 2014, 2015),
to get the triple (2015, 2016, 2017), maybe in a different order?

4.3.4. On the table lies a pile of 200 nuts. In one move, one nut is eaten
from the pile and the pile is divided into two (not necessarily equal) parts.
Then from one pile with more than one nut, one nut is eaten and this pile
is divided into two, etc. Is it possible that after several moves all piles will
have exactly 5 nuts?

When searching for an invariant, the desired quantity can be calculated
not for the entire object, but for a selected subset or several subsets. A
practical way to isolate subsets is to use coloring ; let us say we color the
selected subset or paint all the elements in several colors and make compu-
tations for each color separately, and then the results of these computations
are combined. Section 4 in this chapter, titled “Ways of coloring”, is devoted
to this method.

4.3.5. Pete writes down the string of numbers 0, 1, 2, . . . , 10 in any order.
At each move, he increases two adjacent numbers by 1. Can Pete make all
numbers equal after several moves?

4.3.6. A central 2×2 square was cut out of a chessboard. Can the remainder
be cut into four-cell figures in the shape of the letter “L”?

An invariant might not be a number, but just some kind of nonchanging
property. In simple olympiad problems, nonnumeric invariants are most
often associated with alternation or inability to destroy an element with
some property. This property may be a match, in particular, a synchronous
alternation of two “beacons”.
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4.3.7. A chameleon walks on a checkered board like a lame rook; i.e., with
each move he moves into one cell adjacent to the side. Once in the next
cell, he either paints himself in the color of the cell or paints the cell in his
color. A white chameleon is placed on the board consisting of 8 × 8 black
cells. Can he color the board in a checkerboard pattern?

4.3.8. A die is put on a square of a checkerboard, its face coinciding with
the square. The die is rolled on the board, turning each time along an edge.
At the end, the die returns to the same square standing on the same face.
Can the die be turned by 90◦ about the vertical axis?

Is it true that invariants can only be used to prove the impossibility of
something? No, not only. To prove some property, for example, we can
assume the opposite and then, using invariants, reduce the assumption to a
contradiction.

4.3.9. A cardboard triangle is displaced on a plane, each time rolling through
its side. After rolling 2015 times, it arrived at the original place. Prove that
the triangle is isosceles.

In more complicated mathematical problems, the invariant can be some
important property of a mathematical object, such as rationality and irra-
tionality, finiteness, and infinitness. We just used the concept of orientation
(when we distinguish between the clockwise or counterclockwise orienta-
tion). In higher mathematics, polynomial invariants are common. So in the
next problem, as an invariant it is more convenient to take not a number,
but an expression.

4.3.10. Two points are marked on the line: blue on the left and red on the
right. At one step, you can add or delete two marked points of the same
color if there are no other marked points between them. Is it possible with
such operations to ensure that only two marked points are left on the line,
but the blue one will be on the right and the red one on the left?

Using an invariant one can often prove that the result of several opera-
tions does not depend on their order. To do this, it suffices to introduce a
quantity that does not depend on the order, or does not change for inter-
mediate positions, and to show that the final result is uniquely determined
by this quantity.

4.3.11. On a 1 km × 1 km fenced field additional fences are biult dividing
the field into rectangular sections 5m × 20m and 6m × 12m. What is the
total length of fences?
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4.3.12. One hundred numbers are written on the board: 1, 1
2 ,

1
3 , . . .,

1
99 .

At every move, Pete erases any two numbers and writes instead of them the
ratio of their product to their sum. Prove that the last number on the board
is independent of order of erasing, and find this number.

Knowing which positions or constructions are achievable and which ones
are not helps to solve the problems of type “estimate + example”; after all,
it is easier to prove an estimate for a narrower range of positions, and often
an example with given properties is easier to build.

4.3.13. Thirty coins are arranged in a circle, alternating: three in a row lie
face up, three lie tails up, three face up, three tails up, etc. If a coin has
two distinct neighbors, it can be turned over. What is the largest number
of coins you can put face up using such operations?

4.3.14. Behind the Looking Glass, coins of 7, 13, and 25 guineas are used.
Alice used several coins for the pie and received for the change two coins
more than she paid. What is the lowest possible price of the pie?

Is it possible to use an invariant to prove that some transformation is
possible? This is not that simple. Equal values of an invariant do not
guarantee such possibility: there can be another reasons for impossibility;
for example there can be another invariant taking different values.

4.3.15. Can a paper circle be cut into several parts along straight lines and
arcs of circles in such a way that the pieces can be rearranged to make a
square of the same area?

In the cases where the coincidence of the values of the invariant guaran-
tees the existence of a transformation, this must be proved separately. By
the way, in such cases the invariant is called a complete invariant. For exam-
ple, the invariants indicated in the solutions of problem 4.3.7 and 4.3.13 are
complete: any position with a domino or the same number of matches can
be obtained. The Bolyai–Gerwien theorem claims that in the problem of re-
arranging polygons (i.e., cutting them into polygonal parts and assembling
all the parts), the area of the polygon is the complete invariant.4

A complete system of invariants is a set of invariants such that the
coincidence of the values of all invariants of the set guarantees the possibility
of construction (transformation). For example, for the reconstruction of
polytopes, in addition to the coincidence of volumes, one should require the
coincidence of Dehn’s invariant. Section 9 of Chapter 7, titled “Is it possible
to make a cube from a tetrahedron?”, is dedicated to this invariant.

4There is a remarkable story about this theorem in the book [Bol56a].
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The following problem cannot be solved without building a complete
system.

4.3.16. Let F1, F2, F3, . . . be a sequence of convex quadrilaterals, where
Fk+1 (for k = 1, 2, 3, . . .) is obtained as follows: Fk is cut along a diagonal,
and one of the parts is turned over and glued along the cut to the other
part. What is the largest number of different quadrilaterals this sequence
may contain? (Polygons are considered different if they cannot be aligned
using an isometry.)

A lot has been written about invariants. Some links to problem collec-
tions or analyses of individual beautiful problems are given in the list of
references.

Suggestions, solutions, and answers

4.3.1. Solution. For any cut, the sum of the areas of the parts is 992 and is
an odd number. Since all areas are integers, there is a part with an odd area.
The lengths of the sides of this rectangle are odd, say 2m + 1 and 2n + 1,
where m and n are integers. Then the perimeter of this part is 4m+4n+4
and is divisible by 4.

4.3.2. Answer : 1 dm2.
Solution. Let the contour be cut at points A, B, C. Then the original

square can be divided into 4 parts: the triangle ABC and three polygons
cut off by the sides of the triangle from the square (some parts may turn
out to be degenerate polygons of area 0; in this case, the arguments will be
similar). When drawing up a new contour, the distances between the three
solder points D, E, F will still be equal to AB, AC, and BC (because the
parts of the contour are rigid). Therefore, the triangles DEF and ABC are
congruent. If the cut off polygons do not overlap with �DEF , then the
area of the new contour is equal to the old, and if they overlap, then it is
smaller than the old. Therefore, the maximum area of the new contour is
1 dm2.

4.3.3. Answer : not possible.
Solution. Since (a + b − c) + (a + c − b) + (b + c − a) = a + b + c, the

sum of the numbers in the set is invariant. But the required set has a larger
sum than the original one.

4.3.4. Answer : not possible.
Solution. In one move, the number of nuts decreases by 1, and the

number of piles increases by 1, so the sum of these numbers is an invariant.
Initially, this number is 201. And if we had n piles of 5 nuts each, the sum
would be 5n+ n = 6n, but 6n �= 201 since 201 is not divisible by 6.

4.3.5. Answer : he cannot.
Solution. We color the digits on even places in black, and those on

odd places in blue. Subtract the sum of blue numbers from the sum of
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black numbers. This difference is invariant since both the blue and the
black sums increase at each move by the same number. If all numbers
became equal, then our difference would become zero. However, initially it
is certainly not zero. Indeed, computing the black and the blue sums, we
get 0 + 1 + 2 + · · · + 10 = 55 is an odd number. But then the difference of
the sums is also odd and cannot be equal to 0.

4.3.6. Answer : not possible.
Solution. Color the verticals in turn in black and white. Then the L-

piece at any position covers an odd number of white cells: 3 or 1. The 60
cells remaning after the central square is cut off must be cut into 15 figures,
and these figures include an odd number of white cells. On the other hand,
we have that 30, i.e., an even number, white cells are left. Contradiction.

4.3.7. Answer : he is not able.
Solution. Note that after each repainting of the cell (except the first one)

the color of the chameleon is the same as the color of the cell that he just
left. This means that after each cell repainting, the color of the repainted
cell coincides with the color of one of the neighboring (by the side) cells. So,
in this process, the presence of a one-color domino (a pair of adjacent cells)
will be an invariant. But with the checkerboard coloring, there are no such
dominoes.

4.3.8. Answer : it cannot.
Solution. We color the board in a checkerboard pattern and the vertices

of the die in black and white colors so that the endpoints of each edge are of
different colors. We can assume that initially the die stands on a white cell
and when viewed from above, the upper left vertex is white. Now we note
that when we roll the die, the colors of the cell under the die and the upper
left vertex change synchronously, so they are always the same. But if the die
ends on the same side in the original cell, but with a rotation, these colors
will be different, which means that such a position of the die is impossible.

4.3.9. Solution. We name the vertices of the triangle ABC clockwise,
starting with A. When rolling, the orders ABC and ACB strictly alternate.
If the order ABC was in the initial position, then after an odd number of
2015 rolls we will have the ACB order. Since the triangle lies in the same
place, its vertices fall into vertices. Suppose a triangle is not isosceles. Then
all its angles are different. But since the triangle fell in the same place, each
angle covered an angle equal to it; that is, each vertex fell into place. So, the
order of the vertices is still the same. Contradiction. Therefore, the triangle
must be isosceles.

Comment. In the problem it is claimed that the triangle returned at the
same place, so presentating an example of the appropriate isosceles triangle
is not required. But here it is for those who are curious: the isosceles triangle
with angle 360◦/2015 at the vertex rolls clockwise 2015 times across the side,
leaving the vertex in place all the time. Then it will make a full circle.

4.3.10. Answer : not possible.
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Solution. Moving from left to right, put the letter R under each red dot,
and put B under the blue one. Once again moving from left to right, put the
signs in front of the letters, starting with plus and strictly alternating pluses
and minuses. Considering the record as an expression, we combine the like
terms. We note that such an expression will be invariant: after adding or
deleting monochromatic points, two opposite terms are added or deleted,
and the remaining terms do not change. Since for the initial position our
invariant is B−R and for the desired position it should be B−B or R−B,
a pair with a blue dot on the right is impossible to get.

4.3.11. Answer : 248 km.
Solution. The length of the fences is determined by the sum of the

perimeters of parcels of lands, and the sum of the perimeters is equal to twice
the length of internal fences plus the length of the fence around the field.
But is the sum of the perimeters independent of the number of parcels and of
their location? The sum of the areas is an invariant, but the perimeter is not
the area . . . . However, let us compare: a 5m × 20m parcel has perimeter
50m and area 100m2, and a 6m × 12m parcel has perimeter 36m and
area 72m2. Observe that, in both cases the area is equal to the perimeter
times 2m. But then the sum of the perimeters is equal to the sum of the
areas divided by 2m; that is, 10002/2 = 500 000m = 500 km. Since the
length of the fence around the field is 4 km, the total length of the fences is
(500− 4)/2 = 248 km.

4.3.12. Solution. Rewrite 1 as 1
1 . If Pete erased

1
m and 1

n , then he wrote
1/m·1/n
1/m+1/n = 1

m+n . This means that if you write all the numbers as fractions

with numerator 1, then the sum of the denominators will be invariant. But
then the last remaining number will be equal to 1

1+2+···+99 = 1
4950 .

4.3.13. Answer : 25.
Solution. An example is easy to obtain by flipping two extreme coins in

each tail’s group.
Estimate. We put a match between each two neighboring coins lying

differently, 10 matches in total. Note that a coin can be turned only if there
is a match at one side of it and at the other there is no match; the match
will move to the other side of this coin. Therefore, the number of matches
is an invariant. Coins between adjacent matches are all heads or tails; the
groups of heads and tails alternate. There are always at least 5 groups of
tails; therefore, the number of tails is always at least 5. So, the number of
heads is no more than 25.

4.3.14. Answer : 4 guineas.
Solution. Example. Alice payed with 3 coins of 13 guineas each, and she

received 5 coins of 7 guineas each as the change.
Estimate. The face value of each coin is congruent to 1 modulo 6, so if

Alice paid n coins and got n+2 coins back, the purchase price is congruent
to n− (n+ 2) = −2 = 4 modulo 6. So Alice paid at least 4 guineas.

4.3.15. Answer : not possible.
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Solution. Let R be the radius of the circle. Consider the boundaries
of pieces that are arcs of radius R. Such boundaries can be either convex
or concave. When reassembling, those boundaries that do not go along the
boundary of the assembled figure lie inside of the figure adjacent to the
boundary of “opposite convexity.” Therefore, in the square, convex and
concave arcs cancel out each other; that is, the difference in the sum of their
lengths is zero. But for a circle, the difference between the sums of the
lengths of convex and concave arcs is 2πR. Therefore, the rearrangement of
a circle into a square is impossible.

4.3.16. Answer : 6.
Solution. Estimate. Let ABCD be the original quadrilateral F1. We

can assume that each time the half of the quadrilateral containing the side
CD is flipped, the part containing the side AB remains fixed. Moreover,
the sum of the angle A and the opposite angle does not change. In addition,
the sides lengths do not change. But three values (i.e., lengths of sides other
than AB) can be ordered only in 6 ways.

Let us prove that if two obtained quadrilaterals ABKL and ABMN
have the lengths of the sides ordered identically (BK = BM , KL = MN ,
LA = NA), then the quadrilaterals are equal. It is enough to prove the
equality of the diagonals AK and AM . Assuming that the diagonals are not
equal, so that, say AK > AM , we get either ∠ABK > ∠ABM or ∠ALK >
∠ANM , which contradicts the equality of the sums ∠ABK + ∠ALK and
∠ABM + ∠ANM .

Example. Six different quadrilaterals come from any quadrilateral for
which all side lengths are different, the sums of the opposite angles are also
different, and which, when transforming remain convex and do not degen-
erate into a triangle. The only problem is that quadrilaterals may become
equal when the order of the sides is reversed. However, they are not equal
since when turning one of them over, the sums of the opposite angles will not
be equal. This condition is satisfied, for example, for quadrilaterals whose
area is greater than half of the product of the two longest sides; this inequal-
ity obviously does not hold for nonconvex and degenerate quadrilaterals. In
particular, this condition is satisfied in the example below.

A specific example is the rectangular trapezoid with bases 3 and 6 and
altitude 4.

4. Colorings

In problems on checkered boards, invariants most often take the form of
some coloring of the cells.

4.A. Tilings (1) By A.Ya.Kanel-Belov

4.4.1. Two opposite corner cells were cut from a chessboard. Prove that
the remaining piece cannot be cut into “dominoes” (pieces of 2× 1 cells).
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4.4.2. One 1 × 1 square containing the center was removed from the 4 × 4
square. Can the remaining shape be cut into 1× 3 rectangles?

4.4.3. Where do you need to cut one cell from the 5 × 5 square to be able
to cut the remaining shape into 1× 3 rectangles?

4.4.4. Is it possible to cut a 10× 10 square into figures as below consisting
of four cells of size 1× 1?

4.4.5. From a set containing several 2×2 squares and several 1×4 rectangles
a 10×10 square is assembled, using all the pieces of the set. Then the mosaic
was scattered and one of the 1×4 rectangles was replaced with a 2×2 square.
Will it be possible now to assemble the 10× 10 square?

4.B. Tables (2)5By D.A. Permyakov

4.4.6. In the cells of a 2N × 2N table pluses and minuses are written down
in some way. In one move, you can change the sign in all cells of any “cross”,
that is, of the union of some row and column. Prove that in a few moves
you can get a table with all cells containing only pluses.

4.4.7. All cells of the 8×8 chessboard contain pluses, except one noncorner
cell, which contains a minus. One can simulteneously change signs in all cells
in one row or in one column or in one diagonal (a diagonal is the line along
which a chess bishop moves). Prove that a board where all cells contain
pluses cannot be obtained by such moves.

4.4.8. In each cell of an n× n table there is a minus sign. In one move you
can change signs in one figure of Z-tetramino (i.e., in a checkered figure that
is obtained by a translation, rotation, or reflection from a combination of
cells a1, b1, b2, c2 of a checkerboard). For which values of n can you get a
table with all pluses?

4.4.9. Is it possible to put the numbers 0, 1, 2 in cells of a 100 × 100 table
so that every 3× 4 rectangle would contain 3 zeros, 4 ones, and 5 twos?

In conclusion, we present several problems for “estimate + example”.

5Problems in this section are from All-Union Olympiads.
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4.4.10. What is the largest number of checkers kings that can be placed on
an 8×8 checkerboard so that every king can capture at least one other king
(according to the rules of chess)?6

4.4.11. What is the smallest number of chips that can be placed on the
chessboard of the size

(a) 8× 8,
(b) n× n

so that every line passing through the center of an arbitrary square and
parallel to either a side or a diagonal of the board would meet at least one
chip?

4.4.12. What is the smallest number of L-shaped three-cell pieces that need
to be placed on 8 × 8 board cells so that no additional such piece can be
placed on the board without overlapping with the existing ones?

4.4.13. A square 7× 7 cell board is given. One is asked to mark the centers
of n cells so that no 4 marked points are vertices of a rectangle with sides
parallel to the sides of the square. What is the largest n for which this is
possible?

Suggestions, solutions, and answers

4.4.1. Each “domino piece” contains one white and one black cell. But in
our chessboard, there are 32 black and 30 white cells (or vice versa). For a
detailed discussion, see [Soi].

5. Semi-invariants7 (1)
By A.V. Shapovalov

If the word “invariant” means “invariable”, then “semi-invariant” means
half-invariable.8

It happens that when we change an object, some quantity associated
with this objectn can only change in one direction, that is, either only in-
crease or only decrease. It is also possible that as we make moves in one
direction, a quantity associated with the position also changes in one di-
rection. For example, when playing tic-tac-toe, the number of filled cells

6Excluding the “flying king” rule.
7The ideological predecessors of the “Invariants” and “Semi-invariants” sections are,

among other things, the corresponding sections of the book [K-BK08].
8Another term used for semi-invariant is “monovariant”, which emphasizes that the

quantity, if it changes, does so monotonically, i.e., in only one direction.
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with each move increases. Therefore, on a finite board, the game will end
sooner or later. When playing on an endless board, the game may never
end, but we can guarantee that the position does not happen again because
the number of filled cells increases with each move!

A little more formally, this can be expressed as follows. Assume that we
change an object (or a position) using permitted operations (or moves) and
assume that with each object/position we can associate a quantity in such
a way that with every permitted operation the value of this quantity either
does not change or changes in one particular direction. Then this quantity
is called a semi-invariant.9 If the value of a semi-invariant changes with
each operation/move, it is called strict ; otherwise it is nonstrict.

In typical problems “on semi-invariant” they prove the impossibility of
(a) repetition of a position;
(b) an infinite number of moves;
(c) reaching certain positioins.
For the latter, one finds a semi-invariant and verifies that to obtain the

desired construction from the original one, the semi-invariant should change
the wrong way.

But how do we find a semi-invariant? Start with checking sample values:
sums, products, areas, perimeters, and their combinations. If the object or
position depends on integers, then the semi-invariant can be the GCD or
LCM of these integers.

In the following two problems, it is important that the semi-invariant is
an integer and that it cannot be greater than a certain number.

4.5.1. On a 100× 100 chessboard, the king starts in the lower left cell and
moves to the right, up, or right-up diagonally. What is the largest number
of moves the king can make?

4.5.2. Integers are placed in cells of a 99 × 99 table. If in some row (or
column) the sum is negative, one can change the signs of all numbers in this
row (or column) to the opposite sign. Prove that only a finite number of
such operations can be done regardless of what the original table was.

If the semi-invariant is not an integer, then its boundedness does not yet
guarantee the end of the process (e.g., a decreasing positive semi-invariant
can take infinitely many values 1, 1/2, 1/3, 1/4, . . . , 1/n, . . .). In these
cases, termination of the process is guaranteed by finiteness of the number
of positions.

9This sentence is not a formal definition of a semi-invariant. But for the solution of
problems a formal definition is not needed.
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4.5.3. Suppose we are given 10 numbers. At one step, two nonequal numbers
can be replaced by two equal number with the same sum. Does there exist
an initial set of numbers for which the process

(a) continues infinitely long;
(b) loops (that is, can the same set of numbers occur twice)?

4.5.4. Several numbers are written on a circle. If for some four consecutive
numbers a, b, c, d we have (a− d)(b− c) < 0, then the numbers b and c are
swapped. Prove that this operation can be performed only a finite number
of times.

Very often a position with no permitted operations is the desired one.

4.5.5. Numbers are written in the cells of a rectangular table. One can
simultaneously change the signs of all numbers in a column or in a row.
Prove that by repeating this operations, you can turn this table into one
where the sum of numbers in any row or in any column is nonnegative.

In combinatorial problems, a semi-invariant often is the number of com-
binations, for example, pairs, triples, subsets, or permutations of some kind.

4.5.6. In the Far Far Away kingdom, all cities raised flags over the town
halls, either blue or orange. Every day, residents recognize the colors of the
flags of their neighbors within a radius of 100 km. One of the cities where
the majority of neighbors have flags of a color different from the color of
their flag changes the color of its flag to this different color. Prove that with
time the color changes of the flags will stop.

Some constructions are created by “sequential improvements”. We take
the imperfect design and start to convert it. A semi-invariant guarantees
that the process terminates and the desired effect is achieved.

4.5.7. In a parliament, each deputy has at most three enemies. Prove that
parliament can be divided into two houses so that each deputy will have at
most one enemy in his house.

4.5.8. On the plane, 100 red and 100 blue points are placed, no three on
one line. Prove that one can draw 100 disjoint segments connecting these
with endpoints of different colors.

A semi-invariant can also be nonstrict, i.e., it doesn’t necessarily change
with each move. Then it is helpful to find another semi-invariant which
necessarily changes just when the first one does not change.
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4.5.9. On a 100 × 100 chessboard a king is allowed to move to the right,
up, right-up, or right-down diagonally. Prove that it can make only a finite
number of moves.

If the second semi-invariant is not strict, then consider the third, the
fourth, etc. In this case, it is natural to consider the sets of values of semi-
invariants as strings ordered lexicographically (as words in a dictionary: the
first elements are compared and if they are equal, then compare the second
elements, etc., until the first mismatch).

4.5.10. In a deck, some of the cards are face up. From time to time Pete
takes out from the deck a pack of several consecutive cards where the top
card and the bottom card are face up (in particular, a pack can consist
of just one face-up card), flips this pack as a whole, and inserts into the
same place in the deck. Prove that no matter how Pete chooses the packs,
eventually all cards will be face down.

In conclusion we present a few more problems on semi-invariants and
their combinations.

4.5.11. There are several (a finite number of) numbers on a line. Every
second, a robot picks a pair of adjacent numbers in which the left number is
greater than the right, swaps them, and multiplies both numbers by 2. Prove
that after several steps the robot will not be able to find an appropriate pair.

4.5.12. Carlson has 1000 cans of jam. Cans are not necessary identical,
but each one contains not more than a hundredth part of all the jam. For
breakfast, Carlson can eat the same amount of jam from any 100 of his cans.
Prove that Carlson can act so that after some number of breakfasts he eats
all the jam.

4.5.13. There are several positive numbers on a circle, each not exceeding
1. Prove that the circle can be divided into three arcs so that the sums of
numbers on adjacent arcs differ by at most 1. (If there are no numbers on
the arc, then the sum on it is considered to be zero.)

4.5.14. Ten people are sitting at a round table. In front of each person there
are several nuts. The total number of nuts is one hundred. At a signal, each
one transmits part of her nuts to the neighbor on the right: half if the giver
has an even number of nuts, or one nut plus half of the remainder if she has
an odd number of nuts. Such an operation is performed a second time, then
a third, and so on. Prove that after some time everybody will have exactly
ten nuts.
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Suggestions, solutions, and answers

4.5.1. Answer : 198.
Solution. We enumerate the columns from left to right, and the rows

from bottom to top. By the weight of a cell we mean the sum of the numbers
of the row and the column containing this cell. Let us look at the weight
of the cell the king stands on. This is a semi-invariant; with the allowed
move, it increases by 1 or by 2. The smallest possible weight is 1 + 1 = 2,
and the largest is 100 + 100 = 200. The increase in weight does not exceed
200− 2 = 198, which means that the number of moves is also no more than
198. Such a number of moves is possible if the king passes from the lower-left
cell to the upper-right without making moves diagonally (for example, first
99 moves to the right, and then 99 moves up).

4.5.2. Solution. If there was a negative sum −A, then by the change
of signs in this series the sum becomes equal to A. Therefore the sum S
of all table elements will increase by 2A. So S is a semi-invariant. Under
permitted operations, the absolute values of elements do not change; that
is, the sum T of all absolute values is an invariant. Moreover, S ≤ T always.
Since A is a natural number, A ≥ 1 and each time S increases by at least 2.
Therefore, the number of operations is finite (the maximum increase is from
−T to T with step 2, so there are no more than 2T/2 = T operations).

4.5.3. (a)Answer : it can.
Solution. Suppose initially there are the following 10 numbers: 2, 4, 4,

and seven zeros. We will perform operations without touching zeros. At the
first step, replace 2 and 4 with 3 and 3. We get the set consisting of 3, 3,
4, and zeros. Further, having positive numbers a, a, b (where a �= b), we
replace a and b. We get the three positive numbers a, (a+ b)/2, (a+ b)/2.
Note that (a+ b)/2 �= a (equality is possible only for a = b). We are again
in a situation where two numbers are equal and the third is different from
them. Continuing such actions, we will never make all numbers equal.

(b) Answer : cannot.
Solution. The process has a strict semi-invariant: the sum Q of squares

of all numbers. Indeed, we can assume that with each step we replace the
numbers a + x and a − x (where x ≥ 0) with a and a. The old numbers
contributed 2a2+2x2 to Q, and the new ones contribute 2a2, so Q decreased.
Therefore, repeating the set is impossible.

Remarks. 1. Other semi-invariants are also possible, for example, the
sum of pairwise products. However, the product of all numbers cannot
always be the semi-invariant.

2. The semi-invariant Q decreases but cannot become negative. It would
seem that this contradicts the possibility of an infinite number of operations.
But it only means that the changes in Q can be getting smaller and smaller.

4.5.4. Solution. Consider the sum Q of squared differences of neighbor-
ing numbers. During the operation, only two terms will change; instead of
(a−b)2+(c−d)2 we get (a−c)2+(b−d)2. As a result, the difference between
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these sums, i.e., the number 2(a−d)(b− c), will be added to Q. By the con-
ditions, this addition is negative; therefore, Q will decrease. The existence
of the semi-invariant Q guarantees that at each step we get an arrangement
not previously encountered. But the total number of rearrangements is fi-
nite (for n numbers on the circle it is no more than (n− 1)!); therefore the
number of operations is finite.

4.5.5. Solution. We will always change signs in the row or column where
the sum of the numbers is negative. Then the sum of the numbers S in the
entire table will increase. The semi-invariant S guarantees nonrepetition
of the arrangement of signs of numbers of the table. But the number of
all combinations of signs is finite (it equals 2N , where N is the number of
nonzero numbers in the table). So, at some point we cannot get a new
arrangement and the next step is impossible. This means that the sums of
numbers in all rows and columns has become nonnegative.

4.5.6. Solution. The number of pairs of neighboring cities with flags of
different colors is a semi-invariant. This number decreases every day by at
least 1, so the number of days with changing colors of flags is no more than
the total number of pairs of cities.

4.5.7. Solution. First, we divide the deputies into two chambers arbi-
trarily. If some deputy finds at least two enemies in her chamber, we transfer
her to another chamber. After this move the number of pairs of enemies in
the old chamber decreases by at least 2, and the number of pairs of enemies
in the new chamber increases by at most 1. Thus, the total number of pairs
of enemies in the same chambers will decrease; i.e., this number is a semi-
invariant. It decreases by at least 1, and at some point further decrease
will be impossible. Therefore, the transition is also impossible; that is, no
deputy has two or three enemies in her chamber.

4.5.8. Solution. Draw segments with endpoints of different color ar-
bitrarily. Let S be the sum of the lengths of the segments. If a pair of
intersecting segments AB and CD is replaced with the pair of segments
AC and BD or with the pair AD and BC, then by the triangle inequality
the sum of the lengths of the pair will decrease. For a pair of intersect-
ing segments with endpoints of different color choose a pair of endpoints of
the segments with different colors and replace the original pair of segments
with the new pair. For such replacements, S is a strictly decreasing semi-
invariant. The number of ways to draw segments with endpoints of different
colors is finite (it is equal to 100!). The existence of a semi-invariant and
the finiteness of the number of possible “configurations” guarantee that the
process ends, and in the final position the segments do not intersect.

4.5.9. First solution. Similarly to the solution of problem 4.5.1, we
enumerate the columns and the rows and define the weight of the cell as the
sum of these numbers. This is a nonstrict semi-invariant: the weight does
not change during right-down moves. Add the number of the column as
the second semi-invariant. This number is a semi-invariant for those moves
that do not change the first semi-invariant. Now it is clear that a series
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of consecutive moves right-down cannot be infinite (in fact, there are not
more than 99 such moves). So, we have a finite number of weight increases
and between two increases a finite number of moves. Therefore, the total
number of moves is finite.

Second solution. Let a cell lie in the vth column and the hth row. To
such a cell we associate the number S = 2v + h. Then S is a strict semi-
invariant: for admissible moves S increases by 1, 2, or 3 (in particular,
2− 1 = 1 for right-down moves). So, since the number of cells is finite, the
number of admissible moves is also finite.

Note. The second solution is shorter, but the first is more natural and
easier to come up with. Almost always a set of semi-invariants can be
replaced with one semi-invariant which, however, may look artificial.

4.5.10. The position of cards in the deck can be encoded with an n-digit
number; going from top to bottom, we write 1 for the card that lies face
down and 2 for the card that lies face up. For a permitted operation this
number will decrease; to some place in the higher ranks nothing changes,
then 2 changes to 1, and maybe there are more changes within lower digits.
So the code number is semi-invariant, it decreases by at least 1 at each step,
and it cannot become negative. Therefore sooner or later the operations will
become impossible, which means that all cards lie face down.

Comment. Actually, comparing multiple-digit numbers is similar to com-
paring words in a dictionary. We can encode a deck not with numbers, but
with the letters D and U (meaning “face down” or “face up”). Then, at each
operation, the code word will be replaced by a word closer to the beginning
of the dictionary; that is, the index of the word in the dictionary will be
a semi-invariant. This encoding is more convenient when there are more
letters than digits, and it is crucial when the code sequences are infinite.

4.5.11. Suggestion. Suppose the numbers are written on cards and the
robot rearranges the cards and changes the numbers on them. Prove that
no pair of cards can be swapped more than once.

Solution. See Problem 23.3.6 in the book [MedSha].
4.5.12. Suggestion. We say that a nonempty can is overfull, full, or

incomplete if it contains more, equal to, or less than one hundredth of the
jam remaining at this moment. There are no overfull cans at first. Show
that Carlson can eat jam every day (except for the last) in such a way that
overfull cans do not appear, but the number of incomplete ones decreases.

Solution. See Problem 27.3.6 in [MedSha].
4.5.13. Let the weight of an arc be the sum of the numbers on it (an

arc without numbers has weight 0), and let the sparseness of an arc be the
difference between the largest and the smallest numbers on this arc. The
number of partitions with different weights is finite. We choose a parti-
tion with minimal sparseness and prove that this is the required partition.
Suppose the difference between the largest weight c on the arc C and the
smallest weight a on the arc A is greater than 1. We move the boundary be-
tween the arcs so that exactly one number r moves from C to A. After that,
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we get a new partition: into arcs A1, B, and C1 with the sums a1 = a+r, b,
c1 = c−r. It is easy to verify that each of the differences c1−a1, b−a1, c1−b
is less than c − a but greater than −1; i.e., the sparseness has decreased,
which contradicts the choice of the initial partition.

4.5.14. Suggestion. Prove that
(a) the sum of the absolute values of the differences of each person’s

number of nuts and the number 10 is a nonstrict semi-invariant and
(b) if this semi-invariant does not change, then the number of consecutive

zero differences between a positive and a negative difference increases.
Solution. See Problem 19.7.6 in [MedSha].
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Chapter 5

Algorithms

1. Games (1)1

By D. A. Permyakov, M. B. Skopenkov, and
A.V. Shapovalov

Using specific examples, we will get acquainted with some beautiful ideas of
game theory. General guidelines on the topic “Games” can be found in the
corresponding section of the book [FGI].

Symmetric strategy

The most common strategy in games is the symmetric strategy (and also its
generalization, the complementary strategy). To solve the following prob-
lems it is useful to be familiar with Section 2 of Chapter 4 since many
strategies in games are based on invariants (an example of an invariant is
the position symmetry).

5.1.1. (a) Two people in turn put domino pieces on the 8 × 8 chessboard.
Each domino covers exactly two cells of the board, and each cell can be
covered with at most one domino. The player who can’t put another piece
loses. Who wins if both players make the best moves? How should they
play?

(b) The same questions for the 8× 9 board.

Let us explain what the questions mean. To answer the first question
you need to name the player who wins with any moves of her adversary.
To answer the second question you need to describe an algorithm of how
to choose the moves of this player that guarantees that she wins (i.e., the
winning strategy). It is important to clearly separate an algorithm itself
from a proof that the algorithm leads to the desired result.

Part (b) of this problem shows that symmetry of position does not guar-
antee that the symmetric strategy works.

1Sections “Symmetric Strategy”, “Growing tree of positions”, “Passing the move”
were written by D.A. Permyakov and M.B. Skopenkov; “Joke games”, “Games on outrac-
ing”, “Accumulation of advantages” were written by A.V. Shapovalov; “Miscellany” was
written by all three authors.

71
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5.1.2.◦ (Challenge) What will the result be if Black attempts to mirror
(i.e., symmetrically copy) the other player’s moves in regular chess in the
case where White plays in the optimal way? Choose the correct answer:

(1) draw; (2) White wins; (3) Black wins.

The key idea is not so much symmetry but breaking up all possible
positions in pairs. Complementary strategy is to respond to the opponent’s
move by a move to the second position of the corresponding pair.

5.1.3. A king is standing on a chessboard. Two players take turns moving
it. A player loses if after her move the king ends up in a cell it visited earlier.
Who wins if both players play optimally?

Game on outracing

Game on outracing is a common trick in nonmathematical games. But in
math games it happens that the gain goes to the first one who will be able
to occupy a key position. After that, as a rule, a complementary strategy
works.

5.1.4. There are 9 sealed transparent boxes, respectively, with 1, 2, 3, . . . , 9
chips. Two players take turns taking one chip from any box, unsealing the
box if necessary. The last player who is forced to remove the seal from a
box loses. Who will win regardless of the opponent’s moves?

5.1.5. In one of the corners of a chessboard there is a flat cardboard 2× 2
square, and in the opposite corner there is a 1× 1 square. Two players take
turns rolling squares across a side: Bob rolls the large square, and Mike
rolls the small one. Bob wins if no later than on the 100th move he moves
to cover the cell where Mike’s square is. Can Bob win regardless of Mike’s
game if

(a) Bob starts first;
(b) Mike starts first?

Accumulation of advantages

Accumulation of advantages is also a very common trick in nonmathematical
games. In math games, accumulation is usually associated with some kind
of semi-invariant. Therefore to study such games acquaintance with Section
5 of Chapter 4 is useful. Here you need to find an algorithm leading to
accumulation of advantages regardless of the opponent’s resistance.

5.1.6. Mike is standing in the center of a round lawn of radius 100 meters.
Every minute he takes a step one meter long. Before every step he announces
the direction in which he wants to move. Kate has the right to make him
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change to the opposite direction. Can Mike act in such a way that at some
moment he will leave the lawn, or can Kate always prevent this?

5.1.7. On a 1×100 000 grid strip (initially empty), two players make moves
in turns. The first one can put two checkmarks on any two free strip cells.
The second can erase any amount of checkmarks in a row (without empty
cells between them). If after the move of the first player there are 13 or
more checkmarks in a row, she wins. Can the first player win if both players
play optimallly?

5.1.8. Two players take turns breaking a stick: the first player breaks it in
two parts, then the second player breaks any of the pieces into two parts,
then the first breaks any of the pieces into two parts, etc. A player wins if
after one of his moves he can build two congruent triangles using six existing
pieces. Can the other player prevent this from happening?

Joke games

In joke games one of the players always wins regardless of whether she wants
to or not.

5.1.9. (a) On the table there 2015 piles of one nut each. In one move, you
can combine two piles into one. Two players make moves in turn, and the
one who cannot make a move loses. Who wins?

(b) The same question when one can combine piles with only the same
number of nuts.

5.1.10. Given the 1×N grid strip, two players play the following game. On
each turn, the first player puts a cross mark in one of the free cells, and the
second one puts a zero. One cannot put two crosses or two zeros in adjacent
cells. The player who cannot make a move loses. Which of the players wins
if both make optimal moves? What is the winning strategy?

In addition to joke games, there are almost joke games, where the win-
ning strategy is as follows: if there is a win in one move, this move must
be made, and otherwise, you can make any move. Another version allows
a player to make any move except those that lead to an immediate loss for
this player. In such games, it is important to guess who will have the op-
portunity to make a winning move or who will be forced to make a losing
move and to prove this. In addition, a winning strategy may be to get to
a position after which the game turns into a joke game with the desired
outcome.

5.1.11. Ten baskets contain 1, 3, 5, . . . , 19 apples, respectively. First Bill
takes one apple from any basket, then Gene takes one, then Leo does, then

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



74 5. ALGORITHMS

Bill again, etc. A player loses if after his move there will be an equal number
of apples in some of the baskets. Which player cannot avoid losing?

5.1.12. A checkered 9× 9 square is made of matches; each side of each cell
is one match. Pete and Bill take turns removing the matches one at a time,
with Pete starting. A player wins if after his move there are no 1×1 squares
anymore. Which player can win regardless of how his opponent plays?

Growing a tree of positions

One of the universal ways to analyze a game is growing a tree of positions.

5.1.13. Put the Queen in the Corner, or “tsyanshidzi”. The queen stands
in square d1 of the chessboard. Two players take turns moving it up, right,
or right-up. The one who puts it in the square h8 wins. Who will win if
both players play optimally and how should the winning player play?

If you cannot solve it, think about the next question first.

5.1.14.◦ Who wins the game in the previous problem if initially the queen
stands in the square f4? Choose the correct answer:

(1) the first player; (2) the second player.

Growing a tree of positions means a complete analysis of the game. Let
us go now to the more complicated idea of passing the move, which helps
even when there is no possibility for a complete analysis.

Passing the move

5.1.15. In two-move chess, pieces move according to the usual rules, but
with each turn a player can make exactly two usual moves with the same
piece. The goal of the game is to checkmate the opponent’s king. The rules
of repeating the position three times and of 50 moves do not apply.2 Prove
that White can play two-move chess so that they will not lose (i.e., they
either win or draw).

5.1.16.◦ Rules of chess without zugzwang3 differ from the rules of ordinary
chess just by adding the opportunity to skip the turn. Can Black win if
White plays optimally? Choose the correct answer:

(1) they can;
(2) they cannot.

2If you don’t know what the rules are, ignore this sentence.
3Zugzwang in chess is a position for a player in which any move makes it worse.
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Miscellany

In the following problems it is necessary to find which player wins if both
players make the best moves. If the statement of the problem depends on
parameters m and n, then the answer may also depend on m and n.

5.1.17. Black and white rooks stand in adjacent corners of the 9× 9 chess-
board, and the remaining cells are occupied by gray pawns. Two players
take turns each with their rook, and with each move they need to capture
either a gray pawn or a rook of the opponent. The player who cannot make
a move loses.

5.1.18. On one table there are 34 stones, and on another one there are 42.
Two people play the following game. At each move the number of stones
equal to a divisor of the number n (possibly all n stones) can be taken from
the table with n stones and placed on the other table. A player loses if
after her move the pair (a, b) of the number of stones on the tables coincides
with one already encountered in the game. Pairs (a, b) and (b, a), a �= b, are
considered as different.

5.1.19. On an endless grid paper, two players in turn paint over the seg-
ments between adjacent grid nodes, each with their own color. The goal
of the first player is to get a closed broken line of her color. There is no
upper bound on the lengths of the game. Can the second player stop his
opponent?

5.1.20. The number 2 is written on the blackboard. At each move one can
add to the number on the board any of its divisors that is smaller than the
number itself. The winner is the first player to get a number greater than
1 000 000.

5.1.21. On the table there are two piles of matches: m matches in one pile,
n matches in another one, m > 2n. Two people are playing the game. At
each move a player can take from one of the piles a nonzero number of
matches that divides the number of matches in the second pile. The player
taking the last match from one of the piles wins.

5.1.22. The city is a rectangular 10 × 12 grid of streets. Two companies
take turns placing lanterns at unlit intersections. Each lantern illuminates
a rectangle in the city with a vertex in this lantern and with another vertex
in the north-east corner of the city. The company that lights up the last
intersection loses.

5.1.23. Two players play the following game on an m×n board. They have
a white and a black king, respectively, standing in the opposite corners of the
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board. They move their kings (according to the rules of chess) alternately
so that the distance between the centers of the cells in which kings stand
decreases (kings are allowed to occupy neighboring cells, but they can’t
stand in the same cell). The player that cannot make a move loses.

5.1.24. Given an empty table of size 13×17, two players take turns putting
chips in empty cells. The first player can put the chip at the intersection
of a row and a column if the row and the column together contain an even
number of chips, and the second player can put a chip if the combined
number of chips is odd. The player who cannot make a move loses.

5.1.25. Let two piles of matches be given, one with 1997 matches, another
with 1998 matches. Two people play the following game: each player throws
away one of two piles and divides the other into two nonempty piles of not
necessarily equal size. The player who cannot split a pile in two parts loses.

5.1.26. A positive integer is called permitted if it has at most 20 different
prime divisors. At the beginning there is a pile of 2004! stones. Two players
take turns removing a permitted number of stones from the pile. The last
player able to play wins.

Several other interesting games are analyzed in articles [Pev,Gik,S72].
Other common techniques used in the elementary theory of games

(but which we don’t consider in this book) are “greedy algorithm” and
“menagerie”.

In all the games we reviewed, the position was completely known to all
players. These are the so-called games with perfect information. For practi-
cal applications, games with incomplete information are no less important;
you can read about them in [Tm,Ver,ChS].

Suggestions, solutions, and answers

5.1.1. (a) Answer : the second player wins. The algorithm is as follows:
for each move of the first player the second player responds with a move
symmetrical about the center of the board.

Solution. We prove that the second player can always make the move
prescribed by this algorithm without violating the rules.

Denote by n the number of moves the first player made from the be-
ginning of the game. We prove by induction on n the following stronger
statement: if the first player was able to make the nth move, then the sec-
ond player will be able to respond with a move symmetric about the center
of the board, and the position will remain centrally symmetric.

Induction base: n = 0. The starting position is centrally symmetric.
The first player has not yet made any move, so nothing should be proved.
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Induction step. After the nth move of the second player a centrally
symmetric position occurred and the first player put dominoes on the cells
A and B. The second player responds with a move to the cells A′ and B′

symmetric to them about the center of the board. Let us prove that the
cells A′ and B′ are empty. They are not affected by the last domino of the
first player, since A′ �= A,B and B′ �= A,B, because on the 8× 8 board two
centrally symmetric cells cannot coincide nor can they be adjacent on a side.
Previous dominoes on the board cannot cover A′ and B′ either, since after
the previous move of the second player the position was centrally symmetric.
Therefore, the described (n+ 1)st move of the second player is possible. It
is clear that the position remains centrally symmetric after making it, and
the required statement is proved.

It is clear that the game on the finite board cannot go on indefinitely,
so in some moment the first player cannot make a move and loses.

(b) Answer : the first player wins using the following algorithm. The
first move is to put a domino at the center of the board (i.e., on two cells,
adjacent to the center) and then to copy the moves of the second player
symmetrically about the center.

5.1.3. Suggestion: an alternative strategy. Let us prove that the first
player wins. We break the board into “dominoes”, i.e., pairs of cells adjacent
side by side. At each move, the first player moves the king to the second cell
of the domino where he was before the move. After each move of the first
player, the king will visit either two or zero cells of each domino. Therefore,
after the move of the second player, the first player can make the move
according to the described strategy.

5.1.4. Answer : the second player wins.
Suggestion. The second player should make sure that after their fourth

turn only boxes with an odd number of chips remain sealed. Since there are
more odd boxes, at least one box with an odd number of chips will not be
opened. Therefore, such a box will be unsealed last. But the total number
of chips in the remaining boxes is even, so all boxes can become empty only
after a move of the second player; i.e., the first player will be forced to unseal
the last box.

5.1.5. (a), (b) Answer : no.
Suggestion. Let the 2 × 2 square cover cells a1 and b2 and the 1 × 1

square cover the cell h8. Let us call the upper-right vertex of the cell f6
node A and the upper-right vertex of the cell d6 node B. Mike should move
his square to the corresponding node (A in case (a), to B in case (b)) and
run around it avoiding covering.

5.1.6. Mike should increase the distance from the center of the lawn while
moving perpendicularly to the radius passing through the point at which he
stands at the moment.

5.1.7. Answer : yes, he can.
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Suggestion. The first player starts with increasing the number of groups
of 13 squares with six “holes”, then increasing the number of groups with
five holes, etc.

5.1.8. Answer : no.
Suggestion. The first player breaks the stick in half and then repeats

the moves of the second player until 5 pairs of equal pieces of lengths a ≥
b ≥ c ≥ d ≥ e are formed. If a triangle cannot be formed from any triple,
then the first breaks off a piece of length c from a. The second player must
break c (otherwise the first one will break off a piece of length c from b and
can build two isosceles triangles either with sides c, c, d or with sides c, c, e).
The first player breaks off a piece of length c from the other piece of length
a and then breaks one by one pieces of length c each from a− c, etc., until it
becomes possible to build two triangles from pieces of length a− kc, b, and
c.

5.1.9. In both cases, the total number of moves does not depend on the
course of the game. In part (b), the end position is determined by the binary
expansion of the number 2015.

5.1.10. After the return move to one of the endpoints of the strip, the
second will win regardless of the moves of the first player .

5.1.11. Answer : Gene.
Solution. In all baskets there are 100 apples total. Note that there is

exactly one hopeless position, where all moves are losing; this is the position
where there are 0, 1, 2, . . . , 9 apples in the baskets. In any other position one
can avoid losing in one move by taking an apple from the smallest basket if
it contains at least one apple, or from a basket with the number of apples
different from the previous one by 2. In the hopeless position there are 45
apples, so, before getting into it 55 apples should be taken. If no one loses
before, then Bill will take the 55th apple and then Gene should take the 56th
apple. Thus, only Gene can get into a hopeless position. But then Leo and
Bill always have the possibility of not losing in one move. Let them do such
nonlosing moves. Since the game lasts at most 1+3+ · · ·+19 = 100 moves,
it will eventually end, and therefore, Gene will lose. (He will either lose
before he takes the 56th apple or when he falls into the hopeless position.)

5.1.12. Answer : Bill will win.
Suggestion. After Pete’s move there always remains an odd number of

matches for Bill. If there are two complete squares without a common side,
they use 8 matches. Bill takes any match not from these squares (because
there is one), and at the next move Pete cannot destroy both squares. If
there are not two such squares, then there is a single complete square or
two complete squares with a common side. In both cases Bill will be able
to destroy them and win.

5.1.13. Answer : the second player wins. The algorithm is as follows:
after each move of the first player, the second player should place the queen
at one of the squares e3, f7, g6, h8. (Strictly speaking, for a complete de-
scription of the algorithm, for each position of the queen one should indicate

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



1. GAMES 79

at which of these cells the queen needs to be moved. We leave this to the
reader.)

Solution. Considering all possible moves of the first player starting with
squares d1, e3, f7, g6, we show that the return move to one of these cells or
to h8 is always possible.

Path to solution. Our goal is to put in each square of the 8 × 8 board
the sign “+” or the sign “−” depending on whether or not the next move
can win when the initial position of the queen is at this cell. The positions
with the “+” sign are called winning ; the remaining ones are called losing.
We will fill chessboard squares sequentially starting with the 8th horizontal,
the column “h”, and the diagonal “a1–h8”. It is clear that in any square of
the 8th horizontal, the column “h”, and the diagonal “a1–h8” (except the
square h8) you need to put the sign “+”. It is easy to see that the remaining
squares are filled one by one using the following two “golden” rules:

(1) if a permissible move from a square can be made to a square with
the sign “−”, then this square should get the sign “+”;

(2) if after each permissible move from a given square we end up at a
square with the sign “+”, then this square should get the sign “−”.

Using these rules, we will fill all the squares of the chessboard. The
squares h8, g6, f7, e3, d1, c5, a4 will get the sign “−”, and the remaining
ones will get “+”. Once the square d1 gets the sign “−”, the second player
wins. His winning strategy is “Put it on a square with the minus sign!”;
i.e., after each move of the first player, he must again place the queen in the
square with the “−” sign (i.e., in one of the squares e3, f7, g6, h8).

Comment. Details of this problem and its generalization to the board
of arbitrary size in which Fibonacci numbers arise are discussed in articles
[Or77,Yag71,MS].

5.1.15. Suppose that Black has a winning strategy. Then White makes
the first move b1-c3-b1 (two consecutive knight jumps after which it returns
to the original square) and then plays using this winning strategy for Black.
Since this strategy is winning, White will win. The resulting contradiction
shows that White has a nonlosing strategy. The details of the proof are
discussed in the book [KG].

5.1.17. The second player wins, responding to each move symmetrically
with respect to the vertical axis of symmetry.

5.1.18. Answer : the second player wins.
Suggestion. We will denote the position by the number of stones on the

first table. Let the second player break all possible but not yet met positions
into pairs that differ by 1: (0, 1), (2, 3), . . ., (32, 33), (35, 36), . . ., (75, 76).
On any move of the first player the second responds by shifting one stone to
get the second position from the same pair. The second always has a move,
so he will not lose, but since the game is finite, he will win.

5.1.19. Answer : yes.
Suggestion. The second player unites in pairs the segments bounding

each cell from top and left. He responds to any move of the first player with
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the move in the same pair. Then on any colored closed polygonal line the
highest among the leftmost vertices will be the endpoint of two distinctly
colored segments.

5.1.20. Answer : the first player wins.
Suggestion. We prove this with the help of passing the move. After

the first and second moves, the number 4 is obtained. If, starting with the
number 6, the first player wins, then he now adds 1, receiving 6 after the
response of the second player. If, starting with the number 6, he must lose,
then he adds to 4 its divisor 2, and then the second player loses.

5.1.21. Answer : the first player wins.
Suggestion. We prove this with the help of passing the move. Let k and

r be the quotient and remainder on division of m by n. Note that k > 1.
Therefore, on his move the first player can get either kn matches or (k−1)n
matches from the first pile, getting either the position (r, n) or the position
(n+ r, n). Note that from position (n+ r, n) there exists only one move and
it leads to position (r, n). If the position (r, n) is losing for the next player,
then the first one goes to it and wins. Otherwise, he goes to the position
(n+ r, n); in response he gets (r, n) and wins.

5.1.22. Answer : the first company wins.
Suggestion. We prove this with the help of passing the move. If the

second company has a winning strategy, then, in particular, the second
company can win if the first move of the first company is to the north-
eastern vertex. But then the first company can start using this strategy
from the beginning!

5.1.23. Answer : let m ≤ n. The second player wins if m = 1 and n is
even or if m is an odd number greater than 1 and n is odd; otherwise the
first player wins.

Strategy. Let x and y be the absolute values of the difference between
row numbers and column numbers in which the kings stand; for definiteness
x ≤ y. We call a pair (x, y) bad if x is even and either x = 0 and y is even
or x > 0 and y is odd; otherwise the pair is called good. Note that the only
pair from which there is no move is a bad pair (0, 1). With the rectangle
sizes listed as winning for the first player in the answer above, the initial
pair of differences is good. A winning strategy: make a move by decreasing
x, y, or both and turning a good pair of differences into a bad one (this is
always possible).

Since the bad pairs differ in some coordinate by at least 2, a move
from a bad pair to a bad pair is impossible (even if one could increase the
differences).

Path to solution: growing a tree of positions. Put in the cell with co-
ordinates (x, y) of the m × n table a “+” sign if when playing on an x × y
board, the first player wins, and put a “−” sign if the second player wins.
We will fill in the table sequentially starting from cells (1, 2) and (2, 1). In
these cells put a “−” sign. To expand the table we will use the following
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rules:
(1) if a king can move from a given cell to a cell in which the sign “−”

stands and so that the distance to the center of the cell (1, 1) decreased,
then put in this cell the sign “+”;

(2) if, after each possible move of the king from the given cell (such that
the distance to the center of the cell (1, 1) decreases) we get into the cell
with a “+” sign, then put in the given cell a “−” sign.

Comment. You need to pay attention to the fact that moves are possible
in which the distance between the centers of the cells on which the kings
stand decreases, but the difference in the coordinates of these centers along
one of the axes increases.

5.1.24. Answer : the first player wins.
Suggestion. Before the first player’s next move, the number of empty

cells is odd. We call a line (row or column) “even” if it has an even number
of empty cells; otherwise it is called “odd”. If the first player has no moves,
then each empty cell lies at the intersection of an even and an odd line. In
every even column, the number of such cells is even, and in every even row,
it is also even; hence, the total number of empty cells is even. This is a
contradiction.

5.1.25. Answer : the first player wins.
Suggestion. The first player wins, leaving two odd heaps after his move.

In the return move, if the second one can make a move, the first will receive
even and odd heaps. Dividing the even, he again leaves two odd heaps.

5.1.26. Answer : the second player wins.
Suggestion. Consider the least nonpermitted number P , which is obvi-

ously the product of the first 21 smallest primes. Each factor is less than
2004; therefore 2004! is a multiple of P . Multiples of P have at least 21
prime factors; therefore they are not permitted. The strategy of the second
player: take the number of stones equal to the remainder on division by P .
Then he will leave for the first player a number of stones that is a multiple
of P . Taking away the permitted number that is not a multiple of P , the
first player will leave for the second one a number of stones that is not a
multiple of P . Therefore, the first player will not be able to take the last
stone and thus will lose.

2. Information problems (2)
By A.Ya.Kanel-Belov

. . . in what year did the doorman’s grandmother die?

What prevents us from answering the question in the epigraph? Not
enough information!

Consideration of the amount of information also helps in mathematical
problems. Often the necessary knowledge is not obtained immediately, but it
is necessary to move to it in small steps. Each step imposes some restrictions
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on the final result, that is, adds some information. Sometimes the limitations
obtained in several steps are not enough to fix a single result; this means
that the result cannot be achieved with such steps.

5.2.1. Bill chose a number from the first hundred integers, and Nick is trying
to guess it by asking questions. Bill answers all questions only with “yes”
or “no”. What is the minimum number of questions Nick needs to ask to
determine the chosen number?

If we only know that the result has been arrived at, but the result itself
is not yet known, sometimes we can determine the result.

5.2.2. (a) The king reported two consecutive positive integers to two of his
sages. Neither of the sages heard what was told to the other, but both know
that their numbers are consecutive natural numbers. They in turn ask each
other a question: “Do you know my number?” Prove that at some moment
the answer will be “Yes, I do.”

(b) The same situation, but one was informed of the sum of two natural
numbers, both less than 1000 (not necessarily consecutive), and the second
was shown their product.

5.2.3. Two friends have not seen each other for many years. When they
met, they started talking, and one boasted to the other that he already has
three children. “How old are they?”, asked the second. “The product of
their ages is equal to 36, and the sum is equal to the number of this tram.”
Having a look at tram number, the second interlocutor said that this data
was not enough. “And my eldest son is a redhead.” “Then I know how old
they are”, said his friend and accurately gave the age of every child. How
old was each child?

5.2.4. There are two cities in Zurbagania. In one of them live knights who
only tell the truth, and in the other live liars who lie all the time. Regardless
of their notions of honesty, residents of each city sometimes go to the other
city for a visit. A traveler was in one of the cities and met a passerby. How
can the traveler find out from the minimum number of questions who is in
front of him and in what city he is located?

In all the problems considered above, there was a transfer of informa-
tion. How do we measure the quantity of the transmitted information? By
how much has this information helped to narrow down the list of possible
options of the recipient? The fewer options left after the next step, the
more information. Therefore in many informational problems one counts
the number of options.
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5.2.5. (a) A gold chain consists of 23 links, each of which costs one dollar.
Which two links need to be sawn so that you can pay for any purchase
worth a whole number of dollars between 1 and 23 without getting any
change back? (The sawn link also costs one dollar.)

(b) Prove that if there are more than 23 links in a chain, then it cannot
be sawn as required in part (a).

(c) What is the greatest length a gold chain can have such that after
cutting three links in it, you can pay for any purchase worth from one dollar
to the price of the entire chain?

5.2.6. Some of the 20 identical looking metal cubes are aluminum; the rest
are duralumin, which is heavier. Cubes from the same material weigh the
same. How, using a balance beam without weights, in no more than 11
weighings can one determine the number of duralumin cubes? The balance
beam scales only show if the weights in the two cups are equal, and if they
are not equal, they show which cup is heavier.

5.2.7. Of 81 identical looking coins, one is fake. What is the minimum
number of weighings on a balance scale without weights required to find the
counterfeit coin if it is known that it is lighter than the real ones?

5.2.8.* Of 12 coins, one is fake, and it is not known whether it is lighter or
heavier than the others. What is the minimum number of weighings with a
balance beam without weights required to find this coin and to determine
whether it is lighter or heavier than the others?

5.2.9. There is a dot in a square of side 1. What is the minimum number
of questions required to determine the coordinates of the dot up to 0.1?

5.2.10. Radioactive balls. Among n balls, two are radioactive. A measur-
ing device indicates whether there are radioactive balls in the tested group.
What is the maximal value of n for which one can determine at least one of
the radioactive balls in k measurements?

Suggestions, solutions, and answers

5.2.1. Answer : 7. See article [Or76] where similar problems are considered.
5.2.2. (a) Consider how many questions will be asked if the second sage

was told the number is 1? And if he was told the number is 2?
5.2.5. (a) Answer : for example, 4th and 11th.
5.2.7. For the sake of simplicity, you can first analyze cases of 3, 9, and

27 coins.
5.2.8. This problem and its generalization for any number of coins are

discussed in detail in the article [Shes].
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5.2.10. This problem is discussed in detail in [Vil71a, Solution of Prob-
lem M28].

3. Error correction codes (2)
By M.B. Skopenkov

In practice, not all information we receive is reliable. Therefore methods
were invented to correct possible errors. The main result of this section is
problem 5.3.3.

5.3.1. To transmit messages electronically, each letter of the English alpha-
bet is represented in the form of a five-digit combination of zeros and ones
corresponding to the binary notation of the number of a given letter in the
alphabet (numbering of letters starts from one). For example, the letter “A”
appears in the form 00001, the letter “B” becomes 00010, the letter “H” be-
comes 01000, etc. The five-digit combination produced is transmited using a
cable containing five wires. Every binary digit is transmitted by a separate
wire. When receiving a message Crypto crossed the wires and instead of the
word transmitted it received a set of letters “EREPNRX”. Find the word
passed.

5.3.2. Twenty-six letters of the English alphabet are encoded by sequences
of zeros and ones.

(a) If, upon receipt of a message, an error in at most one bit is possible,
then for the unambiguous recovery of the message, codes of different letters
must differ in at least three digits.

(b) If messages consist only of letters A, B, C, D, E, F and when receiving
a message an error in at most one bit is possible, then 5 bits are not sufficient
for encoding.

(c) If, upon receipt of a message, an error in at most one bit is possible,
then 8 bits are not sufficient.

(d) If an error in at most two digits is possible, then 10 digits are not
sufficient.

(e)∗ Find the minimal number of bits sufficient to encode a message in
(c).

5.3.3. Pete selected an integer between 1 and 2016. Bill can ask questions
of the form “Does your number belong to this set?” Prove that Bill will be
able to correctly guess the selected number in 15 questions assuming that
Pete is allowed to lie once.

This is not an easy problem. To solve it, it is convenient to set the
coding method in the “chess language”. The subsequent “chess” problems
lead to a solution.
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5.3.4. What is the maximum number of rooks you can put on a chessboard
so that each rook threatens at most two others? (Rooks cannot threaten
through one another.)

5.3.5. (a) Given a 4× 4× 4 cube, arrange 16 rooks in it so that they do not
threaten each other.

(b) What is the maximum number of rooks that can be placed in an
8× 8× 8 cube so that they do not threaten each other?

5.3.6. (a) Create 16 sequences of length 9 consisting of 0 and 1, any two of
which differ in at least three digits.

(b) The same question, about 2n
2
sequences of length (n+ 1)2.

(c) The same question, about 16 sequences of length 7.

5.3.7. Pete wants to make a special die that has the shape of a cube with
dots on the faces. The number of dots on different faces must be different;
moreover, on any two adjacent faces the numbers should differ by at least
two. The fact that on some faces there may be more than six dots does not
bother Pete. What is the minimal number of dots that can be drawn on
such a cube? Give an example and prove that a smaller number of dots is
impossible.

Other examples of error correction codes are discussed in the articles
[Fut,K].

Suggestions, solutions, and answers

5.3.1. (Olympiad in cryptography) Answer : TITANIC.
Suggestion. Note that crossing the wires does not change the number of

ones in the representation of the transmitted letter. Under each letter of the
received text we write the column consisting of all letters representation by
the code with the same number of ones. For example, under the letter A we
put letters B, D, H, P. Next we try to “find” a meaningful word choosing
one letter from each column. The only option is the word TITANIC.

5.3.2. (d) Solution (Written by D. Ibragimov). Suppose that ten digits
suffice. Denote the letter codes by a1, a2, . . ., a26. Note that there are at
most eight different beginnings of length 3. According to the pigeonhole
principle, there are three codes ai, aj , ak with the same beginnings of length
3. Then, according to the pigeonhole principle, at least two codes of ai, aj ,
ak match in the fourth digits. Without loss of generality, we assume that
these codes are ai and aj .

Denote by a′s the end interval of length 6 of the code as. Then a′i and a′j
are distinct at least in five digits. The word a′k is distinct at least in 4 digits
from a′i. Then a′k and a′j differ in not more than three digits. Therefore, the
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codes ak and aj differ in not more than four digits. But they differ at least
in five digits. This is a contradiction.

5.3.3. The guessing algorithm is based on the use of Hamming code. See
[SA].

5.3.5. (b)Answer : 64.
Suggestion [Bug]. Obviously, in each column of 8 cubic cells there can

be only one rook, so you cannot put more than 64 rooks in the cube.
We show how to place 64 rooks so that they do not threaten each other.

We introduce a coordinate system with axes directed along the edges of the
cube, so that each cell has coordinates (x, y, z) three numbers between 0
and 7. We put the rooks into cells with the sum of coordinates divisible by
8. This is the required arrangement.

First let us prove that these rooks do not threaten each other. Suppose
the opposite. Let two rooks threaten each other. So, two of their coordinates
(say x and y) coincide, but the third differs (we denote them by z1 and z2,
respectively). By construction both x+ y + z1 and x+ y + z2 are divisible
by 8. So their difference z1 − z2 is also divisible by 8, which is impossible
since z1 and z2 are different nonnegative numbers less than 8.

Now let us prove that each vertical column contains a rook; that is, we
placed 64 rooks. Each such column is defined by its pair of coordinates x and
y. The z coordinate for the rooks in this column are uniquely determined
by the condition x+ y + z ≡ 0 (mod 8). Namely, if x+ y is divisible by 8,
then z = 0; otherwise z = 8− ((x+ y) mod 8).

5.3.6. (b) See [SA].
(c) See [SA]. The required set of sequences is called the Hamming code.

4. Boolean cube (2)
By A.B. Skopenkov

5.4.1. Arrange several knights on a chessboard so that each threatens four
others.

5.4.2. Thirty-three letters of the Russian alphabet are encoded by sequences
of zeros and ones. What is the shortest sequence length for which the en-
coding can be made unique?

5.4.3. (a) For a fixed n, the number
(n
k

)
is maximal for k = [n/2].

(b) Best in their own ways. k schoolchildren participated in a mathe-
matical Olympiad. It turned out that for any two schoolchildren A and B
there was a problem that A solved and B did not solve, and there was a
problem that B solved but A did not solve. What was the smallest possible
number of problems? In other words, find the smallest n for which there is

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



4. BOOLEAN CUBE 87

a family of k subsets of an n-element set none of which contains (properly)
the other.

5.4.4. There is a board with n light bulbs. Each switch can be connected
to some bulbs. When the switch button is pressed, the bulbs connected to
it change their state: lighted ones go out, and dark bulbs light up. What is
the minimal number of switches that allows us to light any subset of bulbs
(bulbs not included in this subset should not be lit)?

5.4.5. On the first day of his reign, the king organizes parties for his n sub-
jects. On the second day, the adviser brings the king a list of the names of
some subjects (on the first day this list is unknown). On the third day, the
king can choose several parties and send to prison those subjects participat-
ing in all of them. What is the smallest number of parties to be organized on
the first day so that on the third day the king could send to prison everyone
from the list (and no one else)?

Remark. The following important construction is useful (although not
required) to solve the above problem (and many others). Let us draw points
corresponding to all subsets of some n-element set. Moreover, on the kth
floor we place the points corresponding to k-elements sets. Connect by
segments the pairs of points corresponding to sets obtained from each other
by adding one element. Then points connected by a segment lie on adjacent
floors. The obtained graph is called the n-dimensional cube.

Denote by Z2 the set {0, 1}. Introduce addition (modulo 2) by formulas

0 + 0 = 1 + 1 = 0 and 1 + 0 = 0 + 1 = 1.

Denote by Zn
2 the set of strings of length n consisting of 0 and 1, with the

operation of elementwise addition modulo 2.
A (nonempty) subset of L ⊂ Zn

2 is called a linear subspace if x+ y ∈ L
for any x, y ∈ L (not necessarily different). In other words, a linear subspace
is a family of subsets of n-element sets which together with any two subsets
contains their symmetric difference (i.e., the sum modulo 2).

5.4.6. (a) Any linear subspace contains the zero string (0, . . . , 0).
(b) The number of elements in any linear subspace is a power of two.

Denote by

∣∣∣∣∣nk
∣∣∣∣∣ the number of linear subspaces in Zn

2 consisting of 2k

elements (such linear subspaces in Zn
2 are called k-dimensional).

5.4.7. (a) Find

∣∣∣∣∣2k
∣∣∣∣∣ for k = 0, 1, 2.
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(b) Find

∣∣∣∣∣3k
∣∣∣∣∣ for k = 0, 1, 2, 3.

(c) Prove the equalities

∣∣∣∣∣n0
∣∣∣∣∣ =

∣∣∣∣∣nn
∣∣∣∣∣ = 1 and

∣∣∣∣∣n1
∣∣∣∣∣ =

∣∣∣∣∣ n

n− 1

∣∣∣∣∣ = 2n − 1.

(d) Prove the equality

∣∣∣∣∣nk
∣∣∣∣∣ =

∣∣∣∣∣ n

n− k

∣∣∣∣∣.
(e) Prove the equality

∣∣∣∣∣n+ 1

k + 1

∣∣∣∣∣ =
∣∣∣∣∣ n

k + 1

∣∣∣∣∣+ 2n−k

∣∣∣∣∣nk
∣∣∣∣∣.

(f) Find

∣∣∣∣∣n2
∣∣∣∣∣.

(g) Find

∣∣∣∣∣nk
∣∣∣∣∣.

Hints

5.4.1. First, set up several knights so that each threatens one other knight.
Then set up several knights so that each threatens two other knights.

5.4.3. (b) Answer : the smallest n = n(k), for which
( n
[n/2]

)
≥ k.

5.4.4. Answer : n.
5.4.7. (a) Answer : 1, 3, 1.
(b) Answer : 1, 7, 7, 1.
(d) Use the orthogonal complement.
(f) One can choose an ordered pair of linearly independent vectors in

n-dimensional linear space over Z2 in (2n − 1)(2n − 2) ways.
(g) One can choose an ordered set of k linearly independent vectors in

n-dimensional linear space over Z2 in (2n − 20) · (2n − 21) · · · · · (2n − 2k−1)
ways.

Suggestions, solutions, and answers

5.4.1. See hint above. Then arrange several knights so that each threatens
three others.

5.4.3. (a) First method. Induction on n with the use of Pascal’s rule
proves that for any n, the number

(
n
k

)
as a function of k increases with

k ≤ n/2 and decreases with k ≥ n/2.4

Second method. Consider
(
n
k

)/(
n

k+1

)
and use the explicit formula for(n

k

)
.

(b) For the n-element set X, the family
(

X
�n/2�

)
of all �n/2�-element

subsets satisfies the property from the formulation of the problem: none of

4The case k = n/2 should be treated slightly differently.
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them contains another. It remains to prove that in any family of subsets of
an n-element set none of which contains the other, there are at most

( n
�n/2�

)
subsets.

Suggestion for the first solution. For each permutation (a1, . . . , an) of
the set of the first n positive integers, we consider the chain of subsets

{a1} ⊂ {a1, a2} ⊂ · · · ⊂ {a1, . . . , an} = {1, . . . , n}.
In any such chain there is at most one subset of our family. The total number
of permutations is n!. A subset of a elements is included in the chain for

a!(n− a)! ≥ �n/2�! · (n− �n/2�)!
permutations. Therefore, the number of subsets in this family is at most

n!

�n/2�!(n− �n/2�)! =
(

n

�n/2�

)
.

Suggestion for the second solution. Consider all subsets of this family S
that have the minimal number a of elements. If a < �n/2�, then in S we can
replace these subsets with the same (or greater) number of (a+ 1)-element
subsets, so that in the resulting family none of the sets contains the other.

(Indeed, every a-element subset of S is contained in n − a subsets con-
sisting of a+1 elements. None of the last (a+1)-element subsets is in S. On
the other hand, each (a+ 1)-element subset contains at most a+ 1 subsets
consisting of a elements that lie in S. Since n − a ≥ a + 1, the number of
(a+1)-element subsets containing a subset from S is at least the number of
a-element subsets of S. Then we replace the latter with the former.)

Therefore, we can assume that every set in S has at least �n/2� ele-
ments. Similarly, replace the subsets with the maximal number b > �n/2�
of elements with (b − 1)-element subsets. Then we can assume that every
set in S has exactly �n/2� elements.

5.4.7. (f) The number of (k+1)-dimensional subspaces of the space Zn+1
2

• contained in Zn
2 ⊂ Zn+1

2 is equal to

∣∣∣∣∣ n

k + 1

∣∣∣∣∣;
• not contained in Zn

2 ⊂ Zn+1
2 is equal to 2n−k

∣∣∣∣∣nk
∣∣∣∣∣.

Let us prove the second statement. Note that a (k + 1)-dimensional
subspace L of the space Zn+1

2 not contained in Zn
2 intersects Zn

2 in a k-
dimensional subspace L ∩ Zn

2 . The subspace L is determined by the inter-
section of L ∩ Zn

2 and by a vector lying in the orthogonal complement to

L∩Zn
2 in Zn+1

2 but not lying in the orthogonal complement to L∩Zn
2 in Zn

2 .
There are 2n+1−k − 2n−k = 2n−k such vectors.

Remark. The following formula is also valid:

∣∣∣∣∣n+ 1

k + 1

∣∣∣∣∣ =
∣∣∣∣∣nk
∣∣∣∣∣+2k+1

∣∣∣∣∣ n

k + 1

∣∣∣∣∣.
(h) Answer : (2n−1)(2n−1−1)...(2n−k+1−1)

(2k−1)(2k−1−1)...(21−1)
.
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5. Expressibility for functions of the algebra of logic
By A.B. Skopenkov

Examples and definitions (1)

In this section, letters denote elements of the set Z2 = {0, 1}. We introduce
the following operations:

logical “not”: a =

{
1 for a = 0,
0 for a = 1;

logical “or”: a ∨ b =

{
1 for a = 1 or b = 1,
0 otherwise;

logical “and”: a&b =

{
1 for a = 1 and b = 1,
0 otherwise;

sum modulo 2, or XOR: a⊕ b =

{
0 for a = b,
1 otherwise.

5.5.1. Prove the following equalities:
(a) a ∨ b = a&b; (b) (a ∨ b)&c = (a&c) ∨ (b&c);
(c) (a&b) ∨ c = (a ∨ c)&(b ∨ c); (d) (a⊕ b)&c = (a&c)⊕ (b&c).

5.5.2. Express:
(a) x&y through x̄ and ∨;
(b) x⊕ y through x, &, and ∨.

Informally speaking, if there are several functions, then some of them
can be substituted as arguments of others. This is called expression of one
function by another. See the formal definition of superposition in Section 5
(Post’s theorem, below) of this chapter. For example, the function x2y +
y2 + z2 is expressed in terms of the functions x + y and xy (i.e., it is a
superposition of these functions).

In the process of expressing some functions through others, one variable
can be substituted for different variables (i.e., you can consider them as the
same). For example, the function 2x is expressed in terms of the function
x+ y.

We will often omit & and write, for example, (x&y&z)∨(a&b) as xyz∨ab.

5.5.3. Express, in terms of x and &:
(a) x ∨ y;
(b) x⊕ y;
(c) x|y, where 1|1 := 0 and x|y := 1 if at least one of x, y is 0 (Sheffer

stroke);
(d) x ↓ y, where 0 ↓ 0 := 1 and x ↓ y := 0 if at least one of x, y is equal

to 1 (Pierce arrow);
(e) x ≤ y, where (x ≤ y) := 1 if and only if x ≤ y “as real numbers”.
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5.5.4. Functions (mappings) are called equal if they take the same value for
all values of the arguments. For examples of equal functions, see problem
5.5.1.

(a) How many different functions f : Zn
2 → Z2 are there?

(b) Is it true that every function f : Z2
2 → Z2 in two variables can be

expressed in terms of &, ∨, and x?

5.5.5. Express through &, ∨, and x the function f : Z3
2 → Z2 in three vari-

ables, which is
(a) equal to 1 on the triple (0, 1, 0) and equal to 0 on all other triples;
(b) equal to 1 on the triples (0, 1, 0), (1, 1, 1) and equal to 0 on all other

triples;
(c) an arbitrary function.

5.5.6. Any function f : Zn
2 → Z2 can be expressed in terms of

(a) &, ∨, and x; (b) & and x̄; (c) &, ⊕, and 1, where 1(x) := 1;
(d) | .

5.5.7. Can any function Zn
q → Zq be expressed in terms of the sum and

product modulo q and constant 1 (i.e., “is” a polynomial, more precisely,
corresponds to some polynomial (see [Sko, §4.3]) if

(21) q = 2, n = 1; (2n) q = 2, n is arbitrary;
(31) q = 3, n = 1; (3n) q = 3, n is arbitrary;
(41) q = 4, n = 1; (4n) q = 4, n is arbitrary?

5.5.8. (Challenge) Any function f : Zn
2 → Z2 is uniquely represented by a

Zhegalkin polynomial, that is, the sum modulo two of monomials, i.e., nonre-
peating products of variables such that in each monomial all the variables are
different. The constant 1 is considered as a monomial with no factors. The
constant 0, by definition, is expressed by the empty Zhegalkin polynomial.

5.5.9. Can each function f : Zn
2 → Z2 be expressed in terms of

(a) ⊕ and 1; (b) ∨ and &; (c) ∨, &, 0, and 1; (d) ⊕ and &;
(e) f(x, y) = x⊕ y ⊕ 1 and ∨; (f) g(x, y, z) = xy ∨ xz ∨ yz and x?

5.5.10. (Challenge) Do there exist operations of “sum” and “product” on
Z4 that satisfy the usual properties (like x(y+ z) = xy + xz) and such that
each function Zn

4 → Z4 “is” a polynomial?

Post’s theorem (2*)

If the following definition seems complicated to you, you can skip it. You
can try to solve problems 5.5.12–5.5.18 at a less formal level. Therefore, in
these, instead of writing “a function is a superposition of functions from F”
we write “can be expressed in terms of functions from F”.
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Suppose we are given some set of functions F = {fα : Znα
2 → Z2}α∈A

(i.e., fα is a function of nα variables; the set is not necessarily finite). We de-
fine the set F of superpositions of functions from F as the set of all functions
that can be obtained from the functions of the set F and of all the individual
variables xj (i.e., the projections of Zn

2 → Z2 onto the jth coordinate for all
different n, j) by a sequence of the following operations (called elementary
superposition): if functions f(x1, . . . , xn), g1(. . .), g2(. . .), . . ., gn(. . .) (not
necessarily different) are already obtained, then obtain f(g1(. . .), . . . , gn(. . .)).

Here, as arguments of the functions gi, you can take any, including
coinciding, variables.

Superposition can also be defined graphically, in the language of schemes.
Superpositions is an important subject of mathematics and computer sci-
ence; see [BMSCS] and the references therein.

5.5.11. Will an equivalent definition be obtained if we take only f ∈ F , but
not an arbitrary function already obtained?

5.5.12. A function f : Zn
2 → Z2 is called linear if for some ε ∈ Z2 and a

subset {i1, . . . , is} ⊂ {1, . . . , n} we have f(x1, . . . , xn) = xi1 + · · · + xis + ε
for all (x1, . . . , xn) ∈ Zn

2 (i.e., if its Zhegalkin polynomial does not contain
monomials of degree greater than 1).

(a) If all the functions in a set are linear, then no nonlinear function can
be expressed in terms of them.

(b) All linear functions can be expressed in terms of functions from
problem 5.5.9(a).

(c) There is no single linear function in terms of which one can express
all linear functions.

5.5.13. A function f : Zn
2 → Z2 is called monotone if for any two n-tuples

(x1, . . . , xn) ≥ (y1, . . . , yn) the following equality holds: f(x1, . . . , xn) ≥
f(y1, . . . , yn). Here the notation (x1, . . . , xn) ≥ (y1, . . . , yn) means that these
inequalities hold componentwise, i.e., x1 ≥ y1, x2 ≥ y2, . . ., xn ≥ yn.

(a), (b) Solve analogues of problems 5.5.12(a), (b) for monotone func-
tions (problem 5.5.9(c) instead of 5.5.9(a)).

(c) There are no three monotone functions such that every monotone
function can be expressed in terms of them.

5.5.14. A function f : Zn
2 → Z2 is said to preserve 0 if f(0, 0, . . . , 0) = 0.

(a), (b), (c) Solve analogues of problems 5.5.12(a), (b), (c) for functions
preserving 0 (problem 5.5.9(d) instead of 5.5.9(a)).

5.5.15. We define functions that preserve 1 similarly.
(a), (b), (c) Solve analogues of problems 5.5.12(a), (b), (c) for functions

that preserve 1 (problem 5.5.9(e) instead of 5.5.9(a)).
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5.5.16. A function f : Zn
2 → Z2 is called self-dual if f(x1, x2, . . . , xn) =

f(x1, x2, . . . , xn).
(a), (b) Solve analogues of problems 5.5.12(a), (b) for self-dual functions

(problem 5.5.9(f) instead of 5.5.9(a)).
(c) There is a single self-dual function f such that each self-dual function

can be expressed in terms of f .

5.5.17. (a) The constants 0 and 1 can be expressed in terms of any nonself-
dual function and x.

(b) The constants 0 and 1 can be expressed in terms of any nonmonotone
function and x.

(c) The function & can be expressed in terms of any nonlinear function,
x, 1, and 0,

(d) The completeness criterion, or Post’s theorem. Given a set
of functions, any function can be expresssed in terms of functions from this
set if and only if there are functions in this set (not necessarily different)
belonging to the complement to each of the five sets listed above (linear,
monotone, preserving 1, preserving 0, and self-dual).

These five sets are called precomplete classes. Guess why?

5.5.18. (a) In each of the five precomplete classes there are functions that
do not belong to other classes; that is, for any two different precomplete
classes A and B there is a function f such that f ∈ A and f �∈ B.

(b) A set of functions is called complete if any function can be expressed
in terms of functions from this set. Prove that when adding one new function
to each of the five precomplete classes we obtain a complete set.

The variable x1 is called nonessential for a function f : Zn
2 → Z2 if

for any x2, . . . , xn ∈ Z2 the following equality holds: f(0, x2, . . . , xn) =
f(1, x2, . . . , xn). One can similarly define when each of variables xi, i =
2, . . . , n, is nonessential.

5.5.19. Find a function of three variables such that each variable is essntial.

5.5.20. Functions Zn
2 → Z2 are called equivalent if they become equal after

renaming variables and adding and removing nonessential variables. Equiv-
alence classes are called functions of the algebra of logic.

(a) How many different functions of the algebra of logic have at most
two essential variables?

(b)∗ The same as in part (a), for three essential variables.

A function of the algebra of logic is called linear if some (or, equiva-
lently, any) mapping f : Zn

2 → Z2 representing it is linear. Other sets of
functions of the algebra of logic (monotone, etc.) are defined in a similar
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way. Post’s theorem also holds for functions of the algebra of logic. It is
usually formulated in this way, but this makes it a little less accessible for
nonspecialists and beginners.

5.5.21.* Come up with an infinite number of different sets of functions of
the algebra of logic, closed with respect to superposition.

Hints

5.5.17. (b) A function is monotone if it is monotone in each variable indi-
vidually.

Suggestions, solutions, and answers

5.5.4. Answer : (a) 22
n
.

5.5.7. (2n), (3n) Any function Zn
q → Zq “is” a polynomial for a prime q.

To prove this, first obtain functions that vanish at all but one n-tuple.
5.5.9. Answer : no (to all parts of the problem).
Suggestion. (b), (d), (f) f(x) = 1 cannot be expressed; (b), (e), (f)

f(x) = 0 cannot be expressed; (c) f(x) = x cannot be expressed.
Consider an expression of each above function in terms of the given ones.

All variables in it can be considered coinciding.
5.5.19. Answer : xyz.
5.5.20. Answer : (a) 12.

6. Complexity of summation5

By Yu.G.Kydryashov and A.B. Skopenkov

The main results of this section are problems 5.6.7(b) and 5.6.14(d).

Introductory problems (2)

5.6.1.* Let x1, . . . , x99 be 99 real numbers. One can add two of the existing
numbers and remember the result. What is the minimal number of additions
allowing us to find the following sums:

(a) x1 + · · ·+ x99; (b) x1 + · · ·+ x66 and x34 + · · ·+ x99?

Later in this section, only variables taking values in Z2 = {0, 1} (except
for the problem 5.6.3) will be considered. Starting from the set x1, . . . , xn
of such variables, one can add (modulo 2) two already existing expressions
and remember the result.

5.6.2. What is the minimal number of additions we need to find the following
sums:

(a) x1 + · · ·+ x99; (b) x1 + · · ·+ x66 and x34 + · · ·+ x99?

5The authors thank I. Nikokoshev for useful discussions.

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



6. COMPLEXITY OF SUMMATION 95

5.6.3. Find a set of sums such that the minimal number of additions required
to compute it in the case of real variables is greater than the minimal number
of additions required to compute it when the variables are in Z2.

5.6.4. (a) Any two sums xi1 + · · ·+ xip and xj1 + · · ·+ xjq of the variables
x1, . . . , xn can be computed for not more than n− 1 additions.

(b) Any three sums xi1 + · · · + xip , xj1 + · · · + xjq , and xk1 + · · · + xkr
of variables x1, . . . , xn can be computed in not more than n+ 1 additions.

5.6.5. Any set of sums xi1+· · ·+xip of variables x1, . . . , xn can be computed
in not more than 2n − (n+ 1) additions.

5.6.6. Suppose any set of m sums of n variables can be found in l additions.
Then

(a) any set of km sums of the same n variables can be found in not more
than kl additions;

(b) any set of m sums of kn variables x1, . . . , xkn can be found in not
more than k(l +m) additions.

5.6.7. (The main problem) (a) For sufficiently large m,n, any set of m sums
of n variables can be found in at most mn

100 additions.

(b) Any set ofm sums of n variables can be found in at most 2m
⌈

n
�log2 m�

⌉
additions. Here �x� is the integer part of x, i.e., the largest integer not
exceeding x, and �x� is the upper integer part of the number x, i.e., the
smallest integer that is larger than or equal to x.

Definitions and examples (3*)

A sequence of additions can be represented in the following way. We have a
set of adders (“mod 2 summators”) with two inputs and one output equal
to the sum modulo 2 of inputs (this output can be “duplicated”). We need
to assemble a circuit of adders that implements the given set of sums.

The number of additions is equal to the number of adders in the circuit.
This number is called the circuit complexity .

The minimal complexity of the circuit that implements the given set M
of sums is called the complexity of the set of sums and is denoted by L(M).

In this notation, in problem 5.6.2 we need to find L({x1 + · · · + x99})
and L({x1 + · · ·+ x66, x34 + · · ·+ x99}.

The minimal number l such that any set ofm sums of variables x1, . . . , xn
can be found using l adders is called the complexity of the ordered pair (m,n)
and is denoted by L(m,n).

In this notation, problem 5.6.4 states that L(2, n) ≤ n− 1 and L(3, n) ≤
n+ 1, and problem 5.6.7(b) states that

L(m,n) ≤ 2m
⌈ n

�log2m�
⌉
.
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A set of m sums of n variables can be represented by a matrix M of size
m× n, where at the intersection of the ith row and jth column we put 1 if
the jth variable occurs in the ith sum, and 0 otherwise. Then the ith sum
can be written very simply as follows:

si =
n∑

j=1

Mijxj .

In this notation, the sets of sums from problem 5.6.2 is represented as

(
1 . . . 1

)
,

(
1 . . . 1 1 . . . 1 0 . . . 0

0 . . . 0 1 . . . 1 1 . . . 1

)
.

Let us consider a family of m sums of variables x0, . . . , x2m−1 where all
variables occur “differently”. Columns of this matrix are binary representa-
tions of integers between 0 and 2m−1. Formally, let j = bm−1,j2

m−1+ · · ·+
b0,j2

0 be the binary representation of the number j < 2m. Then Bm = (bi,j).
For example,

B1 =
(
0 1

)
, B2 =

(
0 0 1 1

0 1 0 1

)
, B3 =

⎛
⎜⎝
0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

⎞
⎟⎠ .

For a matrix M with elements Mij we denote by M t the matrix with ele-
ments (M t)ij = Mji. The columns of the matrix M t are the rows of the
matrix M .

5.6.8. The following inequalities hold:
(a) L(Bm) < 2m+1; (b) L(m,n) < n+ 2m+1.

5.6.9. Consider a matrix M of size m×n that has no null rows and no null
columns.

(a) Is it true that L(M) +m = L(M t) + n?
(b) Is it true that L(m,n) +m = L(n,m) + n?
(c) Find L(Bm).

To conclude this subsection, we present a research problem.

5.6.10.* Consider the set of variables xα1,...,αn , numbered by the vertices of
the n-dimensional unit cube Zn

2 . It is required to find the sums of variables
for all faces containing the vertex (0, . . . , 0). In other words, for each set
(α1, . . . , αn) ∈ Zn

2 it is needed to find
∑

∀i : βi≤αi

xβ1...βn . What is the minimal

number of mod 2 additions allowing us to do this?
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Asymptotic estimates (4*)

5.6.11. For sufficiently large n, the following inequality holds:

L(n, n) <
n2

0.9 log2 n
.

5.6.12. (a) There are at most (n+k)m+2k circuits of k adders with n inputs
and m outputs.

(b) If k = L(m,n), then mn ≤ (m+ 2k) log2(n+ k).

(c) For sufficiently large n we have L(n, n) ≥ n2

5 log2 n
.

(d) For any ε > 0 and for sufficiently large n (depending on ε) the
following inequality holds:

L(n, n) ≥ n2

(4 + ε) log2 n
.

To state the next results, we need some asymptotic notation.
A sequence an > 0 is asymptotically not bigger than a sequence bn > 0 if

for any ε > 0 there is only a finite set of indices k such that an > (1 + ε)bn.
We denote this as follows: ak � bk. In this notation, problem 5.6.12(d) takes

the following form: L(n, n) � n2

4 log2 n
.

5.6.13. If an � bn and bn � cn, then an � cn.

A sequence an is little-o of a sequence bn (an � bn) if an/bn → 0 as
n → ∞.

5.6.14. If log2 n � f(n) � 2n for a function f : Z → Z, then

(a) nf(n)
2 log2(nf(n))

� L(f(n), n);

(b) L(f(n), n) � nf(n)
log2 f(n)

;

(c) L(f(n), n) � nf(n)
log2 n

;

(d) nf(n)
2 log2(nf(n))

� L(f(n), n) � nf(n)
max(log2 n,log2 f(n))

.

(This is the main problem.)

Suggestions, solutions, and answers

5.6.1. Answer : 98.
Suggestion. We present general arguments that allow us to solve not only

this but also many other similar problems. Obviously, the sum x1+ · · ·+x99
can be found in 98 additions. Suppose we have a circuit of adders that imple-
ments our sum. Consider a graph in which there are 99 vertices P1, . . . , P99.
For an adder with the first input xi1 + · · · + xip and the second input
xj1 + · · · + xjq we draw the edge from the vertex Pi1 to the vertex Pj1 .
It is clear that at every moment the vertices corresponding to the variables
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included into one of the already calculated sums lie in one connected com-
ponent. Therefore, the finite graph is connected, and that means that in it
there are at least 98 edges; i.e., a ≥ 98.

(b) Answer : 98.
Suggestion. The proof is similar to the proof of (a).
5.6.2. The solution repeats the solution of problem 5.6.1.
5.6.3. As an example, take the following set:{

x1 + x2, x1 + x2 + x3, x1 + x2 + x3 + x4, x2 + x3 + x4
}
.

Indeed, in the case of variables from Z2 we can find these sums in the
indicated order without computing auxiliary sums, but in the case of real
variables we have to compute at least one auxiliary sum.

5.6.4. (a) We will prove the statement by induction on n. Denote by
S(A) the sum of all variables indexed by elements of A. Let S(A1) and
S(A2) be the sums sought for. If all the sets B1 := A1 −A2, B2 := A1 ∩A2,
and B3 := A2−A1 are nonempty, then we calculate the sum in each of these
sets using at most

|B1| − 1 + |B2| − 1 + |B3| − 1 = |A1 ∪A2| − 3 ≤ n− 3

additions. It remains to find

S(A1) = S(B1) + S(B2) and S2 = S(B2) + S(B3).

This can be done with two additions.
One can easily (for example, by exhaustive search) prove that if one of

the sets is empty, the number of additions does not increase.
(b) The proof is similar to part (a).
5.6.5. It is easy to see that 2n − (n+ 1) is the number of all sums of n

variables that have at least two terms. We can successively calculate these
amounts: first, the sums with two terms, then the sums with three terms,
etc., and, finally, the sum with n terms. As a result of this process, we
calculate all the sums of the variables x1, . . . , xn.

5.6.6. (a) A set of km sums can be viewed as k sets of m sums. By
considering each such set separately, we obtain the required estimate.

(b) Let M be the matrix corresponding to our set of m sums of kn
variables. Using vertical “cuts” we cutM into k matrices of sizem×n. First,
using kl adders we implement the additions corresponding to all resulting
matrices of size m×n. Then each sought for sum is the sum of at most k−1
already found sums. Therefore, the required set of sums can be implemented
using at most kl +m(k − 1) < k(l +m) additions.

5.6.7. (a) Using problem 5.6.5 with n = 500 we see that any set of m
sums of 500 variables can be computed using at most l = 2500 additions.
Therefore, by problem 5.6.6(b) any set of m sums of 500k variables can be
computed using at most k(l +m) additions. Thus, any set of m sums of n
variables can be computed using at most⌈ n

500

⌉
(l +m)
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additions. It is clear that for sufficiently large m and n this number is less
than mn/100.

(b) Problem 5.6.5 shows that any set of m sums of �log2 m� variables

can be computed using at most l = 2�log2 m� ≤ m additions. Therefore, by
problem 5.6.6(b), any set of m sums of [log2 m]k variables can be computed
using at most k(l + m) ≤ 2km additions. Thus, any set of m sums of n
variables can be computed using at most

2m
⌈ n

�log2m�
⌉

additions.
5.6.8. (b) Consider an arbitrary matrix A of size m×n. If in this matrix

all columns are different, then the complexity of this matrix is not greater
than L(Bm). If there are two matching columns, then, first calculating
the sum of the variables corresponding to these columns, we reduce the
problem to the implementation of a matrix of size m× (n− 1). Therefore,
L(m,n) ≤ L(Bm) + n < n+ 2m+1.

5.6.9. (a) Answer : true.
Suggestion. Construct a circuit in the form of a directed graph that has

vertices of four types:6

• circuit inputs (they have no inputs and one output),
• adders (they have two inputs and one output),
• splitters (they have one inputs and two outputs),
• circuit outputs (they have one input and no outputs).
It is easy to see that the element Mij is equal to the number of paths

from the jth input to the ith output taken modulo 2. Consider a new
graph in which all edges change direction to the opposite, and consider the
corresponding circuit (so that inputs become outputs and vice versa, and
splitters become combiners and vice versa). It is easy to see that this circuit
implements the matrix M t.

Let l1 be the complexity of the first circuit, and let l2 be the complexity
of the second circuit. We will compute the number of edges of our graph
in two ways: as the number of beginnings of edges of the first graph and
as the number of beginnings of edges of the second graph. In the first case
we get n + l1 + 2l2, and in the second case we get m+ l2 + 2l1. Therefore,
n+ l2 = m+ l1. Since l1 = L(M), we get that L(M t) ≤ m− n+ L(M). It
remains to use the fact that (M t)t = M .

(b) Answer : true.
Suggestion. This follows from (a).
(c) Answer : L(Bm) = 2m+1 − 2m− 2.
Suggestion. We remove the zero column from the matrix Bm and denote

the resulting matrix B′
m. Then (B′

m)t is the matrix corresponding to the set

6Editor’s note. In electrical engineering and in computer science, circuits perform
various operations on analog or digital signals; for us, circuits are just directed graphs
with vertices of specific form.
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of all sums of m variables. We already know the complexity of this set of
sums. Using part (a), we get the answer.

5.6.11. Problems 5.6.6(a) and 5.6.8 show that for sufficiently large n the
following chain of inequalities holds:

L(n, n)<
⌈ n

�0.95 log2 n�
⌉
L(�0.95 log2 n�, n) <

n

0.94 log2 n
L(�0.95 log2 n�, n)

<
n

0.94 log2 n
(n+ 2 · 2�0.95 log2 n�) < n

0.94 log2 n
(n+ 2n0.95) <

n2

0.9 log2 n
.

5.6.12. (a) Call wire beginnings inputs of the circuit and outputs of
adders (total n+k), and call wire ends the outputs of the circuit and inputs
of adders (total m+ 2k). We enumerate all the beginnings and ends of the
wires. Let us complement each circuit with information about which wire
beginnings are connected to which ends. It is clear that this information
uniquely determines the circuit. Therefore, the required number of circuits
does not exceed the number of different connections of m + 2k wire ends
with some of the n+ k wire beginnings, which is equal to (n+ k)m+2k.

(b) Since the number of different circuits with L(m,n) elements with n
inputs and m outputs does not exceed the number of matrices of size m×n
with elements in Z2, we have 2mn ≤ (n + k)m+2k. Taking the logarithm of
this inequality, we obtain the statement of the problem.

(c) If k = L(n, n) < n2

5 log2 n
, then from part (b) it follows that

n2 ≤
(
n+

2n2

5 log2 n

)
log2

(
n+

n2

5 log2 n

)
,

which is not true for sufficiently large n, since

lim
n→∞

1

n2

(
n+

2n2

5 log2 n

)
log2

(
n+

n2

5 log2 n

)

= lim
n→∞

log2 n

n2

(
n+

2n2

5 log2 n

)
· lim
n→∞

1

log2 n
log2

(
n+

n2

5 log2 n

)
=

2

5
· 2 =

4

5
.

(d) The proof is similar to the previous one.
5.6.13. If an < bn

√
1 + ε and bn < cn

√
1 + ε, then an < (1 + ε)cn. It

remains to use the definition.
5.6.14. (a) We will denote m = f(n). If

k = L(m,n) <
mn

(2 + ε) log2(mn)
,

then by problem 5.6.12(b)

mn ≤
(
m+

2mn

(2 + ε) log2(mn)

)
log2

(
n+

mn

2 log2(mn)

)
.
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Let us prove that this inequality is not true for sufficiently large n. Indeed,

lim
n→∞

1

mn

(
m+

2mn

(2 + ε) log2(mn)

)
log2

(
n+

mn

(2 + ε) log2(mn)

)

= lim
n→∞

log2(mn)

mn

(
n+

2mn

(2 + ε) log2(mn)

)
× lim

n→∞
1

log2(mn)
log2

(
n+

mn

(2 + ε) log2(mn)

)
=

2

2 + ε
· 2 =

4

2 + ε
.

It remains to use the definition of limit.
(b) Take an arbitrary number k independent of n. We break the matrix

A that we want to implement into submatrices of the width
⌊
log2

m
k

⌋
. Each

submatrix can be implemented using
⌈
m
k

⌉
additions. Therefore, all subma-

trices together can be implemented using

⌈
n⌊

log2
m
k

⌋⌉ ·
⌈
m
k

⌉
additions, and

the matrix A itself can be implemented using⌈
n⌊

log2
m
k

⌋⌉ ·
⌈m
k

⌉
+m

⌈
n⌊

log2
m
k

⌋⌉ � k + 1

k

nm

log2m

additions. Therefore, for any k the following asymptotic inequality holds:

L(m,n) � k + 1

k

mn

log2 m
.

Therefore, L(m,n) � mn
log2 m

.

(c) Similarly to problem 5.6.11, it can be proved that for any ε ∈ (0, 1)
for sufficiently large n the following inequality holds:

L(m,n) ≤ mn

ε log2 n
.

(d) Follows from the three previous problems.
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Chapter 6

Probability
By A.B. Skopenkov
and A.A. Zaslavsky

This chapter1 is devoted to the simplest concepts and applications of prob-
ability theory. To understand it, you need to be familiar with the basics
of combinatorics, for example, Sections 1 and 3 in Chapter 1 of this book.
Additionally, it is helpful to encounter “physical” interpretations of prob-
ability theory; see, for example, [KZhP]. Here we immediately start with
“mathematical” definitions. However, we present many problems informally
and show by examples how to formalize them. We leave the formalization of
some problems to the reader. See, for example, problems 6.2.6(c), (d) and
6.4.13, [GDI2, problems 6.3.1.b and 6.3.3.c].

1. Classical definition of probability (1)

Consider an experiment with m equally possible outcomes, such as throwing
a die, pulling a card from a deck, etc. If the event we are interested in (for
example, getting six, drawing an ace, etc.) occurs in a of these outcomes,
then the probability of the event is considered equal to p = a/m.

This explanation is useful for a beginner, but it is not a mathematical
definition. Here is a mathematical definition.

The probability of a subset A of a finite set M is defined to be the ratio

P (A) = PM (A) := |A|/|M |.
Unless otherwise stated, the set M is fixed and is omitted from the notation.
Then the probability is defined for all its subsets. These are often called
events.

6.1.1. From a deck of 52 cards, one card is pulled. Find the probability that
it will be

(a) black; (b) an ace; (c) a face card;
(d) the queen of spades; (e) a king or a diamond.

1The author is grateful to Yu. N. Tyurin and T. Takebe for a useful discussion.
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104 6. PROBABILITY

For example, in problem 6.1.1(c) the set M (“of all possible outcomes”)
coincides with the set of cards in the deck, and the set A (“outcomes in
which the event in question occurs”) coincides with the subset of face cards.
So this and many other probabilistic problems can be formulated rigorously
in combinatorial terms.

6.1.2. A coin is flipped 3 times. Find the chance of
(a) three heads; (b) two heads and one tail.

6.1.3. Find the probability that when rolling two dice,
(a) the first die shows a larger number of dots than the second;
(b) the total number of dots will be 2, 3, . . . , 12.

6.1.4. Find the probability that a random integer from 1 to 105, inclusive
(a) is divisible by 5; (b) is divisible by 7; (c) is divisible by 35.
(a′), (b′), (c′) Same question, but for a random integer from 1 to 100,

inclusive.

6.1.5. Fred knows the answers to 10 questions out of 30. A quiz consists of
two questions. What is the probability that Fred answers both questions?

To solve some of the above problems, the following rules are useful.

6.1.6. (a) Rule of addition. Let A ∩ B = ∅. Express P (A ∪ B) in terms
of P (A) and P (B).

(b) Express the probability P (A ∪ B) in terms of P (A), P (B), and
P (A ∩B).

(c) Multiplication rule. Express the probability of PM×N (A× B) in
terms of PM (A) and PN (B).

Comment : PM (A) = PM×N(A×N) and PN (B) = PM×N (M ×B).

6.1.7. (a) Red and black socks lie in the drawer. What is the minimum
number of socks in the drawer if the probability that two randomly selected
socks are red equals 1/2?

(b) The same question as above, but it is known that the number of
black socks is even.

6.1.8.* (a) A triangle is formed by selecting three vertices of a regular 2n-
gon randomly. What is the probability that it will be right? Acute? Obtuse?

(If you cannot solve the problem, then see the next section.)
(b) Find the limits of the probabilities obtained for n → ∞. (Think

about the meaning of the results. Compare with problem 6.2.6(c).)
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Suggestions, solutions, and answers

6.1.4. Answers: (a) 0.2; (b) 1
7 ; (c)

1
35 ; (a

′) 0.2; (b′) 0.14; (c′) 0.05.
(a) Solution (E. Pavlov). Let M = {1, 2, . . . , 105} be the set of all pos-

sible outcomes, and let A = {5, 10, . . . , 105} = {x ∈ M : 5 | x} be the set
of favorable outcomes. Then, by definition, the probability of the set A is

P (A) = |A|
|M | =

� 105
5

�
105 = 0.2.

6.1.5. Answer : 3
29 .

Solution (P. Belopashentseva). Let M be the set of all (nonordered)
pairs of distinct numbers from 1 to 30. This set corresponds to the set of
all possible quizzes. The number of elements in M is |M | =

(
30
2

)
.

Denote by A the set of all nonordered pairs of different numbers from
1 to 10. The set A corresponds to the set of quizzes for which Fred knows
both answers. The number of elements in A is |A| =

(
10
2

)
. The probability

of a subset A in a set M is by definition PM (A) = |A|/|M | =
(10
2

)
/
(30
2

)
=

10·9/2
30·29/2 = 3

29 .

6.1.6. Answers: (a) P (A ∪B) = P (A) + P (B);
(b) P (A ∪B) = P (A) + P (B)− P (A ∩B);
(c) PM×N (A×B) = PM (A)PN (B).
6.1.7. Answers: (a) 4; (b) 21.
Suggestion. Let r and b be the number of red and black socks, respec-

tively. Then the probability of drawing two red socks is r(r−1)
(r+b)(r+b−1) . This

expression is 1/2 for an infinite set of pairs (r, b), the smallest of which are
(3, 1) and (15, 6). For more details, see Problem 1 from [Mos].

6.1.8. (a) Answer : 3
2n−1 ,

n−2
2(2n−1) ,

3(n−2)
2(2n−1) .

Suggestion. Consider the first vertex to be fixed. If the second vertex
is directly opposite to the first, then the triangle will definitely be right.
Otherwise, the third vertex must be at one of the vertices opposite (with
respect to the center of the polygon) to one of the first two. Therefore the
probability of a right triangle is 1

2n−1 +
2n−2
2n−1

2
2n−2 = 3

2n−1 .
Similarly, a triangle will be acute if the second vertex is not opposite to

the first, and the third vertex lies “between” the vertices that are opposite
to the first two. The probability of this is

2

2n− 1

(
1

2n− 2
+

2

2n− 2
+ · · ·+ n− 2

2n− 2

)
=

n− 2

2(2n− 1)
.

(b) Answer : 0, 1/4, 3/4.

2. A more general definition of probability (1)

6.2.1. (a) One shooter hits a target with probability 0.8, the other with
probability 0.7. Find the probability of hitting the target if both shoot
simultaneously.
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(In this and some other problems below, we delay providing precise
formalizations.)

(b) A worker uses three machines. The probabilities that each machine
stops is, respectively, equal to 0.1, 0.2, and 0.15. Find the probability that
all the machines are working.

To formalize the above problems, it is necessary to add a more general
definition. Let a set M be given, and let each m ∈ M be associated with
a nonnegative number P (m), where the sum of P (m) over all m ∈ M is 1.
Then we define the probability of the event A ⊆ M to be the sum of the
numbers P (m) over all m ∈ A.

For example, in the above problem, it is reasonable to assume that the
set M consists of four elements: both shooters hit, the first hits and the
second misses, the first misses and the second hits, both miss.

6.2.2. Formulate and prove the analogues of the rules of sum and product
for the above generalization.

6.2.3. A father, mother, and son like to play chess. The father promises his
son a prize if he wins two games in a row out of three played alternately
with the father and the mother. The son knows that the father plays better
than the mother. Would it be more advantageous for the son to play the
first game with the father or the mother?

The above definition can be generalized to the case of an infinite set M .
(In this case, for all m ∈ M , except for a countable number, P (m) = 0.)
Even more interesting is the following generalization.

6.2.4. Find the probability that a random point of an equilateral triangle
lies

(a) in the triangle formed by midlines;
(b) in the inscribed circle.

Let A ⊂ M be subsets of a line (or plane or space) that have a length
(or area or volume). Not all subsets have a length (or area or volume); see
the remark in Section 5 of Chapter 7. Then the ratio

P (A) = PM (A) := L(A)/L(M),

where L(A), L(M) are lengths of the subsets, is called the probability of the
subset A in M .

Let A ⊂ M be subsets of a plane (or space) having an area (or volume).
Then the ratio

P (A) = PM (A) := S(A)/S(M),

where S(A), S(M) are the areas of subsets, is called the probability of the
subset A in M .
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As in the discrete case, when the set M is fixed, the subsets having a
length (area, volume) are often called events.

6.2.5.* Formulate and prove the analogues of the rules of sum and product
for the above “geometric” probabilities.

6.2.6.* (a) Duels in the city of Caution rarely end in a sad outcome. The
custom is that each duelist arrives at the place of battle at a random time
between 5 and 6 o’clock in the morning and, after waiting for the opponent
for 5 minutes, leaves. If the opponent shows up before the 5 minutes end,
then an actual duel takes place. What fraction of the duels really ends in a
duel?

(b) A stick is randomly broken into three parts. What is the probability
that a triangle can be formed from these parts?

(c) Find the probability that a random triangle is acute.
(d) With what probability is a randomly chosen chord in a circle longer

than the side of an equilateral triangle inscribed in this circle?

Surprisingly, 6.2.6(c) and (d) have other natural formalizations that give
a different answer! It is interesting that parts (c) and (d) allow different
natural formalizations which result in different answers!

Suggestions, solutions, and answers

6.2.1. (a) Answer : 1− (1− 0.7)(1− 0.8) = 0.94.
6.2.3. Answer : with father.
Solution. Let p1 and p2 denote the probability of winning one game from

the father and from the mother, respectively: 0 < p1 < p2. Let M be the
set of strings of length 3 using the symbols 0 and 1 (for each k = 1, 2, 3 the
symbol at the kth place “encodes” the result of the kth game). Let P1(m)
and P2(m) be the probabilities of the element m ∈ M in the case when
the first game is played with the father or the mother, respectively. These
probabilities are determined by the product rule (see (6.2.2)). In particular,
P1(111) = p1p2p1, P1(110) = P1(011) = (1 − p1)p2p1, P2(111) = p2p1p2,
P2(110) = P2(011) = (1 − p2)p1p2. Let A = {111, 110, 011}. Then by
definition,

P1(A) = P1(111)+P1(110)+P1(011) = p1p2(2−p1) > p2p1(2−p2) = P2(A).

6.2.6. (a) Answer : 23/144.
(b) For M one can take an equilateral triangle with a height equal to

the length of the stick. Since for each point inside the triangle, the sum of
the distances from it to the sides is equal to the height, these distances can
be considered equal to the lengths of the parts of the rod obtained during
the fracture.

For each of these parts to be less than the sum of the other two means
that the point representing the break in the equilateral triangle should lie
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in the equilateral triangle formed by the midlines. Therefore the desired
probability is 1/4.

(c) First interpretation. Answer : 12 ln 2 − 8. A triangle composed of
the resulting pieces can be associated with each break of the stick from part
(b). Moreover, the resulting triangle is acute-angled if and only if the sum
of the squares of the lengths of any two pieces is greater than the square of
the length of the third.

Second interpretation. Answer : 1/4. With each break of the stick from
(b), we can associate an auxiliary triangle, whose angles are proportional to
the lengths of the resulting pieces. Moreover, a triangle can be made up of
such pieces if and only if the auxiliary triangle is acute-angled. Therefore,
it is natural to assume that the desired probability is equal to the value
obtained in part (b).

(d) If we assume that the endpoints of the chord are uniformly dis-
tributed on a circle, we obtain 1/3. If the middle of the chord is uniformly
distributed in the disk, then we obtain 1/4. And if we draw the diameter
perpendicular to the chord and select the intersection point with the chord
uniformly on the diameter, then the answer is 1/2.

3. Independence and conditional probability (1)

The following definition generalizes the notion of the multiplication rule
6.1.6(c). Subsets (i.e., events) A and B �= ∅ of a finite set M are independent
if the fraction (i.e., probability) of the set A∩B in B is equal to the fraction
of the set A in M . We shall give a symmetric reformulation that works also
for B = ∅. The subsets A and B of a finite set M are called independent if

|A ∩B| · |M | = |A| · |B|.

The main example of independent subsets: In the set of all squares of
a chessboard, consider the subset formed by the first three rows and the
subset formed by the last four columns. More rigorously, consider A × N
and M ×B in M ×N .

6.3.1. Subsets that are not independent are called dependent. Are the fol-
lowing subsets dependent?

(a) Subsets {1, 2} ⊂ {1, 2, 3, 4} and {1, 3} ⊂ {1, 2, 3, 4}.
(b) Subsets {1, 2} ⊂ {1, 2, 3, 4, 5, 6} and {1, 3} ⊂ {1, 2, 3, 4, 5, 6}.

6.3.2. Are the following subsets of the set of integers from 1 to 105 depen-
dent?

(a) The multiples of 5 and the multiples of 7.
(b) The multiples of 15 and the multiples of 21.
(c) The multiples of 15 and the multiples of 5.
(d) The multiples of 10 and the multiples of 7.
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The following reformulation also works for a more general definition of
probability when not all numbers P (m) are equal.

The subsets A and B of the set M are called independent if P (A∩B) =
P (A) · P (B).

6.3.3. Two noblemen from the King’s retinue, awaiting the appearence of
His Majesty, decided to play dice. They made the same bets and agreed
that the one who first won 10 games gets all the money. With the score 9
to 8, the king appeared and the game had to be discontinued. How should
they split the money?

This was one of the problems that laid the foundation of probability
theory. (It will be easier for you to solve after looking at problem 6.3.10.)

The problem was posed to the great 17th-century French mathematician
Blaise Pascal by an acquaintance, one of those noblemen mentioned in the
problem. Pascal realized that the money should be divided in proportion to
the chances that the players had for the final victory at the time the game
stopped. He found a method for calculating these chances (for any score).
Another method for solving the problem, leading to the same result, was
found by Pierre Fermat, another great mathematician of the 17th century.
Their methods are based on the following concept.

The ratio

P (A|B) := P (A ∩B)/P (B)

is called the conditional probability of the subset A under the condition of
the subset B, assuming that P (B) �= 0.

It is clear that the independence of the subsets A and B is equivalent to
the fact that P (A|B) = P (A).

6.3.4. (a) A die is tossed, and it is known to be even. Find the probability
that it is less than 5.

(b) Paradox of a boy and a girl. There are two children in a family.
It is known that one of them is a boy. Find the likelihood that the second
child is also a boy. (We suppose that the probabilities of giving birth to
a boy and girl are equal and that the gender of the second child does not
depend on the gender of the first.)

6.3.5. Light bulbs are produced by two factories, the first of which produces
70% of all bulbs. Bulbs produced by the first factory work with probability
0.98, and those produced by the second one work with probability 0.95.
Find the probability that the purchased light bulb works.

The solution to this problem is generalized as follows.
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6.3.6. The formula for the total probability. If M = B1 ∪ · · · ∪ Bn,
Bi ∩ Bj for i �= j, and P (Bj) �= 0 for all j (they say that B1, . . . , Bn is
complete system of events), then

P (A) = P (A|B1)P (B1) + · · ·+ P (A|Bn)P (Bn).

6.3.7. The winner in a match between two boxers is determined by a major-
ity vote of three judges. Two judges make the right decision with probability
p, and the third one votes by throwing a coin. Find the probability that
these judges make the correct decision.

6.3.8.* The rules of a game of craps are as follows: a player rolls two dice.
She wins if the sum is 7 or 11 and loses if it is 2, 3, or 12. In the remaining
cases, she rolls the dice until she wins by getting the sum she had at the
first roll, or she loses with a sum of 7. Find the probability of winning.

6.3.9. Light bulbs are produced by two factories, the first of which produces
70% of all bulbs. Bulbs produced by the first factory work with probability
0.98, and those produced by the second work with probability 0.95. The
purchased bulb turned out to be defective. Find the probability that it was
produced by the first factory.

The solution to this problem is generalized as follows.

6.3.10. Bayes’s formula. The following equality is true:

P (B|A) = P (A|B)P (B)/P (A).

We often use this corollary of the formulas of 6.3.6 and 6.3.10:

P (X|A) = P (A|X)P (X)

P (A|B1)P (B1) + · · ·+ P (A|Bn)P (Bn)
.

6.3.11. The probability that a product is defective is 0.04. If it is defective,
then it will pass a quality test with probability 0.05, and otherwise with
probability of 0.98. Find (to the nearest 0.0001) the probability that a
product that passes the test twice is defective.

6.3.12. King Arthur holds a knight elimination tournament. Among the 2n

equally skilled knights, there is a pair of twins. Find the probability that
they meet.

6.3.13.* The discriminating bride. (Challenge) A girl chooses a husband
for herself from among n applicants, who successively propose to her. Each
time she can accept the offer (then everything ends) or reject it (the rejected
suitor doesn’t propose again). She wants to maximize the probability of
choosing the most worthy suitor.
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(a) Prove that the optimal strategy is to reject the first s(n) offers and
then accept the first one from an applicant superior to all previous ones.

(b) Determine the optimal value of s(n).

Suggestions, solutions, and answers

6.3.3. Answer : the first should take 3/4 money, and the second takes 1/4.
Suggestion (N. Medved). Let’s see how the game could continue (we

believe that the game is fair). With probability 0.5, the first one wins
immediately. Otherwise with probability 0.5, the score becomes 9 : 9. In
this case, each player has additional probability 0.25 of winning. This means
that the odds of winning are in the ratio 3 : 1. Therefore, the first must
take three quarters of the money, and the second one takes a quarter.

6.3.4. (b) First interpretation. Answer : 1/3.
Suggestion (N. Medved). By the definition of conditional probability, the

probability that the second child is a boy, provided that one of the children
is a boy, is equal to the probabilities that both children are boys, divided by
the probability that at least one of them is a boy. The probability of having
two boys is 1/4. The probability of a boy and a girl is 1/2. Hence, the
probability that at least one of the two children is a boy is 1− 0.25 = 0.75.
We have 0.25

0.75 = 1
3 .

Second interpretation. Answer : 1/2.
6.3.5. Answer : 0.7 · 0.98 + 0.3 · 0.95 = 0.971.
6.3.9. Answer : 14/29.
6.3.11. Answer : 0.0001.
Suggestion (N. Medved). For a nondefective product, the probability of

passing the test twice is 0.9604, and for a defective product, it is 0.0025.
Then for an arbitrary product, the probability that it passes the test twice,
according to the law of total probability, is equal to

0.96 · 0.9604 + 0.04 · 0.0025 = 0.921984 + 0.000100 = 0.922084.

According to Bayes’s formula (see (6.3.10)), the probability that a product is
nondefective, provided that it has passed 2 tests, is equal to the probability
that a nondefective product will pass 2 tests, multiplied by the probability of
a nondefective product and divided by the probability of passing two tests,
that is, 0.9604 · 0.96/0.922084, or about 99.99% (the precises estimation of
error we leave to the reader).

Here is a general argument.
Let A1 be the event that the product is nondefective, and let A2 be

the event that it is defective. Let B1 be the event that a positive re-
sult was given by the first test, and let B2 be the event that a positive
result was given by the second test. By the conditions of the problem,
P (B1|A1) = P (B2|A1) = 0.98, and P (B1|A2) = P (B2|A2) = 0.05. Since the
tests are independent, we have P (B1 ∩ B2|A1) = P (B1|A1) · P (B2|A1) and
P (B1 ∩ B2|A2) = P (B1|A2) · P (B2|A2). Then by Bayes’s formula (see
(6.3.10)) this implies P (A1|B1 ∩B2) = P (B1 ∩B2|A1)P (A1)/P (B1 ∩B2).
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Since A1 and A2 form a complete system of events, expressing P (B1∩B2)
with the help of the full probability formula (see 6.3.6), we find

P (A1|B1 ∩B2) =
P (B1 ∩B2|A1)P (A1)

P (B1 ∩B2|A1)P (A1) + P (B1 ∩B2|A2)P (A2)

=
0.98 · 0.98 · 0.96

0.98 · 0.98 · 0.96 + 0.05 · 0.05 · 0.04 ≈ 0.9999.

6.3.12. Answer : 1
2n−1 .

Suggestion. With probability 2n−1

2n−1 , the twins are in different halves of
the tournament bracket and can only meet in the finals. From here, by
induction, we get that the probability of a meeting is 1

2n−1 . See Problem 16
from the book [Mos] for more details.

6.3.13. (a) Let the kth suitor be better than all the previous ones.
Then the probability that he is the best of all suitors is equal to k

n , which
is an increasing function of k. On the other hand, it is obvious that the
probability of choosing the best suitor after rejecting the kth is a decreasing
function of k. Therefore, while the first probability is less than the second,
the suitors must be rejected, and when the first probability becomes greater,
it is necessary to accept the offer of the first suitor who surpasses all the
previous ones.

(b) If the bride acts according to the above strategy, then she receives the
best suitor under the following two conditions: the index k of the suitor is
more than s = s(n) and the best of the first k−1 suitors lies among the first

s. The probability of this is 1
n

(
1+ s

s+1 + · · ·+ s
n−1

)
, which is approximately

equal to s
n ln(n/s). Therefore, the optimal value s is approximately equal

to n
e . Moreover, the probability of choosing the best groom for large n is

approximately equal to 1
e (see [Mos, Problem 47]).

4. Random variables (3)

LetM be a finite or countable set and for each elementm ∈ M , let P (m) ≥ 0
be a number (probability). Let us assume that

∑
m∈M

P (m) = 1. A function

X defined on M is called a random variable. Define the mass function of
the random variable X to be the set of pairs (xi, pi), i = 1, 2, . . ., where
{x1, x2, . . .} is the set of possible values of the random variable X and pi =
P ({m ∈ M : X(m) = xi}), i = 1, 2, . . . , are the corresponding probabilities.

Comment. As a rule, when studying a random variable X it is not
necessary to know on which set it is defined. It is sufficient to just know its
mass function.

We shall abbreviate the event {m ∈ M : X(m) = xi} by X = xi.
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6.4.1. A coin is flipped 5 times. Find the mass function of the number of
heads.

6.4.2. (a) You are invited to play the following game. You pay 2 candies
and then roll a die, and you get as many candies as the number rolled. Is
this game profitable for you?

(b) Same game, only now if you roll a 1, you must pay 100 candies. (You
have enough candies to pay.) Is this game profitable for you?

(c) A bank offers you the following deal. You put 8 candies in the bank,
after which a die is rolled. If you roll a 2, 3, or 4, then you get back your
contribution plus one additional candy. If you roll 5 or 6, then you receive
your contribution plus two additional candies. But if you roll a 1, then you
lose your contribution. Is this game profitable for you?

The expectation or average of the random variable X is the sum

E(X) =
∑
i

xipi = x1P (X = x1) + x2P (X = x2) + · · · .

Comment. If the set of values of a random variable is infinite, this
definition needs to be clarified. The sum of the series in the right part is
called the expectation only if this series converges absolutely. Otherwise,
we say that the variable X does not have an expectation. For example, let
a random variable X take the value n ∈ N with probability pn = 1

n(n+1) .

Then the series
∑

npn =
∑ 1

n+1 diverges; i.e., E(X) does not exist. In this
chapter, we will assume that all the random variables that we consider have
expectations; i.e., the series

∑
xiP (X = xi) converges absolutely.

6.4.3. (a) Prove that the expectation of the random variable X, defined on
the set M , is equal to

∑
m∈M

X(m)P (m).

(b) Prove that if E(X) ≤ x, then there exists m ∈ M such that X(m) ≤
x.

(c) Let the random variable X take the same value μ: X(m) = μ for all
m ∈ M . Find E(X).

(d) Express E(aX + bY ), where a, b are real numbers and X, Y are
random variables, in terms of a, b, E(X), E(Y ).

(e) Is it possible to express E(XY ) in terms of E(X) and E(Y )?

Random variables X and Y are called independent if the events X = xi
and Y = yj are independent for any xi, yj ; i.e.,

P ({m ∈ M : X(m) = xi and Y (m) = yj}) = P (X = xi)P (Y = yi).

Informally, independence means that the values of one of the random
variable do not affect the mass function of another.
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6.4.4. Prove that if the random variables X and Y are independent, then
the expectation of their product is equal to the product of their expectation:
E(XY ) = E(X)E(Y ).

The variance of a random variable X is the quantity Var(X) =
E
(
(X −E(X))2

)
.

Comment. If the set of values of a random variable is infinite, then the
variance may not exist. In this chapter, we assume that for any random
variable under consideration, the variance exists.

6.4.5. Prove that Var(X) = E(X2)− E(X)2.

6.4.6. Prove that if X and Y are independent, then Var(X+Y ) = Var(X)+
Var(Y ).

6.4.7. Chebyshev inequality. Prove that for any random variable X and
any ε > 0 the following inequality holds:

P (|X − E(X)| ≥ ε) ≤ Var(X)/ε2.

6.4.8. Fred knows the answers to 20 of 30 questions. A quiz contains 3
questions. Find the mass function of the number of questions that Fred can
answer.

6.4.9. Two identical decks of cards are shuffled, and cards are sequentially
laid out in pairs on the table. Find the average number of pairs for which
the two cards are the same.

6.4.10. In the city of N , bosses are required to provide all employees with a
day off if at least one of the employees has a birthday on that day. All other
days are workdays. How many people should be hired to have the maximal
average productivity during the course of a year?

6.4.11. In problem 6.4.8, find the average value of Fred’s grade (if Fred
answers 3 questions, he will get 5, for 2 he will get 4, etc.).

6.4.12. Consider the following popular gambling game: a player can bet on
one number from 1 to 6. Three dice are thrown, and if the selected number
appears on at least one die, then the player gets her bet back plus the same
amount for each occurrence of the selected number. Is the game profitable
for the player?

6.4.13. (Challenge) A field has the shape of a square with side 350m. When
measuring the side, the probability of an error ±10m is 0.16; of ±20m it is
0.08; of ±30m it is 0.05. Find the average value of the measured area.
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Comment. Actually, the answer to this question depends on how the
concept of measuring area is formalized. If we independently measure each
side of the square and multiply the resulting values, then by problem 6.4.4,
the expected value will be 3502m2. If only one side is measured and this is
then squared, the answer is different.

6.4.14. For a fixed k, find the expected number of blocks of k identical digits
in a sequence of n ones and m zeros written in random order.

6.4.15. From a deck of 52 cards, cards are pulled out until the first ace is
drawn. What is the average number of cards pulled out?

6.4.16. Along a narrow road n cars go in one direction. At the beginning
the speeds of all cars are different. Each car travels at a constant speed until
it catches up with the car in front of it, after which it rides at the speed of
that car. As a result, eventually the cars are divided into several groups.
Find the expected number of groups.

Suggestions, solutions, and answers

6.4.3. Solution (T. Cherganov). (a)

E(X) =
∑
i

xiP (X = xi) =
∑
i

⎛
⎝xi

∑
m∈(X=xi)

P (m)

⎞
⎠

=
∑
i

∑
m∈(X=xi)

X(m)P (m) =
∑
m∈M

X(m)P (m).

(b) Let X(m) > x for any m ∈ M . Then

E(X) =
∑
m∈M

X(m)P (m) >
∑
m∈M

xP (m) = x.

(c) Answer : μ.

E(X) =
∑
m∈M

X(m)P (m) = μ
∑
m∈M

P (m) = μ.

(d)

E(X + Y ) =
∑
m∈M

(X + Y )(m)P (m)

=
∑
m∈M

X(m)P (m) +
∑
m∈M

Y (m)P (m) = E(X) + E(Y ).

E(aX) =
∑
m∈M

(aX)(m)P (m) = a
∑
m∈M

X(m)P (m) = aE(X).
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6.4.4. Solution (T. Cherganov).

E(XY ) =
∑
k

zkP (XY = zk)

=
∑
i,j

xiyjP (X = xi, Y = yj) =
∑
i,j

xiyjP (X = xi)P (Y = yj)

=
∑
i

xiP (X = xi)
∑
j

yjP (Y = yj) = E(X)E(Y ),

where z1, z2, . . . are all values of the product of random variables X and Y .
Think about how to justify the second equality (some zk can be represented
as zk = xiyj in several ways!).

6.4.5. Solution (T. Cherganov).

Var(X) = E(X − (E(X))2) = E(X2 − 2XE(X) + (E(X))2)

= E(X2)− 2E(X)E(X) + (E(X))2 = E(X2)− (E(X))2.

6.4.6. Solution (T. Cherganov).

Var(X + Y ) = E((X + Y )2)− (E(X + Y ))2

= E(X2) + 2E(X)E(Y ) + E(Y 2)− (E(X))2 − 2E(X)E(Y )− (E(Y ))2

= Var(X) + Var(Y ).

6.4.7. Solution (T. Cherganov). Denote A := {m ∈ M | |X(m) −
E(X)| ≥ ε}. Then

Var(X) = E(X − E(X))2 =
∑
m∈M

(X(m)− E(X))2P (m)

≥
∑
m∈A

(X(m)− E(X))2P (m) ≥ ε2
∑
m∈A

P (m)

= ε2P (|X(m)− E(X)| ≥ ε).

6.4.8. Solution (T. Cherganov). Answer :
(
0, 6

203

)
,
(
1, 45

203

)
,
(
2, 95

203

)
,(

3, 57
203

)
.

The set M of quizzes is a set of unordered triples of different numbers
between 1 to 30. Therefore, |M | =

(30
3

)
. Let A0 be the set of unordered

triples of different numbers between 21 to 30. Then P (A0) =
(
10
3

)
/
(
30
3

)
=

6
203 . Let A1 be the set of unordered triples of distinct numbers for which
two belong to {21, . . . , 30} and one belongs to {1, . . . , 20}. Then P (A1) =

20
(
10
2

)
/
(
30
3

)
= 45

203 . Similarly, P (A2) = 10
(
20
2

)
/
(
30
3

)
= 95

203 and P (A3) =(
20
3

)
/
(
30
3

)
= 57

203 .
6.4.9. Answer : 1.
6.4.10. Answer : 364 or 365.
Suggestion. The probability that on the given day none of the n workers

have a birthday will be equal to (364/365)n. Therefore, the average number
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of person-days is 365n(364/365)n. This expression reaches its maximal value
when n is equal to 364 or 365 (see Problem 34 in [Mos]).

6.4.11. Solution (T. Cherganov). Answer : 4.

E(X) =
2 · 6 + 3 · 45 + 4 · 95 + 5 · 57

203
= 4.

6.4.12. Solution (T. Cherganov). Answer : no.
Let X be the number of matches of the selected number. Find the mass

function X: (
0,

53

63

)
,

(
1,

3 · 52
63

)
,

(
2,

3 · 5
63

)
,

(
3,

1

63

)
.

Let Y be the number of bets won. The expected value of Y is

E(Y ) =
2 · 3 · 52 + 3 · 3 · 5 + 4

63
≈ 0.92 < 1.

6.4.14. The probability that a given sequence of k consecutive digits
consists of the same digit is equal to

m(m− 1) . . . (m− k + 1) + n(n− 1) . . . (n− k + 1)

(m+ n)(m+ n− 1) . . . (m+ n− k + 1)
.

Multiplying it by the total number of subsequences (i.e., m+n− k+1), we
obtain the desired expected value.

6.4.15. The four aces divide the deck into five pieces. Since the average
lengths of these pieces are equal, the number of cards drawn before the first
ace, on average, is 48/5 (see Problem 40 in [Mos]).

5. Bernoulli trials (3)

Bernoulli trials are a sequence of n independent random variables, each of
which takes two values: 1 with probability p and 0 with probability q = 1−p.
Usually the appearance of 1 is called success, and the appearence of 0 is
called failure.

Here is another definition of Bernoulli trials. Let M be a set of n-
dimensional vectors with coordinates 0 or 1, and for each x ∈ M the
probability P (x) is defined to equal

∏n
i=1 pi, where pi = p if xi = 1 and

pi = q = 1 − p if xi = 0. Elements of the set M are also called Bernoulli
trials.

Comment. Both definitions are equivalent in the following sense. Obvi-
ously, the random variables xi defined on the setM are independent and each
of them takes value 1 with probability p and 0 with probability q. Therefore
each vector x ∈ M can be viewed as a set of values of n independent random
variables xi.

The random variable X =
∑

xi is called the number of successes.
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6.5.1. In n Bernoulli trials with probability of success p, find
(a) the probability of exactly k successes;
(b) the average number of successes;
(c) the variance of the number of successes;
(d) the most probable number of successes.

6.5.2. The law of large numbers. Let X be the number of successes in
n Bernoulli trials with probability of success p. Let t > 0. Prove that

P

(∣∣∣X
n

− p
∣∣∣ ≥ t

√
pq

n

)
≤ 1

t2
.

Suggestion. Apply Chebyshev’s inequality.

The law of large numbers means that with a large number of trials, the
probability of the event “the frequency of successes is significantly different
from the probability of success” is small. In fact, this law is valid not only
for Bernoulli trials: if you observe a large number of independent outputs of
an arbitrary random variable, then with large probability their average will
be only slightly different from its expectation. This law allows, for example,
a survey of a group of randomly selected people (large enough but a small
part of the entire population) to be used to make conclusions about opinions
and preferences.

6.5.3. The probability of having a boy is 0.515. Find the probability that
among 6 children there are no more than 2 girls.

6.5.4. A factory ships iron beams. The average beam length is 3m, with
variance 0.09m2. How many beams must be ordered so that with a proba-
bility of at least 0.999 at least 1000 of them are at least 2m long?

6.5.5. Find the average number of trials before the first success if the prob-
ability of success is p.

6.5.6. Independent tests are carried out with a success probability of 0.8.
Tests are carried out until the first success, but no more than four times.
Find the average number of trials.

6.5.7. (Challenge) An old man was catching fish for exactly thirty-three
years. Every day he caught exactly seven fish, which was just enough for
dinner. The old cat living with the old man’s wife eats only mackerel, which
is caught half as frequently as the other fish. As a result, the cat went
hungry 700 times. Do mackerel swim in the sea in schoals or alone?

Comment. Of course, a precise answer to the question posed is impos-
sible. However, you can evaluate which of the two hypotheses fits the data
better.
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Suggestions, solutions, and answers

6.5.1. Answers: (a)
(n
k

)
pkqn−k;

(b) np;
(c) npq;
(d) �np� if {np} ≤ q, and �np�+1 if {np} ≥ q (if equal, the corresponding

probabilities coincide).
Suggestion. Find the ratio of probabilities of exactly k successes and

exactly k + 1 success.
6.5.5. Answer : p(1 + 2q + 3q2 + 4q3 + · · · ) = 1/p.
6.5.7. If the mackerel swim in shoals, then the probability for the cat

to stay hungry would be equal to 2/3; i.e., for 33 years, the hungry days
would be significantly more than 700. If the mackerel swim alone, then the
probability of staying hungry is (2/3)7, which is quite consistent with the
data of the problem.

6. Random walks and electrical circuits2 (3)
By A.A. Zaslavsky, M.B. Skopenkov, and A.V.Ustinov

In this section, we prove the following classical result.

Pólya’s theorem. If a person is walking randomly around a two-dimen-
sional square grid, then he will someday return to the starting point with
probability 1. If he is walking around a three-dimensional cubic grid, then
the probability of return is strictly less than 1.

All necessary definitions are given below.
The proof is based on a wonderful physical interpretation using electri-

cal circuits. The proof itself is contained in problems 6.6.13–6.6.14, 6.6.18–
6.6.24, 6.6.27–6.6.29 (with the words “theorem,” “principle,” and others in
bold type), with the remaining problems to help develop ideas. In the pro-
cess, we will get acquainted with the basics of probability theory and voltage
theory. Our exposition in many ways follows [PS] and [SSU]. Another ap-
proach to the proof can be found in [Sob].

To solve these problems, it is useful, but not necessary, to be famil-
iar with probability, graphs, and systems of linear equations. No special
knowledge of physics is required.

One-dimensional random walk

We first formulate the problem and only then give the necessary definitions.

6.6.1. A man walks along an endless street divided into blocks (see Fig. 1
on the left). His house is at location 0 and a bar is at location 3. Starting

2The authors are grateful to I. I. Bogdanov, A. Ya. Kanel-Belov, M. V. Prasolov, A.
I. Sgibnev, D. S. Chelkak, G. R. Chelnokov, F. A. Sharov, and A. Yu. Yuriev for valuable
comments.

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



120 6. PROBABILITY

at location x between the house and the bar, he moves with probability 1/2
one block to the left and with probability 1/2 one block to the right. At
this new location he again chooses the direction of movement at random,
and everything repeats.

Figure 1. Random walking along the street (see problem
6.6.1) and the electrical circuit (see problem 6.6.9).

(a) Write a computer program simulating the movement of this person.
Run it many times and determine the percentage of cases in which he comes
home before he first reaches the bar. Use this method to guess the answers
to the next problems.

(b) Let PT (x) be the probability that the person who started at location
x and making no more than T moves reaches home before first reaching the
bar. Fill in Table 1 with values accurate to two decimal places.

Table 1. Probabilities PT (x) for small T .

T

x
0 1 2 3

1 1.00 0.50 0.00 0.00

2

3

4

(c) Find the probability P (x) that a person will reach home after any
number of moves, but before first reaching the bar.

Definition. By a path of length T we mean an ordered collection of T + 1
points of a line with integer coordinates, with adjacent points one unit apart.
We say that the path reaches 0 before 3 if 0 occurs at least once in it and 3
never occurs before the first appearance of 0. The fraction of paths of length
T starting at point x, reaching 0 before 3, we call the probability PT (x) to
get from x to 0 before 3 in no more than T steps. The probability P (x)
to get from x to 0 before 3 is the smallest real number P (x) satisfying the
condition P (x) ≥ PT (x) for all positive integers T . In particular, P (0) = 1
and P (3) = 0.

6.6.2. Draw all paths of length 3 that start at 1. How many are there?
Which ones reach 0 before 3, and what is the proportion?
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6.6.3. Pete and Paul play a game where they bet coins. Together they have
3 coins. At each turn, Pete wins from Paul one coin with probability 1/2
and loses with probability 1/2. They play until Pete has 0 coins (he lost) or
3 coins (he won all Paul’s coins). Find the probability P (x) that Pete will
win if he starts the game with x coins.

6.6.4. (a) Solve problem 6.6.1(c) under the assumption that the bar is at
the point n.

(b) A drunkard is one step away from the edge of a cliff. He steps
randomly either to the edge or away from it with equal probabilities. If he
reaches the edge, he falls. What are the chances of the drunkard avoiding a
fall?

(c) Formulate and prove Pólya’s theorem for a one-dimensional “grid.”

Biased random walk*

If the probabilities of moving to the right and left are different, then the
random walk is called “biased” or “asymmetrical.” (The problems of this
subsection are not used subsequently.)

6.6.5. Solve problems 6.6.4(a) and (b), assuming that the “traveler” moves
to the right with probability p and to the left with probability q = 1− p.

6.6.6. Suppose you gamble for money; initially you have 20 coins, and your
opponent has 50. For each bet, you win one coin with probability 0.45 and
lose with probability 0.55. The betting continues until one of the participants
runs out of money. Find the probability that you go bankrupt.

6.6.7. Starting at the origin, a particle moves to the right with probability
p > 1/2 or to the left with probability q = 1− p. Find the average number
of returns to the origin.

6.6.8. In a box there are n black and m white balls (n > m). Balls are
taken out of the box one by one. Find the probability during the course of
this process that there is never a time when there were equal numbers of
black and white balls in the box.

Physical interpretation

A physical interpretation using electrical circuits is useful for investigating
random walks. Since we are going to apply electrical circuits to prove math-
ematical results, we need a formal axiomatic definition.
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Definition. An electrical circuit is a finite set of broken lines (called wires)
on a plane or in space, possessing the following properties:

isolation: no two wires have common points, except for common end-
points;

connectivity: any two endpoints of different wires are connected by a
chain of wires

and additional structure:

• each wire is assigned a positive number (called its conductance);
• some wire endpoints are marked with one of the signs “+” or “−”, and
each of these signs occurs.

(In other words, an electric circuit is a finite connected graph with pos-
itive numbers placed on its edges, and at some vertices there are one of the
signs “+” or “−”, with each of both signs occurring.)

The conductance of the wire xy is denoted by C(xy). The reciprocal of
the conductance is called resistance. The endpoints of all wires are called
the vertices of the circuit. The sets of vertices marked with the signs “+”
and “−” are denoted by P and N , respectively. Informally, the meaning
of these signs is: the endpoints of the wires marked with the sign “−” are
connected to the negative pole of a battery (with unit voltage) and to the
ground, and those with the sign “+” are connected to the positive pole; see
Fig. 1 on the right.

Definition. Now let each vertex x of the electric circuit be assigned a real
number v(x). We call the function v(x) the voltage if the following two
axioms are satisfied.

1. Boundary conditions. If x ∈ N , then v(x) = 0. If x ∈ P , then
v(x) = 1.

2. Kirchhoff’s current law. If x �∈ P∪N , then
∑

xy C(xy) (v(x)− v(y)) =
0, where summation is over all wires xy containing the vertex x.

Informally, Kirchhoff’s current law means conservation of charge: the
sum of the currents flowing into x is equal to the sum of the currents flowing
out of it. (We will give a definition of current later.)

6.6.9. Three wires of unit conductance are connected in series, as shown in
Fig. 1 on the right. Find the voltages v(x) at points x = 0, . . . , 3.

We also give a mechanical interpretation of random walk (although we
will not use it).

Definition. A system of springs is a finite set of line segments (called
springs) on a plane or in space, with the following properties:

isolation: none of the springs have common points, except for common
endpoints;

connectivity: any two endpoints of distinct springs are connected by a
chain of springs
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and additional structure:

• a positive number is assigned to each spring (the stiffness);
• some endpoints of springs are marked with one of the signs “+” or
“−”, each of which occurs.

The stiffness of spring xy is denoted by k(xy). The sets of points marked
with the signs “+” and “−” are denoted by P and N , respectively. Infor-
mally, the meaning of these signs is as follows: the endpoints of the springs
marked with “+” and “−” are fixed at two points on the line with coordi-
nates 1 and 0, respectively.

Definition. Now let a real number r(x) be assigned to each endpoint x of
the springs. We call the function r(x) an equilibrium if the following two
axioms are satisfied.

1′. Boundary conditions. If x ∈ N , then r(x) = 0. If x ∈ P , then
r(x) = 1.

2′. Equilibrium conditions. If x �∈ P ∪N , then
∑
xy

k(xy)(r(x)−r(y)) = 0,

where the summation is over all springs xy containing the vertex x.

6.6.10. Three springs of unit stiffness are connected in series, and the end-
points of the resulting chain are fixed at points 0 and 1. Find the equilibrium
values r(x).

We give a mathematical definition of a random walk on a two-dimen-
sional grid with selected disjoint subsets of P and N .

Definition. By a path of length T we mean an ordered set of T + 1 grid
nodes, and the nodes adjacent in the set are adjacent in the grid as well.
We say that the path reaches N before P if at least one node from the set
N is encountered in it and there are no nodes from P before the first visit
to a node in N . The proportion of paths of length T that start at x and
reach N before P is called the probability PT (x) of hitting N before P from
x in no more than T steps. The smallest real number P (x) satisfying the
condition P (x) ≥ PT (x) for all positive integers T is defined to be the hitting
probability P (x) of the event that, starting from x, we reach N before P . In
particular, P (N) = 0 and P (P ) = 1.

The probability PT of returning to the initial point for a random walk
along a two-dimensional grid in no more than T steps is defined to be the
proportion of paths of length T which return to the starting point (here
P = N = ∅). The probability of returning to the starting point eventually
is defined to be the smallest real number P satisfying the condition P ≥ PT

for all T .

Pólya’s theorem states that the latter probability is equal to 1, but we
have not proven it yet.

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



124 6. PROBABILITY

6.6.11. The map of a city is shown in Fig. 2 on the left. Segments indicate
streets. A criminal escapes from the police. The escape routes are marked
with the letter P , and the points occupied by the police are marked with
the letter N . Find, with accuracy up to thousandths, the probability P (x)
of the event that, starting at x, the criminal will escape and will not fall into
the hands of the police. From current point x = (m,n) he moves to each of
the points (m+1, n), (m−1, n), (m,n+1), (m,n−1) with probability 1/4.
If he reaches one of the points P or N , then his movements end.

6.6.12. Find, with accuracy up to thousandths, the voltages v(x) in the
circuit of wires of unit conductance in Fig. 2 on the right.

volt

Figure 2. Random walk in a city and electrical circuit; see
problems 6.6.11 and 6.6.12.

Existence and uniqueness of voltage

Solving the last couple of problems, we saw that the probabilities coincide
with the voltages in corresponding electric circuits. Our immediate goal is
to prove that this is always true.

6.6.13. (a) Superposition principle. If some functions v(x) and u(x)
satisfy axiom 2, then for any real a and b, the function av(x) + bu(x) also
satisfies this axiom.

(b) Maximum principle. Each function v(x), satisfying axiom 2,
reaches its maximum at vertices from the set P ∪ N ; i.e., the maximum
of the function v(x) at all vertices of the circuit is equal to the maximum of
this function on the set P ∪N .

(c) Uniqueness theorem. If v(x) and u(x) are two functions satisfying
axioms 1 and 2, then v(x) = u(x) for all x.

(d) Existence theorem. In any electric circuit there exists a voltage.

In subsequent problems, the definition of the hitting probability is similar
to the one given above.
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6.6.14. Physical interpretation of the hitting probability. For any
electrical circuit in which all conductances are equal to 1 and such that
from each vertex the same number of wires emanate (each vertex has the
same number of neighbors), the voltage v(x) of a vertex x is equal to the
probability P (x) that a random walk starting from x will hit the set P before
hitting the set N .

Conductance of circuits

6.6.15. A spider moves along the edges of
(a) a cube; (b) an octahedron; (c)∗ a dodecahedron; (d)∗ an icosahedron.
It starts at a. From each vertex, it randomly (and uniformly) selects

which edge to move on and travels to the next vertex. What is the prob-
ability that it will hit the opposite vertex h before it returns to the initial
vertex a? (See Fig. 3 on the left.)

Figure 3. Random walks on a cube and electric circuit; see
problems 6.6.15(a) and 6.6.16(a).

.

Of all the physical quantities associated with electric circuits, so far we
have only investigated the voltages at the vertices. For Pólya’s theorem, we
need a few more concepts that also have probabilistic meaning.

Definition. Let v(x) be the voltage in a circuit. The value i(xy) :=
C(xy)(v(x) − v(y)) is called the current flowing along the wire xy in the
direction from x to y; i(x) :=

∑
xy

i(xy) is called the current flowing into the

circuit through the vertex x (so i(x) = 0 for every x �∈ P ∪N by axiom 2);
value C :=

∑
x∈P

i(x) is called the effective circuit conductance. The conduc-

tance of a circuit between two sets is the effective conductance of a circuit
in which instead of P and N we use the two given sets.
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For example, for the electric circuit in Fig. 1, the current through each
edge is the same:

i(x, x+ 1) = v(x)− v(x+ 1) = (1− x/3)− (1− (x+ 1)/3) = 1/3.

The conductance of this circuit is equal to C = i(0, 1) = 1/3.

6.6.16. Find the effective conductance between
(1) opposite vertices; (2) adjacent vertices of
(a) a cube; (b) an octahedron; (c)∗ a dodecahedron; (d)∗ an icosahedron

with edges of unit conductance; see Fig. 3 on the right.

For practical calculations of resistance, the following problem is useful.

6.6.17. Theorem on electrical transformations. The following trans-
formations preserve the effective conductance of a circuit:

(a) replacing two wires of conductances C1 and C2 connected in parallel
(that is, having two common vertices) with one wire of conductance C1+C2;
see Fig. 4 on the left;

(b) replacing two wires of conductances C1 and C2 connected in series
(that is, having exactly one common vertex and no other wires come out of
it and it does not belong to P ∪ N) with one wire of conductance 1

1
C1

+ 1
C2

;

see Fig. 4 on the right;
(c) combining two vertices with the same voltages into one new vertex.

Figure 4. Series and parallel connections; see problem 6.6.17.

Now we clarify the probabilistic meaning of conductance.

6.6.18. The physical interpretation of the probability of a return.
Suppose that in an electrical circuit the set N consists of one vertex (which
we also denote by N) and the conductance of all wires is 1. Then the
probability that a random walk along this circuit starting from the vertex
N hits the set P before the first return to the vertex N is equal to C/degN,
where C is the conductance of the circuit between N and P and degN is
the number of wires emanating from vertex N .
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The variational principle

It seems apparent that the concept of circuit conductance is very similar to
the probability of returning referred to in Pólya’s theorem. We will need
to investigate another property of conductance (the principle of cutting and
shorting; see 6.6.22), which seems quite natural, but which is rather difficult
to prove.

Denote the vertices of an electric circuit not belonging to P and N
by the numbers 1, . . . , k, and denote the vertices belonging to P or N by
numbers k + 1, . . . , n. Let v(x) be an arbitrary function on the vertices of
the circuit satisfying axiom 1. The thermal power of a circuit is the quantity
Q :=

∑
xy

C(xy)(v(x) − v(y))2, where the summation is carried out over all

wires. Let v1 = v(1), . . . , vk = v(k). We will consider the thermal power
Q(v1, . . . , vk) as a function of the variables v1, . . . , vk.

6.6.19. Reaching a minimum. The function Q(v1, . . . , vk) attains a min-
imum value.

6.6.20. The variational principle. The function Q(v1, . . . , vk) attains
its minimum at the point (v1, . . . , vk) if and only if the function v(x) is a
voltage.

6.6.21. The law of conservation of energy (Tellegen’s theorem).
The minimum value of the thermal power Q(v1, . . . , vk) is equal to the ef-
fective conductance of the circuit.3

6.6.22. The principle of cutting and shorting. Removing any wires
of the circuit (“cutting”) can only reduce the effective conductance of the
circuit; see Fig. 5 in the center. Combining any vertices (not belonging
to P and N) into one vertex (“shorting”) can only increase the effective
conductance of the circuit; see Fig. 5 on the right.

Two-dimensional random walk

6.6.23. (a) The conductance between the center and the boundary of the
4 × 4 square grid of wires of unit conductance is less than 3; see Fig. 5 on
the left.

(b) The conductance of a square. What does the conductance be-
tween the center and the boundary of the 2n × 2n square grid (of wires of
unit conductance) tend to when n tends to infinity?

3It would be more correct to say “effective conductance times the square of the battery
voltage” but we have a battery voltage equal to 1.
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(c)∗ Find the order of decrease of the conductance as a function of n; i.e.,
find a function f(n) such that the conductance is bounded between 1

100f(n)
and 100f(n).

cutting shorting

copper

Figure 5. Square grid 4×4, cutting and shorting; see prob-
lems 6.6.23 and 6.6.22.

6.6.24. Prove Pólya’s theorem for two-dimensional random walks.

Three-dimensional random walks

In proving Pólya’s theorem in two dimensions, we combined together
(“shorted”) vertices of the electrical circuit to evaluate a lower bound for
the probability of a return. For the three-dimensional case, we will need to
estimate an upper bound for the probability of a return. Consequently, we
will instead cut some of the wires from our circuit. We will strive to obtain
a circuit whose conductance is easy to calculate. Trees are ideal for this.

Figure 6. (Left) a binary tree of depth 3; (in the center) a
modified binary tree of depth 3; (right) permissible intersec-
tions of edges in this tree; see problems 6.6.25, 6.6.27, and
6.6.28.

6.6.25. Find the resistance of a binary tree with depth
(a) 3;
(b) 2010, composed of wires with unit conductance (see Fig. 6 on the

left).

6.6.26. Which of the trees mentioned in problem 6.6.25 can be cut out from
a two-dimensional grid?
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6.6.27. Resistance of a tree. Find the resistance of the modified binary
and ternary trees of depth n, in which every wire at the kth level is replaced
by 2k wires with unit conductance that are connected in series (see Fig. 6
in the center).

6.6.28. Pruning a tree. Is it possible to cut wires from a two-dimensional
grid to produce the modified binary tree of problem 6.6.27 if we are allowed
to join some vertices (but not wires) that are located an equal distance from
the root? (See Fig. 6 on the right.) The same question, but now we ask
about a ternary tree, extracted by cutting from the three-dimensional grid.

6.6.29. Three-dimensional case. Prove Pólya’s theorem for a three-
dimensional grid.

Suggestions, solutions, and answers

6.6.1. (a) The correctness of the program can be estimated as follows: the
difference between the “real” and calculated probabilities should be approx-
imately proportional to the number 1√

n
, where n is the number of experi-

ments.
(b) Answer : see Table 2.
Suggestion (P. Belopashentseva). Fill in the table, either directly listing

the paths and calculating the corresponding probabilities or by using the
equations PT (0) = 1, PT (3) = 0, PT (x) =

1
2(PT−1(x− 1) + PT−1(x+1)) for

x = 1, 2.

Table 2. Probabilities PT (x) and P (x).

T

x
0 1 2 3

1 1.00 0.50 0.00 0.00

2 1.00 0.50 0.25 0.00

3 1.00 0.63 0.25 0.00

4 1.00 0.63 0.31 0.00

P (x) 1.00 0.67 0.33 0.00

(c) Answer : P (x) = 1− x/3; see the last row in Table 2. This problem
is a special case of problem 6.6.4(a).

6.6.3. Answer : P (x)=x/3; this problem is equivalent to problem 6.6.1(c).
6.6.4. (a) Answer : P (x) = 1− x

n .
Solution (E. Pavlov). Let NT (x) be the set of paths of length T starting

at x that reach 0 before they reach n. Then the probability PT (x), that a
person who started at x and made no more than T steps will reach home
before reaching the bar by definition is PT (x) = |NT (x)|/2T , where 2T is

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



130 6. PROBABILITY

the total number of paths of length T . The probability P (x) that a person
who started at x will reach home before reaching the bar is by definition
the smallest real number P (x) that satisfies the condition P (x) ≥ PT (x) for
each T .

We verify that P (x) has the following two properties:
1. P (0) = 1 and P (n) = 0;
2. P (x) = 1

2P (x− 1) + 1
2P (x+ 1) for each x = 1, 2, . . . , n− 1.

Property 1 is obvious. Let us prove property 2. To any path of length
T + 1 starting at x we associate a path of length T obtained by remov-
ing the first step. Such a correspondence maps one-to-one NT+1(x) onto
NT (x − 1) ∪ NT (x + 1) for every x, 0 < x < n. Therefore, PT+1(x) =
1
2(PT (x− 1) + PT (x+ 1)) for 0 < x < n.

On the one hand, for every T , the right-hand side does not exceed
1
2(P (x− 1) + P (x+ 1)), which means that P (x) ≤ 1

2(P (x− 1) + P (x+ 1)).
On the other hand, due to the minimality of P (x− 1) and P (x+ 1) for

each ε > 0 there is T such that PT (x−1)+PT (x+1) > P (x−1)+P (x+1)−ε.
Therefore, P (x) ≥ 1

2(P (x− 1) + P (x+ 1)). Property 2 is proved.
From properties 1 and 2 it follows that P (x) is an arithmetic progression:

P (x) = 1− x
n .

Comment. It can be shown that P (x) = lim
T→∞

PT (x) (although this is

not required to prove Pólya’s theorem). Indeed, observe that PT (x) ≤ 1.
Furthermore, PT ≤ PT+1(x), since |NT+1(x)| ≥ 2|NT (x)|, because each path
from NT (x) extends to two paths from NT+1(x). Thus, P0(x), P1(x), P2(x),
. . . is a bounded monotone sequence. Therefore it has a limit, which is equal
to the exact upper bound P (x) of the sequence.

(b) Answer : 0.
Solution (A. Balakin). Let the drunkard stand at a point with coordinate

1, and let the cliff be at 0. Let PT be the probability of getting to point 0
during the first T steps, and let PT,n be the probability of getting to point 0
before reaching point n. Note that PT,n ≤ PT ≤ 1, since all paths reaching 0
before n reach 0. By (a), we have lim

T→∞
PT,n = 1− 1

n . This means that for the

probability P = lim
T→∞

PT to fall off the cliff, the inequalities 1− 1
n ≤ P ≤ 1

must hold for all positive integers n. But in this case P = 1. Then the
desired probability of avoiding a fall is 1− P = 0.

(c) Theorem. For the random walk on the one-dimensional “grid”, the
probability of returning to the starting point is 1.

Proof (from [SSU, § 3.1]). Let P be the probability of returning to the
starting point. Denote by Pn the probability of returning to the starting
point before reaching the point n or −n. Then Pn ≤ P ≤ 1 for any n.

Now we prove that Pn = 1 − 1/n. After the first move, the traveler
reaches one of the points 1 and −1 with probability 1/2. If he reaches the
point 1, then by (a) we see that the probability of returning to the origin
before reaching the point n is 1−1/n. If he finds himself at the point −1, we
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reason in a like manner. Similarly to the proof of property 2 in the solution
of (a), we obtain

Pn =
1

2

(
1− 1

n

)
+

1

2

(
1− 1

n

)
= 1− 1

n
.

Since 1− 1/n ≤ P ≤ 1 for every n, we see that P is equal to 1.

Comment. Along the way, we made sure that P = lim
n→∞

Pn, which is not

so easy to establish directly. Another approach to the proof of the theorem
can be found in [Sob].

6.6.5. Answer : the probability of reaching home is P (x) = (p/q)3−x−1
(p/q)3−1

;

the probability of falling is P = 1 for p ≤ 1/2 and P = 1−p
p for p > 1/2.

Suggestion. To calculate the probability of reaching home, we reason
the same way as in problem 6.6.4(a). Show that properties 1–2 must be
replaced with the following.

1′. The equalities P (0) = 1 and P (n) = 0 are satisfied.
2′. For each x = 1, 2, . . . , n−1, the equality P (x) = qP (x−1)+pP (x+1)

holds.
Choose A and B such that the function f(x) = A(q/p)x + B satisfies

properties 1′–2′.
The probability x of a drunkard falling satisfies the equation x = 1−p+

px2. For p ≤ 1/2, this equation has the single root equal to 1 on the segment

[0, 1], and for p > 1/2 there are two roots: x1 = 1 and x2 =
1−p
p . For p = 1,

the probability is 0. Since the probability of falling is a continuous function
of p, it is equal to 1 for p ≤ 1/2 and 1−p

p for p > 1/2.

6.6.6. Answer : 1− (0.55/0.45)20−1
(0.55/0.45)70−1

. It is approximately 99.995%.

Suggestion. Use the suggestion to problem 6.6.5.
6.6.7. Answer : 1

2(1−p) − 1.

Suggestion. If the first step is made to the left, then the probability of a
return is equal to 1, and if it’s made to the right, then it is 1−p

p . Therefore,

the total probability of return is 2(1−p), and the average number of returns
equals 1

2(1−p) − 1.

6.6.8. Answer : n−m
m+n .

Suggestion. If the first drawn ball is white, then the probability that
at some moment the numbers of black and white balls taken out will be
equal is 1. If the first drawn ball is black and at some point the numbers
were equal, then you can change the color of all balls drawn before the first
occurrence of equality to the opposite. It follows that the probability of
achieving equality is 2m

m+n .

6.6.9. Answer : v(x) = 1− x/3.
Suggestion. It follows from axioms 1 and 2 that the function v(x) will

be linear for this circuit.
6.6.10. Answer : r(x) = 1 − x/3. This problem is equivalent to prob-

lem 6.6.9.
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6.6.11. Answer : see Fig. 7 on the left.

1 1

1 .823 .787

.876 .506 .323 0

1 0 0

Figure 7. Probabilities P (x) or voltages v(x); see problems
6.6.11 and 6.6.12.

Suggestion. The city map is shown in Fig. 7 on the right. The probabil-
ities P (x) are denoted by a, b, c, d, and e. As in the one-dimensional case,
the function P (x) satisfies axioms 1 and 2 from the definition of an electric
circuit. This gives rise to a system of linear equations, whose solution is the
answer to the problem:

a = (b+ d+ 2)/4;

b = (a+ e+ 2)/4;

c = (d+ 3)/4;

d = (a+ c+ e)/4;

e = (b+ d)/4.

6.6.12. Answer : see Fig. 7 on the left.
Suggestion. This problem is equivalent to 6.6.11.
6.6.13. (a) Solution (from article [SSU, § 2.1]). For any vertex x /∈ P∪N ,∑

xy

C(xy) (au(x) + bv(x)− au(y)− bv(y))

= a
∑
xy

C(xy) (u(x)− u(y)) + b
∑
xy

C(xy) (v(x)− v(y)) = 0,

where the summation is over all the wires xy coming out of x. Therefore,
au(x) + bv(x) satisfies axiom 2.

(b) Solution (from [SSU, § 2.1]). Let v(x) attain its maximum value at
some vertex x. Let us prove that if x /∈ P∪N , then our function has the same
value at the neighboring vertices. Since v(x) is the maximum value, then
for each of the neighboring vertices y, the inequality v(x)− v(y) ≥ 0 holds.
Therefore,

∑
xy C(xy)(v(x)− v(y)) ≥ 0. By axiom 2, the last inequality is

an equality. Therefore, v(y) = v(x) for all y.
Since the electric circuit is a connected graph, there is a path, connecting

the vertex x with one of the boundary vertices. By the previous argument,
the values of our function at all vertices of the path will be equal. Therefore,
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at one of the boundary vertices, the maximum value of the function v(x) is
also attained.

(c) Solution (from [SSU, § 2.1]). Consider the function u(x)− v(x). It
takes the value 0 on P ∪N and, by the principle of superposition (part (a)),
satisfies axiom 2. By the maximum principle (part (b)), u(x) − v(x) ≤ 0
for all vertices x. Similarly, u(x) − v(x) ≥ 0 for all vertices x. Hence, this
function is equal to 0 at all vertices. Therefore, u(x) and v(x) are equal.

(d) Suggestion. Consider the special case when all wires have a conduc-
tance of 1 (the case of arbitrary conductance is similar). Consider a random
walk on an electrical circuit. Let P (x) be the probability that, starting from
x, we hit the set P before the set N . The function P (x) satisfies axioms 1
and 2.

Other approaches to the proof are discussed in [SSU, § 2.2].
6.6.14. Suggestion. As with the one-dimensional case, the probability

P (x) satisfies axioms 1 and 2. The voltage v(x) also satisfies these axioms.
By the uniqueness theorem of 6.6.13(c), v(x) = P (x) for all x.

6.6.15. Answers: (a) 2/5; (b) 1/2; (c) 2/7; (d) 2/5.
Suggestion. Reason similarly as in the solution to 6.6.11, but it’s easier

to reduce the solution to problem 6.6.16 with the help of 6.6.18.
6.6.16. Answers: (1)(a) 6/5; (1)(b) 2; (1)(c) 6/7; (1)(d) 2; (2)(a)

12/7; (2)(b) 12/5; (2)(c) 30/19; (2)(d) 30/11.
Suggestion. It is possible to reason similarly to the solution to prob-

lem 6.6.11, but it is easier to sequentially simplify the circuit using trans-
formations from 6.6.17; see [PS, Fig. 23–25].

A particularly elegant solution to items (2)(a)–(2)(d) is obtained from
the following theorem (see [F]) and [SSU, § 3, Theorems 3.2 and 3.5]):

Foster’s average resistance theorem. In any electrical circuit with n
vertices, the equality ∑

xy

C(xy)

C(x ↔ y)
= n− 1

holds, where the sum is taken over all the wires xy of the electric circuit and
C(x ↔ y) denotes the effective conductance between the vertices x and y.

6.6.17. Solution (from [SSU, § 2.3]). We prove that these transfor-
mations do not change the voltages of the vertices. Let the vertices 1, 2
with voltages v1, v2 be connected by parallel wires with conductance C1

and C2. Before the transformation, the current from vertex 1 to vertex 2
is C1(v2 − v1) + C2(v2 − v1). This equals (C1 + C2)(v2 − v1), the current
between the vertices 1 and 2 after the transformation, while maintaining
the same voltage values. Thus axioms 1 and 2 will remain satisfied, so the
conductance of the circuit will not change.

(b) Solution (from [SSU, § 2.3]). We prove that during our transforma-
tion, the voltages of the vertices do not change (with the exception of the
common vertex for the two wires under consideration, which disappears).
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Indeed, let the vertices 1, 2, 3 with voltages v1, v2, v3 be connected by two
wires in series with conductance C1 and C2. Replace C1 and C2 with a single
wire of conductance C1C2

C1+C2
between 1 and 3. We intentionally leave at each

vertex the previous value of the voltage.
We verify axioms 1 and 2 for the values we have chosen. It is clear that

axiom 1 is still satisfied. It is also clear that axiom 2 for each of the vertices,
except for 1 and 3, is also satisfied, since our transformation does not affect
them. Find the currents flowing into the vertex 3. In the original circuit, the
current from 2 to 3 is C2(v2−v3). In the new circuit, the current from 1 to 3 is

equal to C1C2
C1+C2

(v1−v3). But by axiom 2 for the vertex 2 of the original circuit

we get C1(v1 − v2) = C2(v2 − v3), hence C1(v1 − v3) = (C1 + C2)(v2 − v3),
which means C1C2

C1+C2
(v1−v3) = C2(v2−v3). We see that the currents flowing

into the vertex 3 have not changed. Therefore, axiom 2 for the vertex 3 is
still satisfied, and likewise for the vertex 1.

So, the intentionally chosen values of the voltage satisfy axioms 1 and 2
after the transformation. By the uniqueness theorem (see 6.6.13(c)) this is
the voltage in the new circuit. Since the voltages of the vertices have not
changed, neither the currents through the wires nor the conductance of the
circuit have changed.

(c) Solution (from [SSU, § 2.3]). Let the voltages of vertices 1 and 2 be
equal. Connect these two vertices without changing voltage.

Obviously, axiom 1 is still satisfied. For the new vertex (if it does not
belong to P ∪ N) obtained by combining vertices 1 and 2, axiom 2 is sat-
isfied, since it is obtained by adding axiom 2 for the vertices 1 and 2 of
the original circuit. The remaining vertices of our transformation are not
affected; therefore, for them axiom 2 also remains true. Since the voltages of
the vertices have not changed, then neither the currents through the wires
nor the conductance of the circuit changed.

6.6.18. Solution (from article [SSU, § 2.3]). Let wires from vertexN lead
to the vertices with numbers 1, 2, . . . , k = degN . Let v(1), v(2), . . . , v(k)
denote their voltages. According to the physical interpretation of the prob-
ability of hitting a boundary (problem 6.6.14), the voltage v(i) is equal to
the probability of hitting the set P from i before reaching N .

The probabilities of taking the first step into any of the vertices 1, 2, . . . , k
are the same and equal to 1

k . Therefore, the probability of hitting the set
P , starting from N , before first reaching N is

1

k
v(1) +

1

k
v(2) + · · ·+ 1

k
v(k) =

−i(N)

k
=

C

k
=

C

degN
.

6.6.19. Solution (from article [SSU, § 2.4]). Denote Y := Q(0, . . . , 0). Let us
prove that if at least one of the numbers v1, . . . , vk exceeds in absolute value
the number X := n

√
Y/minC(xy), then |Q(v1, . . . , vk)| > Y . Suppose that

|v1| > X. Take the shortest path connecting vertex 1 to one of the vertices
of the set N . There are no more than n wires in this path, so there is a wire
xy, on which |v(x) − v(y)| >

√
Y/minC(xy). On this wire the expression
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C(xy)(v(x) − v(y))2 already exceeds Y . Since all the summands in sum∑
xy C(xy)(v(x)−v(y))2 are nonnegative, we obtain the required inequality.

We restrict the domain of the function Q(v1, . . . , vk) to the set [−X,X]k.
Since the set under consideration is compact and the function Q(v1, . . . , vk)
is continuous, the function attains its minimum value in this set. This min-
imal value is obviously no more than Y = Q(0, . . . , vk), so it is not greater
than the values of the function Q(v1, . . . , vk) outside the set [−X,X]k.
Therefore, this value is the minimum value for all points in Rk.

6.6.20. Solution (from article [SSU, § 2.4]). Consider an arbitrary
vertex x /∈ P ∪ N . Let, without loss of generality, it be numbered 1.
Consider Q(v1, . . . , vk) as a quadratic function of v1. The leading coeffi-
cient is positive, which means the smallest value is attained when v1 =∑

xy C(xy)v(y)/
∑

xy C(xy), where the summation is over all edges xy com-
ing out of x. So the smallest value is attained exactly when axiom 2 holds
for vertex x.

6.6.21. Solution (from article [SSU, § 2.4]). We have∑
xy

C(xy)(v(x)− v(y))2

=
∑
xy

(v(x)C(xy)(v(x)− v(y)) + v(y)C(xy)(v(y)− v(x)))

=
n∑

x=1

(
v(x)

∑
xy

C(xy)(v(x)− v(y))

)
.

The value v(x)
∑

xy C(xy)(v(x)− v(y)) is equal to zero for all vertices not
belonging to P ∪N by axiom 2 and for all vertices from set N by axiom 1.
Hence,

Q(v1, . . . , vk) =
∑
x∈P

∑
xy

C(xy)(1− v(y)) = C.

6.6.22. Solution (from article [SSU, § 2.4]). Let C be the conductance
of the original circuit, and let C ′ be the conductance of the circuit after
removing one of the wires. Let Q(v1, . . . , vk) denote the thermal power of
the original circuit, and let Q′(v1, . . . , vk) be the new one (as a function
of the variables v1, . . . , vk). Denote by v(1), . . . , v(k) the voltages of the
vertices in the original circuit, and denote by v′(1), . . . , v′(k) the voltages in
the new one. Then, according to the law of conservation of energy and the
variational principle (problems 6.6.21 and 6.6.20), we get

C = Q(v(1), . . . , v(k)) ≥ Q′(v(1), . . . , v(k)) ≥ Q′(v′(1), . . . , v′(k)) = C ′.

The statement about combining vertices is proved similarly.
6.6.23. (b) Answer : C → 0 as n → ∞.
Suggestion. We apply the principle of cutting and shorting (see 6.6.22):

we combine together the vertices located on the boundaries of the concentric
squares 2×2, 4×4, . . . , 2n×2n, as shown in Fig. 8. The resulting circuit has
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Figure 8. Combining in a square circuit; see solution to
problem 6.6.23(b).

the same conductance as the circuit in Fig. 8 in the center. The conductance
of the obtained circuit is calculated using problem 6.6.17. Since it is possible
to replace i parallel wires of conductance 1 with one wire of conductance i,
the circuit has the same conductance as the circuit in Fig. 8. Its conductance
is equal to 1

n∑

k=1

1
8k−4

. This number tends to zero as n tends to infinity. Since

the conductance of the initial circuit is no more than the conductance of the
resulting circuit, it also tends to zero.

(c) Answer : f(n) = 1/ lnn.
Suggestion. Use problem 6.6.27. From the 2n × 2n square cut out a

modified binary tree with a root in the center of the square (as in Fig. 10);
at the same time, vertices can be joined at equal distances from the root).

Comment. To prove Pólya’s theorem, it suffices to find the limit of
conductance of a square (part (b)), rather than the order of its decreasing
(part (c)).

6.6.24. Solution (from article [SSU, § 3.2]). Let P be the probability
that a random walk on a two-dimensional grid returns to the starting point.
We denote by Pn the probability that a random walk returns to the starting
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Figure 9. Calculation of the conductance of a tree; see the
solution of problem 6.6.27.

point before reaching the boundary points of the 2n×2n square with center
at the starting point.

It is clear that Pn ≤ P ≤ 1 for each n. From the physical interpretation
of the return probability (problem 6.6.18) we obtain that Pn = 1 − C/4,
where C is the effective conductance between the center and the boundary
of the 2n × 2n square. From the statement of problem 6.6.23(b) it follows
that C tends to zero when n tends to infinity. Therefore, Pn → 1 for n → ∞
and P equals 1.

Suggestion to another solution. It can be proved that in a two-dimen-
sional random walk, the average number of returns to the starting point is
infinite, and for a three-dimensional walk it is finite. From this it follows
that the probability of a return for the two-dimensional walk is equal to 1,
and for the three-dimensional walk it is strictly less than 1.

6.6.25. Prove by induction that the resistance of a binary tree of depth
n of wires with conductance equal to 1 is 1− 1

2n .
6.6.26. It is easy to cut out a binary tree with depth 3. We show that a

binary tree with depth 2010 cannot be cut. If you managed to cut it, then
all its vertices are located at a distance of no more than 2010 from the root;
from here we get that the tree is in a square with side 2 ·2010+1. Therefore,
the number of its vertices does not exceed 40212 ≤ 224. On the other hand,
the number of its vertices is 22011 − 1. This contradiction completes the
proof.

6.6.27. Answer (for ternary tree): 1− 2n

3n .
Suggestion (see [SSU, § 3.3, the lemma about conductance of a tree]).

The voltages at points located at the same distance from the root of the
tree are equal by symmetry. Join these points. We get the circuit shown in
Fig. 9. The circuit resistance has not changed and it is equal to

1

3
+

2

9
+ · · ·+ 2n−1

3n
= 1− 2n

3n
.
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6.6.28. Cutting a modified binary tree from a plane and a ternary tree
from the space in a similar way (Fig. 10). The proof is by induction on the
depth of a tree.

Figure 10. Cutting out a ternery tree with intersections in
space; see solution to problem 6.6.28.

6.6.29. Solution (A. Yuriev) (see [Yu] and [SSU, § 3.3]). We prove that
the probability of a return to the starting point does not exceed 5/6.

Take an arbitrary i > 0, put n = 2i − 1, and consider a part of the
grid inside the octahedron {(x, y, z) : |x| + |y| + |z| ≤ n} with a diagonal
of 2n. Let Cn be the conductance between the origin and the boundary of
the octahedron. By problem 6.6.28, a modified ternary tree of depth i can
be cut from this part of the grid with the intersections of wires at an equal
distance from the root. By problem 6.6.17(c), the conductance of a tree
with such intersections is equal to the conductance of the same tree without
intersections. By problem 6.6.27, the conductance of modified ternary trees
of any depth is greater than 1. The principle of cutting and shorting shows
that Cn > 1.

By the physical interpretation of the probability of return, it follows that
the probability of a return to the center of the octahedron before reaching
its boundary points is Pn = 1− Cn/6 < 5/6.

Let P T
n be the probability of returning to the center of the octahedron

with a diagonal of 2n, without reaching its border and making no more
than T steps. Let P T be the probability of returning to the starting point,
traveling in the three-dimensional grid, and making no more than T steps.
For T < n, the octahedron boundary cannot be reached in T steps. It follows
that P T = P T

n for T < n, since under such restrictions on T the walk on
the octahedron does not differ from the walk on the three-dimensional grid.
Using the fact that P T

n ≤ Pn, we arrive at the estimate P T ≤ Pn < 5/6 for
T < n.

Therefore, for every T , we have P T < 5/6 and then by definition
the probability of returning to the starting point, traveling in the three-
dimensional grid is also less than 5/6.
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Chapter 7

Combinatorial geometry

1. Rug runners and napkins (2)
By P.A.Kozhevnikov

This collection of problems gives you a sense of what combinatorial geometry
is about. It will be helpful to have familiarity with the extremal principle
and the pigeonhole principle (Sections 1 and 2 of Chapter 2).

One-dimensional geometry, or “rug runners”

In problems 7.1.1–7.1.6 it is assumed that several “rug runners” (segments,
since they are one-dimensional) are laid in a long narrow corridor (on a
straight line).

7.1.1. It is known that any two rug runners intersect. Prove that you can
nail all these rug runners to the floor with one nail.

7.1.2. It is known that each rug runner intersects at least with half of the
others. Prove that there exists a rug runner that intersects all the others.

7.1.3. It is known that each point of the corridor is covered by no more than
k rug runners. Prove that the set of all rug runners can be divided into k
subsets so that in each subset the rug runners do not intersect.

7.1.4. It is known that all rug runners have the same length. Prove that
you can drive several nails into the floor so that each rug runner is nailed
with exactly one nail.

7.1.5. It is known that the corridor is l units long and the rug runners
completely cover it.

(a) Prove that you can remove some rug runners so that the remaining
rug runners covered the entire corridor and their total length does not exceed
2l.

(b) Prove that some rug runners can be removed so that the remaining
rug runners do not intersect and their total length is not less than l/2.

139
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7.1.6. It is known that the corridor is l units long and the rug runners
completely cover it. Each rug runner was cut in half and one of the halves
was removed. Prove that the remaining halves will cover at least one third
of the length of the corridor. (D.Fomin, Leningrad Mathematical Olympiad
1990).

7.1.7. Each of seven children skated three times on Sunday. It is known
that every two of them were on the ice at the same time at some moment.
Prove that, in fact, three children were on the ice at the same time at some
moment. (A.Anjans, All-Union Mathematical Olympiad 1989)

Two-dimensional geometry, or “napkins on the table”

In problems 7.1.8–7.1.13 it is assumed that several rectangular napkins are
put on a rectangular table in such a way that their sides are parallel to the
edges of the overlap.

7.1.8. It is known that every two napkins overlap. Prove that you can
anchor all the napkins to the table with a single nail.

7.1.9. It is known that each napkin overlaps with at least 3/4 of the remain-
ing ones. Prove that some napkin overlaps with all other napkins.

7.1.10. Let napkins be equal squares arranged in such a way that each point
of the table is covered by at most k napkins. Prove that the napkins can
be partitioned into 2k− 1 groups so that no two napkins in the same group
overlap.

7.1.11. Let the napkins be equal squares. Prove that you can hammer in
several nails so that each napkin is nailed with exactly one nail. (A.Berzins
and I. Izmestiev, All-Russian Mathematical Olympiad 1995)

7.1.12. Let napkins be unit squares arranged so that the distance between
the centers of any two napkins does not exceed 2. Prove that you can place
one more such napkin on the table that will overlap with all the napkins
already on the table. (A.Anjans, Tournament of Towns, 1990)

7.1.13. On a 20×20 table there are 90 unit square napkins. Prove that you
can place one more napkin on the table that does not overlap with any of
those aleady on the table.

In problems 7.1.14 and 7.1.15, the napkins and the table are rectangular,
but the sides of the napkins are not necessarily parallel to the edges of the
table.
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7.1.14. Let the size of the table be 20× 20, let each napkin be of size a× 1,
and let there be a total of 95 napkins on the table. Prove that you can draw
a circle of diameter 1 on the table that does not overlap with any napkin.

7.1.15. The total perimeter of the napkins on a 20×20 table is greater than
200. Prove that you can draw a straight line on the table that intersects at
least 6 napkins.

Three dimensions

7.1.16.* Try to formulate three-dimensional analogues of the problems
above.

7.1.17. Twelve rectangular parallelepipeds are placed in space, with edges
parallel to the coordinate axes. Construct a graph whose vertices correspond
to the parallelepipeds, where we connect two vertices of the graph with an
edge if and only if the corresponding parallelepipeds do not intersect. Could
this graph be a cycle of length 12? (A.Akopyan, All-Russian Mathematical
Olympiad 2005)

7.1.18. Several convex polyhedra are arranged in space so that any two of
them intersect. Prove that there is a plane which intersects all of them.

7.1.19. “Suitcase in the subway”. Is it possible to place a rectangular
box with the sum of its edges greater than d into a rectangular parallelepiped
with the sum of its edges equal to d (A. Shen, Tournament of Towns, 1998)?

7.1.20. The same question for tetrahedrons.

Suggestions, solutions, and answers

When solving these problems, it is helpful to use the extremal principle. The
idea is to consider an object which is distinguished among all other objects
by some special property. Initial arguments using the extremal principle
might be, for example, as follows: consider the leftmost endpoint of a set of
line segments, or the pair of most distant points of a given set, etc.

7.1.1. Let [ai, bi], i = 1, 2, . . . , n, be the given segments. Let a = ai =
max{a1, a2, . . . , an}, b = bj = min{b1, b2, . . . , bn}. If a > b, then the seg-
ments [ai, bi] and [aj , bj ] do not overlap, which is a contradiction. Therefore,
a ≤ b, and all segments contain the segment [a, b].

Comment. This problem is Helly’s theorem in the one-dimensional case
(see Section 2 of this chapter). It remains true for an infinite number of
segments. The proof for an infinite set is similar, but instead of the largest
and smallest numbers, we consider the infimum and supremum.

7.1.2. Let [ai, bi], i = 1, 2, . . . , n, be the given segments, a = ai =
max{a1, a2, . . . , an}, b = bj = min{b1, b2, . . . , bn}. If a ≤ b, then all segments
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contain [a, b]. Otherwise, more than n/2 segments intersect [ai, bi] and thus
contain the point a = ai (we assume that an arbitrary segment intersects
itself). Also, more than n/2 segments intersect [aj, bj ] and, therefore, they
contain the point b = bj . By the pigeonhole principle, there is a segment
containing both a and b. This segment intersects all other segments.

7.1.3. Let [ai, bi], i = 1, 2, . . . , n, be the given segments. We apply
induction on n (the base is obvious). Let a = ai = max{a1, a2, . . . , an}.
Any segment intersecting [ai, bi] covers ai; thus [ai, bi] intersects at most
k − 1 segments. Having deleted the segment [ai, bi], we apply the induction
hypothesis to the remaining segments. Having returned [ai, bi], we assign it
to the set, which does not include segments intersecting with it.

Comment. This argument can be used to solve the following problem
from the Moscow Olympiads: Fifty segments lie on a line. Prove that either
there are 8 segments having a common point or there are 8 pairwise disjoint
segments.

7.1.4. Introduce coordinates on the line in such a way that all segments
have a unit length and no endpoint of a segment has an integer coordinate.
Now it is enough to hammer nails into integer points.

7.1.5. (a) Remove a segment if it is covered by the union of other seg-
ments. It is not difficult to prove that after a finite number of such steps we
are left with a collection of segments such that each point is covered by at
most two segments.

(b) It can be noticed that the covering obtained after completing the
steps of part (a) is the union of two sets of segments, such that in each of
them segments are pairwise disjoint.

7.1.6. Let the segments be Δ1, . . . ,Δk, after removing one half of each
of the original segments. We “inflate” Δi by a factor of three; i.e., we
consider the segment Δ′

i obtained from Δi by a homothety with center in
the midpoint and coefficient 3. It is easy to show that Δ′

1, . . . ,Δ
′
k cover the

corridor.
7.1.7. The time spent at the skating rink by each skater is a set Ai of

three pairwise disjoint segments on the time axis t. Their union is the set

E =
7⋃

i=1
Ai of 3 ·7 = 21 line segments. The set V of the endpoints of all these

segments consists of 42 points (the endpoints can be considered distinct).
Estimate the number of pairs (e, v) for which the segment e ∈ E contains
the endpoint v ∈ V of a segment other than e. Each intersection Ai ∩ Aj

produces at least two such pairs. Therefore there are at least 2
(
7
3

)
= 42

such pairs. In addition, the leftmost endpoint of the segments in E does not
belong to any such pair. Therefore, some endpoint of a segment belongs to
at least two pairs, i.e., is covered with two other segments. This endpoint
of this segment corresponds to the time moment we are looking for.

For two- and three-dimensional problems, the idea of reducing the di-
mension is useful. For example, by projecting a configuration onto straight
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lines (say, on the l- andm-axes parallel to the table edges), we can sometimes
reduce the problem to simpler one-dimensional problems.

7.1.8. Project the rectangular napkins onto the lines l and m parallel
to the edges of the table. By problem 7.1.1, the projections onto l have a
common point A. This means that the line m′ parallel to m and passing
through A intersects all the rectangles. Similarly, there is a line l′ parallel
to l intersecting all the rectangles. It is easy to see that the point l′ ∩ m′

belongs to all the rectangles.
7.1.9. Project n of the rectangles onto l and m, as above. Following the

solution to problem 7.1.2, we prove that there are more than n/2 rectangles
whose projection onto l intersects the projection of any of the remaining
rectangles. We call such rectangles l-suitable. Similarly, we find more than
n/2 m-suitable rectangles. By the pigeonhole principle, there is a rectangle
which is both l-suitable and m-suitable. It is easy to see that it intersects
all other rectangles.

7.1.10. Consider the square that is at least as high (in the plane) as any
other square. No more than 2(k − 1) squares intersect this square (each of
them contains one of the two lower vertices). Next, as in problem 7.1.3, we
apply induction on the number of squares.

7.1.11. Put the nails at the vertices of some square lattice and project
onto l and m. Then use the ideas of the solution of problem 7.1.4.

7.1.12. The projections of the centers of the squares onto l can be covered
by a segment AB of length 2. Therefore, the unit segment Δl, the midpoint
of which coincides with the midpoint of AB, intersects the projections of
all squares onto l. Similarly, there is a unit segment Δm, intersecting the
projections of all squares onto m. A square whose projections onto l and m
intersect Δl and Δm, respectively, intersects all the others.

For the following three problems, the pigeonhole principle for areas is
useful; see problem 7.5.3 in Section 5 of this chapter.

7.1.13. “Inflate” each square A by a factor of 2; that is, consider the
square A′ obtained by homothety with center at the center of A and coeffi-
cient 2. Note that squares A and B intersect if and only if A′ contains the
center of the square B. Consider the 19×19 square obtained by removing a
1/2-wide strip along the perimeter of the table. The area covered by inflated
squares does not exceed 4 · 90 = 360 < 361 = 192. Thus there must be a
point in the 19× 19 square that is not covered by any inflated square. This
point is the center of a unit square which will not intersect any other square.

7.1.14. Apply the idea used in the solution to problem 7.1.13. You need
to modify the definition of “inflation” for a unit square to include all points
located at a distance of no more than 1/2 from some point of the square
(this is a square 2 × 2 with rounded corners). It is easy to verify that the
inequality 95s0 < 192 is true, where s0 =

π
4 + 3 is the area of the “inflated”

unit square.
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7.1.15. It is easy to prove that the sum of the lengths of the projections
of any rectangle onto l and m is not less than the half-perimeter of the rec-
tangle. It suffices to show that some point of l or m is covered by projections
of at least six rectangles. If this were not so, then the sum of the lengths of
all the projections would not exceed 5 · (20 + 20) = 200, a contradiction.

7.1.17. Answer : not possible.
Suggestion. Suppose there exists the cycle P1P2 . . . P12. Then a pair

of parallelepipeds (P1, P2) projects onto one of the three axes as a pair of
disjoint segments. The same is true for pairs (P4, P5), (P7, P8), (P10, P11).
In projections onto one of the three axes, we have two pairs of disjoint
segments Δ1 ∩ Δ2 = ∅, Δ3 ∩ Δ4 = ∅ for which the intersections Δi ∩ Δj

(i < j, (i, j) �= (1, 2), (3, 4)) are not empty. It remains to solve a one-
dimensional problem: to make sure that this configuration of four segments
on a straight line is impossible.

7.1.18. Consider the projection onto an arbitrary line and use prob-
lem 7.1.1.

7.1.19. Answer : it is impossible.
Suggestion. Project the edges a, b, c of the inner parallelepiped onto

edges x, y, z of the external one. Estimate the total sum s = ax+ay+· · ·+cz
of these projections. On the one hand, ax + ay + az ≥ a, bx + by + bz ≥ b,
cx + cy + cz ≥ c, whence s ≥ a + b + c. On the other hand, it is easy to
show that ax + bx + cx ≤ x, ay + by + cy ≤ y, az + bz + cz ≤ z. Therefore,
s ≤ x+ y + z.

7.1.20. Answer : it is possible.

2. Helly’s theorem (2)
By A.V.Akopyan

Before studying this section, it is helpful to solve problems 7.1.1 and 7.1.2
in the previous section.

A subset A of the plane is called convex if for any two of its points it
contains the line segment connecting them. All figures discussed below are
assumed to be bounded.

7.2.1. Hahn-Banach theorem. (a) Suppose we are given two disjoint
convex polygons on a plane. Prove that there exists a line that “separates”
them: the line does not intersect either polygon and is such that the polygons
lie on different sides of the line.

(b)∗ Generalize this theorem to the case of n-dimensional space.

7.2.2. Helly’s theorem. (a) Let every three polygons from a set of convex
polygons have at least one common point. Prove that then all the polygons
in this set have a common point.

(b)∗ Generalize this theorem to the case of n-dimensional space.
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7.2.3.◦ Which of these theorems cease to be true if we allow nonconvex
polygons? Select all valid options:

(1) Hahn-Banach theorem; (2) Helly’s theorem.

7.2.4. (a) Suppose we are given a system of arcs on a circle, each arc shorter
than the length of a semicircle. It is known that every three arcs in this set
have at least one common point. Prove that all the arcs have at least one
common point.

(b) What is the maximum length of arcs for which the pairwise condition
of the intersection of the arcs is sufficient for the existence of a common point
of all arcs in the system?

7.2.5. (a) Prove that if every three points of some subset of the plane can be
covered by a circle of radius R, then all points of this subset can be covered
with a circle of the same radius.

(b)∗ Prove that if every three lines from some set of lines can be in-
tersected by a circle of radius r, then all the lines from this set can be
intersected by a circle of radius r.

7.2.6. Is it possible to generalize Helly’s theorem to pairs of points? In other
words, the question is about the existence of a number n with the following
property. Suppose we are given a family of convex polygons on a plane such
that for every n polygons from this family there exist two points such that
a convex polygon in the subfamily contains at least one of them. Then do
there exist two points such that every polygon in the family contains at least
one of them?

7.2.7. 100 sets A1, A2, . . ., A100 are selected on the line, each of which is
a union of 100 pairwise disjoint segments. Prove that the intersection of
the sets A1, A2, . . . , A100 is a union of not more than 9901 pairwise disjoint
segments. (In this problem, a point is considered to be a segment.)

7.2.8. A line contains 2k − 1 white and 2k − 1 black segments. It is known
that any white segment intersects at least with k black segments and any
black segment intersects at least with k white segments. Prove that there
is a black segment intersecting with all white ones and a white segment
intersecting all black ones.

7.2.9. On a rectangular table lie congruent cardboard squares of k different
colors with sides parallel to the sides of the table. The squares are arranged
so that in any set of k of them, there are two of these that can be nailed to
the table with a single nail. Prove that all the squares of some color can be
nailed to the table using 2k − 2 nails.
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7.2.10. A finite set of points X and an equilateral triangle T in the plane
are given. It is known that any subset X ′ of the set X consisting of no more
than 9 points can be covered by two parallel translations of the triangle T .
Prove that all the points in X can be covered by two parallel translations
of the triangle T .

Suggestions, solutions, and answers

7.2.5. (a) (A. Bezmenova) Draw circles of radius R with center at each point.
Since any three points can be covered by a circle of radius R, the radius of the
circumscribed circle of any triangle with vertices at these points is less than
R. Therefore, circles with centers at the vertices of one triangle intersect,
that is, any three circles intersect, and, therefore, by Helly’s theorem, all
the circles intersect. A circle of radius R with center at a point common to
all circles will cover all the points.

7.2.8. (A. Rubashevsky) We give a solution for the special case when
same-color segments do not intersect. To begin with, we prove that for each
pair of black segments, there is a white one that intersects both of them.
Consider two arbitrary black segments. By hypothesis, each black segment
intersects at least k white segments. The first black segment intersects at
least k white segments, and the second segment intersects at least k white.
But since there are only 2k− 1 white segments, by the pigeonhole principle
there is at least one white segment intersecting both of them.

Now take the following two black segments: one whose left end is right-
most and the other whose right end is leftmost. Denote these segments
by (a1, a2) and (b1, b2), respectively. Note that these black segments are
extremal in the sense that for every other black segment (x1, x2) we have
x1 ≤ b1, x2 ≥ a2. By the statement proved above, for these two selected
segments there is at least one white segment (z1, z2) that intersects both of
them, so that z1 ≤ a2, z2 ≥ b1. Therefore, for each black segment (x1, x2) we
have x1 ≤ z2, x2 ≥ z1. This means that the white segment (z1, z2) intersects
all black segments. Similarly we can show that there is a black segment that
intersects all white segments.

3. Lattice polygons (2)
By V.V.Prasolov and M.B. Skopenkov

This series of problems is devoted to two beautiful theorems about lattice
polygons (also known as “grid paper polygons”): Pick’s formula (see 7.3.6)
for the area of such polygons and the more complicated dual polygon theo-
rem (twelve-point theorem). We present a proof of the first result following
[Vas74] and a proof of the second result following [CRM].

Lattice polygons arise naturally in determining the number of solutions
of systems of algebraic equations. This is explored in the interesting articles
[Kush1] and [Kush2]. The concept of duality (relevant to the twelve-point
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theorem) and its connection with the solution of equations can be found in
the article [Tab] and in the more advanced article [PR-V].

For Pick’s formula, you should be familiar with areas and the extremal
principle (Section 2 of Chapter 2 in this book and Section 5.3 in [ZS]).
For the twelve-point theorem, familiarity with semi-invariants (Section 4 in
Chapter 4 in this book) and polarity (Section 5.3 in [ZS]) is also helpful.

In this section, we assume that all polygons are lattice polygons (the
vertices are lattice points of a unit grid).

3.A. Area of a polygon on grid paper (2)

Our immediate goal is to find a simple way to calculate the area of a lattice
polygon. We start with special cases.

7.3.1.◦ Find the areas of the polygons in Fig. 1.

Figure 1

We call a lattice triangle primitive if it contains no other lattice points
besides its vertices (neither inside nor on its sides). (See the rightmost
triangle in Fig. 1.) A leap (Fig. 2) is the transformation in which the vertex
A of the triangle ABC is replaced by a point symmetric to A with respect
to B.

7.3.2.◦ What is the longest side of a primitive triangle?
(1) 1; (2)

√
2; (3) 2; (4)

√
13; (5) arbitrarily large.

7.3.3. Prove that
(a) the area of a triangle does not change after a leap;
(b) a primitive triangle remains primitive after a leap;
(c) a primitive triangle is either obtuse or right (and the latter case is

possible only for a triangle with sides 1, 1,
√
2, which we will call minimal ;

see Fig. 2 on the left);
(d) for any primitive nonminimal triangle, there is a leap that results in

a triangle whose largest side is strictly smaller than the longest side of the
original triangle;

(e) any primitive triangle can be translated into a minimal one by a
finite number of leaps;

(f) the area of a primitive triangle is 1/2.
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Figure 2

The last statement above is the key to solving many other beautiful
problems about polygons.

7.3.4.◦ How many noncongruent primitive quadrilaterals (i.e., quadrilater-
als containing no lattice point other than the vertices, neither inside nor on
the sides) are there?

(1) 6; (2) 7; (3) 8; (4) 9; (5) 12; (6) infinitely many.

7.3.5. (a) All primitive convex quadrilaterals are parallelograms.
(b) Is there a convex pentagon that does not contain any interior lattice

points?
(c) A convex polygon has exactly one interior lattice point. What is the

largest number of vertices it can have?
(d) If there are no lattice points on the sides of a triangle (except for

the vertices), but there is exactly one interior lattice point, then this point
is the intersection point of the medians of the triangle.

(e) Given a primitive parallelogram, we are allowed to take any side of
it and translate it by a vector “equal” to this side. Prove that using such
operations one can transform a primitive parallelogram into a unit square.

We will now find the area S of a polygon with i interior lattice points
and b lattice points on the boundary (which includes the vertices).

7.3.6. (a) Consider a triangulation of a polygon with vertices at these b+ i
lattice points. How many triangles will it have?

(b) Pick’s formula: S = i+ b
2 − 1.

The following problems are devoted to applications of Pick’s formula.

7.3.7. (a) There are no equilateral triangles whose vertices are lattice points.
(b)∗ What regular polygons are lattice polygons?
(c)∗ For which integers n is the number cosn◦ rational?
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7.3.8. A chess king traveled on an 8 × 8 chessboard visiting each square
exactly once and returning to the original square. The broken line that con-
nects the centers of the squares that the king visited has no self-intersections.

(a) What is the area that this broken line encloses?
(b) What is the greatest length it can have?

7.3.9.* Draw a closed nonself-intersecting broken line along the grid lines
which passes through all the interior lattice points of a p×q lattice rectangle.

(a) For what p and q is this possible?
(b) How long is this broken line?
(c) What is the area of the figure it bounds?

7.3.10.* (a) Let kM be the polygon obtained from M by homothety with
coefficient k and center at the origin. Prove the formula 2S(M) = n(2M)−
2n(M) + 1, where S(M) is the area of the polygon M and n(M) is the
number of lattice points inside and on the boundary of the polygon M .

(b) Guess and prove a similar formula for the volume of a polytope in
space.

7.3.11 (Challenge).* Come up with an estimate for the maximum number
of vertices of a convex polygon in terms of the number of interior lattice
points

3.B. Dual lattice polygons (3*)

Consider a convex lattice polygon M = A1A2 . . . An (Fig. 3 on the left) that

contains exactly one interior lattice point O. Draw vectors
−−−→
A1A2,

−−−→
A2A3, . . .,−−−→

AnA1 from O, and on each of the resulting segments, select the lattice point
closest toO. Connecting these points consecutively, we obtain a new polygon
M∗, which is called dual to the original polygon (Fig. 3 on the right).

Figure 3
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7.3.12.* The dual polygon is identical to the polygon obtained by taking
the polygon polar to M in the circle of radius 1 centered at O and rotating
it by 90◦ counterclockwise around O.

Our goal is to obtain an elementary proof of the following very recently
discovered result (see [PR-V]).

Theorem (twelve-point theorem). Suppose a convex polygon M has exactly
one interior lattice point O and b lattice points on its boundary, and suppose
its dual M∗ has b∗ lattice points on its boundary. Then

b+ b∗ = 12.

7.3.13. Draw the polygons dual to those shown in Fig. 4. How many nodes
are located inside M∗ in each case? What is M∗∗ equal to? How are the
areas M and M∗ connected? Is the equality M = M∗ possible? Can the
dual to a convex polygon be nonconvex? Formulate your observations and
assumptions, and try to prove them.

M ?

M∗ ? ?

(a) (b) (c) (d) (e)

Figure 4

The next problem applies the twelve-point theorem. First try to solve
it using this theorem without proof, and then try to solve it without using
this theorem. See also problem 7.3.5(c) above.

7.3.14. Inside
(a) a triangle; (b) a convex quadrilateral

there is exactly one interior lattice point. What is the largest number of
boundary lattice points?

7.3.15. Prove the twelve-point theorem for:
(a) a parallelogram with b = 4; (b) a triangle with b = 3.
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Definition. Deleting a triangle from M is the operation of removing from
M a primitive triangle with two sides contained in the sides of M . For
example, deleting a triangle from the polygon in Fig. 4(a) results in the
polygon in Fig. 4(c). The inverse operation is called adding a triangle.

7.3.16. Is it true that any two polygons
(a) in Fig. 4;
(b) with no interior lattice points;
(c) that are convex, with exactly one interior lattice point

are obtained from each other by a series of deletions and additions of trian-
gles?

7.3.17. (a) When a triangle is deleted from M , a triangle is added to M∗.
(b) Prove the twelve-point theorem.

7.3.18.* Prove that if M has exactly one interior lattice point, then M∗

also has exactly one interior lattice point.

7.3.19.* The polygon M∗∗ is obtained from M by central symmetry.

An affine lattice transformation is a mapping of the plane given by the
formula {

x′ = ax+ by + e,

y′ = cx+ dy + f

that maps the set of lattice points to itself (this means that the numbers
a, b, c, d, e, f are integers and ad− bc = ±1). Two polygons are called equiv-
alent if there exists an affine lattice transformation mapping one polygon
into another.

7.3.20.* Prove that among
(a) parallelograms with area equal to 9;
(b) polygons with exactly one interior lattice point

there are only a finite number of pairwise nonequivalent polygons.

Suggestions, solutions, and answers

7.3.1. Answer : 6, 3, 1/2 (from left to right).
7.3.2. Answer : (5).
7.3.3. (a) The triangles ABC and A′BC have a common base BC, and

since AB = BA′, the corresponding altitudes are equal, so the areas of these
triangles are equal.

(b) Let D be the midpoint of BC. Note that under a central symmetry
with center D the lattice is transformed into itself. Therefore, if the triangle
ABC is primitive, its image under this central symmetry A′′BC is also
primitive. Similarly, the triangle A′′BA′ is primitive because it is obtained
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by central symmetry from the triangle A′′BC. Therefore, there are no lattice
points inside the parallelogram A′′A′BC; in particular, triangle A′BC is
primitive.

(c) Consider a minimal rectangle with sides parallel to the grid lines
containing our triangle. Then on each side of it lies some vertex of the
triangle. This is possible only if at least one of the vertices of the triangle
coincides with a vertex of the rectangle. If there are three such coincident
vertices, then it is easy to see that our triangle is minimal. If there are two
of them and they are opposite (in the rectangle), then, obviously, the angle
at the third vertex of the triangle is obtuse. The other cases for a primitive
triangle are impossible. Indeed, suppose that a triangle and a rectangle have
a common vertex A, but either there are no more coinciding vertices or a
common vertex is one of the vertices of the rectangle adjacent to A. Let D
be the vertex of the rectangle opposite to A, and let M be the midpoint of
the side of the triangle opposite to A. Then it is easy to see that the point
symmetric to D with respect to M is a lattice point lying inside the original
triangle or on its side.

(d) It suffices to leap over the vertex B with an obtuse angle. Since AC
is the largest side, we have AC > BC and AC > AB = BA′. Since the
angle ABC is obtuse, it is larger than the angle A′BC, which means that
AC > A′C (because the other two sides of the triangles ABC and A′BC
are equal).

(e) The leaping process reduces the length of the largest side of primitive
triangles. This process cannot continue infinitely, since the square of the
length of this side takes only integer values (by the Pythagorean theorem).
By (d), this process will stop at the minimum triangle.

(f) The statement follows from parts (a) and (e).
7.3.4. Answer : 6.
7.3.5. (a) Let ABCD be our quadrilateral, O = AC ∩ BD. Since

ABCD contains no interior or boundary lattice points, triangles ABC and
ACD are primitive. By 7.3.3(f), their areas are equal to 1/2, and, therefore,
BO = OD. Similarly, AO = OC. Therefore ABCD is a parallelogram.

(b) Answer : no.
Suggestion. Without loss of generality we can assume that there are no

lattice points on the sides of the pentagon ABCDE (otherwise, we consider
a smaller pentagon). Then, by (a), ABCD is a parallelogram, and BCDE
is also a parallelogram. It follows that A = E, which is a contradiction.
Hence, the required pentagon does not exist.

(c) Answer : 6.
Suggestion. An example is shown in Fig. 5(e) of this chapter. Let us

prove maximality (this also follows from the twelve-point theorem). Draw
a line through the interior lattice point O that does not pass through its
vertices. It separates the plane into two regions. If the number of vertices is
7 or more, then by the pigeonhole principle in one of the regions there are
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at least 4 vertices A, B, C, D. Then the pentagon OABCD contains no
interior lattice points, contradicting (b). This proves maximality.

From this, in particular, we see that the number of vertices for the
polygon M in the twelve-point theorem can be n = 3, 4, 5, 6.

(d) Let the triangle ABC contain a single interior lattice point O. Then
triangles AOB, BOC, and COA are primitive, with area 1/2 by 7.3.3(f).
In particular, this means that the line AO is equidistant from the vertices
B and C. Thus AO is a median, as are BO and CO.

(e) The statement follows from 7.3.3(e).
7.3.6. (a) Answer : 2i+ b− 2.
Suggestion. Calculate the sum of the angles of the triangles in the trian-

gulation in two ways. On one hand, it is equal to nπ, where n is the number
of triangles. On the other hand, each interior lattice point contributes 2π to
this sum. The sum of the angles at the boundary lattice points contributes
an amount equal to the sum of the angles of a b-gon (for which some angles
could be π), which is (b− 2)π. Thus nπ = 2iπ + (b− 2)π.

(b) Pick’s formula follows from part (a), problem 7.3.3(f), and the well-
known proposition that every polygon can be dissected into triangles.

This proof is discussed in more detail in [Vas74]. Here is a sketch
of a simpler proof (in comparison with the solution to problem 7.3.3(f);
problem 7.3.3(f) itself is a consequence of Pick’s formula). Let ϕ(P,M)
denote the angle at which the polygon M is “visible” from the lattice point
P ; i.e.,

ϕ(P,M) =

⎧⎪⎨
⎪⎩

∠P, if P is a vertex,

π, if P lies on a side,

2π, if P lies inside M .

Denote

ϕ(M) =
∑
P∈M

ϕ(P,M),

where the sum is taken over all lattice points inside and on the boundary of
M . It suffices to prove the following statements:

(1) ϕ(M) = (2i+ b− 2)π;
(2) ϕ(M ∪ N) = ϕ(M) + ϕ(N) if the polygons M and N do not have

common interior points;
(3) ϕ(M) = 2πS(M) for the following polygons M :
(a) M is a rectangle with sides parallel to the grid lines;
(b) M is a right triangle with legs parallel to the grid lines;
(c) M is an arbitrary triangle;
(d) M is an arbitrary polygon.
7.3.7. (a), (b) Let the ratio of the area of the polygon to the square of

one of its sides be irrational (as is the case, for example, for an equilateral
triangle). Then this polygon cannot be a lattice polygon.
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Indeed, if the vertices of the polygon lie on lattice points, then the square
of the side is an integer (by the Pythagorean theorem) and the area is a half-
integer (by Pick’s formula); therefore their ratio is rational.

7.3.8. (a) Answer : 31.
Suggestion. Since all squares are visited, Pick’s formula implies that the

area enclosed by the broken line is equal to 64/2−1 = 31 (letting the lattice
points be the centers of the chessboard squares).

(b) Answer : 28 + 36
√
2.

First suggestion. It is easy construct a path in which 36 of 64 moves
are

√
2 long (traveling diagonally). We will show that there can be no more

than 36 such moves. For each path segment of length
√
2, consider the unit

square that has this segment as a diagonal. One half of this square lies
outside the polygonal region enclosed by the king’s path. But the total area
occupied by these halves does not exceed 49− 31 =18, since they do not go
beyond the boundaries of a 7 × 7 square. Hence, the number of diagonal
moves does not exceed 36.

Second suggestion (A. Tolmachev). Call a chessboard square a “bound-
ary” square if it is adjacent to the edge of the board. Thus the chessboard
contains 28 boundary squares. Start at a boundary square and consider
the first time when we again return to the boundary (possibly after several
moves). At this moment, we could only be in the square adjacent to the
original one, since the path is closed and does not have self-intersections.
Since neighboring boundary squares on a chessboard have different colors,
there will be one horizontal or vertical move when moving from one of the
neighboring cells to another (because if you walk only diagonally, the color
will not change). And since there are a total of 28 boundary cells, there will
be at least 28 horizontal or vertical moves.

7.3.9. Answer : (a) for p, q ≥ 3 and (p− 1)(q − 1) even;
(b) (p− 1)(q − 1);

(c) (p−1)(q−1)
2 − 1.

Suggestion. Use parity considerations and Pick’s formula.
7.3.10. Part (a) immediately follows from Pick’s formula (see problem

7.3.6(b)) and can also be proved similarly to the proof of Pick’s formula (see
the remark after the solution to problem 7.3.6).

For (b), several different formulas can be proposed; for example,

6V (M) = n(3M)− 3n(2M) + 3n(M)− 1]

or

6V (M) = n(2M)− 2n(M)− b(M) + 3.

These formulas are proved in the interesting article [Kush1], which also
explains how all such formulas can be obtained. The article [Kush2] by the
same author is also recommended.

7.3.11. Let n(i) denote the maximum number of vertices of a convex
polygon that has i interior lattice points. Here are the first few values of
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n(i):

i 0 1 2 3 4 5 . . .

n(i) 4 6 6 6 8 7 . . .

The formulas n(0) = 4 and n(1) = 6 are actually proved in prob-
lem 7.3.5(b), (c). To prove the equality n(2) = 6, it suffices to draw a
straight line through two interior lattice points and then use ideas from the
solution to problem 7.3.5(c).

For bigger i we can obtain the following estimate for the number n(i):

n(i) ≤ 2i for i ≥ 3.

For a proof, we consider the convex hull of the i interior lattice points. This
is either a line segment or a polygon with at most i vertices. In the first
case, using the ideas of 7.3.5(c), it is easy to obtain the estimate n(i) ≤ 6. In
the second case, take an arbitrary point O (not necessarily a lattice point)
inside the convex hull and draw rays from it through all the vertices of the
convex hull. By choosing the point O, we can ensure that the vertices of
the original polygon do not fall on our rays. If the number of vertices is
n(i) > 2i, then, by the pigeonhole principle, one of the regions partitioned
by the rays must contain at least three vertices. Together with two vertices
of the convex hull belonging to this region, they form a convex pentagon
without interior lattice points, contradicting 7.3.5(b).

The following estimate is also known (but the proof is complicated):

n(i) ≤ Ci1/3,

for some constant C.
Note the interesting fact that n(5) < n(4).
7.3.12. Use the following statement, which follows from 7.3.3(f): O is

the only interior lattice point of M if and only if, for any two neighboring
lattice points A and B on the boundary of the polygon M , the area of the
triangle AOB is 1

2 .
7.3.13. See Fig. 5(a)–(d). The dual to the polygon of Fig. 4(e) is not

defined since this polygon is not convex. It is also easy to verify that for a
convex polygon, the dual polygon is also convex. Fig. 5(e) shows an example
where M = M∗. Here are some observations:

(1) exactly one lattice point is located inside M∗ (see 7.3.18);
(2) M∗∗ is obtained from M by central symmetry (see 7.3.19);
(3) S(M)+S(M∗) = 6, which is equivalent to the twelve-point theorem,

since by Pick’s formula, S(M) = i+ b
2 − 1 = b

2 .
7.3.14. (a)Answer : 9.
Suggestion. An example is shown in Fig. 5(f). The idea for the example

is suggested by the twelve-point theorem. Since 12 lattice points in total
are located on the boundaries of the triangles T and T ∗, to maximize the
number of lattice points on the boundary of T , one must minimize their
number on the boundary of T ∗, and vice versa. Therefore, we need to take
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(a) (b) (c) (d) (e) (f)

Figure 5

a triangle with 3 lattice points on the boundary and then the dual triangle
will be the desired example.

The maximality of the number 9 follows, of course, from the twelve-
point theorem. We give an independent proof (Fig. 6). If on each side of a
triangle there are no more than 2 lattice points (not counting the vertices),
then there is nothing to prove. Consider the case when one of the sides
of the triangle, say, AB, contains at least 3 lattice points (such a situation
is indeed possible; see Fig. 5(c)). It is enough to prove that on each of
the other sides there is at most one lattice point. Suppose that this is not
so and, for example, AC contains at least 2 lattice points. Among them,
choose the lattice point D closest to A. Draw DE ‖ AB, where E ∈ BC.
On side AB, choose the lattice point F closest to A. Consider the points
G and H on the segment DE such that DG = AF and GH = AF . They
are obviously lattice points. Since the lattice points divide AB and AC into
equal segments, we have CD : CA ≥ 2

3 and AF : AB ≤ 1
4 . Using similar

triangles, we have DE : AB ≥ 2
3 . It follows that DH < DE; i.e., G and H

lie inside the triangle, a contradiction, proving that 9 is the maximum.
(b) Answer : 8.
Suggestion. An example is shown in Fig. 5(b).

Figure 6

7.3.15. (a) Solution (see [CRM, proof of statement (1)]). Let M =
ABCD be a parallelogram. Then O = AC ∩BD, since the point symmetric
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to the point O with respect to AC ∩ BD is a lattice point and lies inside
ABCD and therefore equals O. It is easy to see that M∗ is a parallelogram
whose sides are obtained from the diagonals AC and BD by parallel trans-

lations by the vectors ±−−→
OB and ±−→

OA, respectively. Since there is a single
lattice point O on these diagonals, on each side of the parallelogram M∗ lies
one lattice point that is not a vertex. Therefore, b+ b∗ = 4 + 8 = 12.

(b) By 7.3.5(d), the lattice point O is the intersection point of the me-
dians of triangle ABC. It is well known that⎧⎪⎪⎨

⎪⎪⎩
−−→
AB −−→

CA = 3
−→
AO,

−−→
BC −−−→

AB = 3
−−→
BO,

−→
CA−−−→

BC = 3
−−→
CO.

However, the vectors of the left sides are the vectors of the sides of the
dual triangle. Therefore, the dual triangle is obtained from the triangle

constructed by the vectors
−→
AO,

−−→
BO, and

−−→
CO by a homothety with coefficient

3. Since segments AO, BO, and CO do not contain lattice points (besides
endpoints), each side of the dual triangle contains exactly 2 lattice points
(except for the vertices). Therefore, b+ b∗ = 3 + 9 = 12.

7.3.16. The answer to all three questions is yes. Part (a) follows from
(c).

(b) It is sufficient to prove that starting with a given polygon without
interior lattice points and using a sequence of additions and deletions of
triangles one gets a minimal primitive triangle (see 7.3.3(c)). Consider the
triangulation of a polygon whose vertices are all of its boundary lattice
points. All triangles in the triangulation will be primitive. Among them, by
problem 3.1.4, there is an “extreme” triangle, i.e., a triangle sharing two sides
with the original polygon. Delete it. Continue this process until a single
primitive triangle remains. It remains to use problem 7.3.3(e) since the leap
of a primitive triangle is the result of adding a triangle and subsequently
deleting the original triangle.

(c) First we prove a lemma:

Lemma (see [CRM, statement (3)]). Starting with any polygon M , by a
series of deletions/additions of triangles, we can obtain a parallelogram with
b = 4 and i = 1.

Proof. Consider all lattice points on the sides of the polygon M as
vertices (possibly with angle of 180◦). This will not alter the definition of
M∗ or the processes of deletions/additions of triangles.

Assume first that M has a diagonal not passing through O. Cut M
along this diagonal and consider the part that does not contain O. This part
necessarily contains a primitive triangle of the formAk−1AkAk+1. Therefore,
by removing this triangle, you can reduce the value of b. Continue as long as
possible. Obviously, there are only three cases where the required diagonal
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is not found:
(1) b = 4, M = ABCD is a quadrilateral, O = AC ∩ BD. Since the

segments OA, OB, OC, and OD do not contain lattice points, we have
OA = OC and OB = OD; that is, ABCD is the desired parallelogram.

(2) b = 4, M = ABCD is a triangle, one of the angles, say, BCD, is
straight. In this case, let D′ be the point symmetric to D with respect to
O, and let E be the midpoint of D′B. The desired series of operations has
the form

ABCD → AEBCD → AD′EBCD → AD′ECD → AD′CD (Fig. 7).

(3) b = 3, M = ABC. In this case, denote by A′ and C ′ points symmetric
with respect to O to the vertices A and C, respectively. Then the desired
series has the form

ABC → AC ′BC → AC ′BA′C → AC ′A′C (Fig. 7),

proving the lemma.

Figure 7

To solve the problem it suffices to prove that starting with any parallelo-
gram with b = 4, i = 1, a series of deletions/additions of triangles will result
in the parallelogram shown in Fig. 4(b). Let ABCD be our parallelogram.
Triangle AOB is primitive. If it is minimal, then our parallelogram is con-
gruent to the parallelogram in Fig. 4(b). Otherwise, consider the sequence
of leaps of triangle AOB which transforms it into a minimal triangle (see
7.3.3(f)), and at each step, we will “double” triangle AOB to form a paral-
lelogram. It is easy to see that any two of the successive parallelograms thus
formed can be obtained from each other by a series of deletions/additions
of triangles. Our assertion is proved.

7.3.17. (a) Solution (see [CRM, proof of statement (2)]). Again, con-
sider all lattice points on the sides of M to be vertices (possibly with an-
gle 180◦). Without loss of generality, assume that the primitive triangle
A1A2A3 is deleted from M . Let us prove that this leads to the addition of a
primitive triangle A12A13A23 to M∗, where the point denoted by Akl means−−−→
OAkl =

−−−→
AkAl (Fig. 8). In particular, if l = k+1, then Akl is a vertex of the

polygon M∗.
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Delete triangle A1A2A3. Then vertices A12 and A23 disappear from M∗,
but a new vertex A13 will be added. It still needs to be joined by segments
to An1 and A34. We show that points A12 and A23 lie on these segments.
Indeed, since O is the only lattice point inside M , then triangles A1OA3,
A2OA3, and A4OA3 are primitive. By Pick’s formula, their areas are equal

to 1/2. Since they have a common base OA3, the projections of
−−−→
A1A3,−−−→

A1A3, and
−−−→
A1A3 onto the perpendicular to OA3 are equal. It follows that

points A13, A23, and A34 lie on one line, and since M is convex, A23 lies
between the other two. Similarly, we can show that A12 lies on the segment
An1A13. Therefore, the transformation of M∗ is reduced to adding triangle
A12A13A23 to it.

Note that the triangle OA12A13 is obtained from the primitive triangle
A1A2A3 by parallel translation, and OA23A13 is obtained by central sym-
metry. Therefore the triangle A12A13A23 is primitive, as required.

(b) From part (a) we see that when deleting/adding a triangle, the value
b + b∗ is preserved. According to the lemma used in the solution to prob-
lem 7.3.16(c), this polygon can be converted into a parallelogram with b = 4
by a sequence of deleting/adding triangles. For such a parallelogram, we
have b+ b∗ = 12 (see 7.3.15(a)). The twelve-point theorem is proved.

���
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Figure 8

7.3.18. Suppose that inside M∗ there is an interior lattice point Q dif-
ferent from O. Then it is located inside some triangle AOB where A and
B are a pair of neighboring vertices of the polygon M . By Pick’s formula,
the area of this triangle is not less than 3/2. Moreover, it can equal 3/2
only if Q lies on the median OK, by problem 7.3.4(4). By the definition of
M∗, the boundary of M contains three lattice points D, E, and F such that−−→
DE =

−→
OA and

−−→
EF =

−−→
OB. The area of triangle DEF is equal to the area

of the triangle ABC; i.e., it is not less than 3/2. If it is greater than 3/2,
then Pick’s formula implies that there are at least two lattice points either
inside DEF or on the interior of side DF . If the area is equal to 3/2, then
DF ‖ OK ‖ OQ. But DF = 2OK > 2OQ, which again implies that there
are at least two lattice points in the interior of the side DF .

Since M is a convex polygon, there are two possibilities: either DF lies
inside M or DF is part of the boundary of the polygon M . In the first
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case, M must contain at least two interior lattice points. In the second case,
M = DEF also cannot contain exactly one interior lattice point. Indeed,
M is divided into three or more triangles with vertex D obtained from
each other by leaps; using problem 7.3.3(b), either all these triangles are
primitive or they are all not primitive. We get a contradiction. Therefore,
such a lattice point Q cannot be found.

7.3.19. Use 7.3.12.
7.3.20. (b) The proof is based on the same idea as the classification of

primitive polygons (see [PR-V]). The classification of convex polygons with
exactly one interior lattice point is discussed in [Kh] (but without proof). It
turns out that there are only 16 such polygons up to an affine transformation
of the lattice.

4. Pigeonhole principle on a line (3)
By A.Ya.Kanel-Belov

7.4.1. Holes with width 0.01 are located on the number line, centered at
each integer point. A hare jumps along the line, starting at zero, with jump
length of

√
2. Prove that sooner or later the hare will fall into a hole.

7.4.2. Kronecker’s density lemma. (a) At each point of the integer
lattice on the plane sits a hare (a hare is a circle of radius 0.01). A hunter

standing at the point
(
1
2 ,

1
2

)
shoots in a direction that has an irrational

slope. Prove that he will hit at least one hare.
Reformulation: if the slope is irrational, then the line comes arbitrarily

close to lattice points.
(b) If the slope is rational, then, for a sufficiently small size of the hare,

the hunter can be placed so that he will not hit any hares.
(c) Flowers (i.e., circles of radius 0.01 with centers at the lattice points)

are planted on a (plane) field. A horse gallops the field along a straight line
in one direction leaping repeatedly by the vector (

√
2,
√
3). Prove that he

must knock down at least one flower.

7.4.3. (a) Prove that the number log10 2 is irrational.
(b) Prove that the number 2n may start with any combination of digits

(for an appropriate n).

7.4.4. Find the probability that 2n starts with the digit 1. More rigorously:
let an denote the number of exponents k between 1 and n for which 2k starts
with 1. Prove that limit lim

n→∞
an
n exists, and find it. (The limit definition

used here is given in [Sko, §7.3, “Concrete limit theory”].)
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7.4.5. Prove that there are infinitely many integers m and n such that∣∣∣√2− m
n

∣∣∣ is less than
(a) 1

2n ; (b) 1
999n ; (c) 1

n2 ; (d)∗ 1√
5n2

.

7.4.6.* (a) For any ε > 0 there exists a countable set of intervals, the
sum of whose lengths is less than ε, such that, if α is not in any of the
intervals and c is any positive number, there exist m,n ∈ Z, n > 0, such

that
∣∣∣α− m

n

∣∣∣ < 1
cn2+ε .

(Rigorous reformulation: for any ε > 0, the set of real numbers that are
not (2 + ε)-approximated has measure 0.)

(b) Hurwitz-Borel theorem. For any irrational number α, there are

infinitely many m/n ∈ Q, such that
∣∣∣α− m

n

∣∣∣ < 1
n2

√
5
.

(c) The number
√
5 in the Hurwitz-Borel theorem cannot be increased:

for any c >
√
5 there is an irrational number α such that the inequality∣∣∣α− m

n

∣∣∣ < 1
cn2 holds for only a finite number of m/n ∈ Q,

Suggestions, solutions, and answers

7.4.3. This problem is analyzed in [Bol78] and [Ar98].
7.4.5. (b) For any positive integers N , k and any irrational number α

there are at least k different fractions m/n ∈ Q for which n ≤ Nk and∣∣∣α− m
n

∣∣∣ < 1
Nn . For details, see the suggestion to problem 7.5.14 below.

5. The pigeonhole principle and its application to geometry1

(3) By I.V.Arzhantsev

The area of a figure

We will call a planar figure A simple if it can be cut into a finite num-
ber of triangles. Its area S(A) is defined as the sum of the areas of the
corresponding triangles.

Recall that a point (x0, y0) ∈ A is called an interior point of A if there
is a circle with center (x0, y0) entirely lying in A.

It is easy to verify that the function “area” on the set of simple figures
has the following properties:

• if A has interior points, then S(A) > 0;
• if A is the union of simple figures A1 and A2 without common interior

points, then S(A) = S(A1) + S(A2);
• congruent figures have the same area;
• the area of a unit square is 1.

1Based on [Yad].

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



162 7. COMBINATORIAL GEOMETRY
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Figure 9

More generally, a planar set B is called measurable if for any ε > 0 there
exist simple figures A1 and A2 such that A1 ⊆ B ⊆ A2 and S(A2)−S(A1) <
ε (see Fig. 9). For measurable sets, one can also define the concept of area
and prove that the area is the only function on the set of measurable sets
that has the four properties listed above.

Note that not every plane set is measurable (see, for example, problem
7.5.2). To those who want to learn more about the concept of area and its
generalizations we can recommend the book [Leb].

7.5.1. Prove that a bounded figure whose boundary consists of a finite num-
ber of segments and arcs of circles is measurable.

Recall that a planar set is called bounded if it is contained in some circle.

7.5.2. Prove that any measurable set is bounded.

The pigeonhole principle for areas

The following geometric statement resembles the well-known “pigeonhole
principle” and is therefore usually called the geometric pigeonhole principle
or the pigeonhole principle for areas.

7.5.3. Pigeonhole principle for areas. Let A be a measurable set, and
let A1, . . . , Am be measurable subsets of A. Suppose that

S(A) < S(A1) + S(A2) + · · ·+ S(Am).

Then at least two of the sets A1, . . . , Am have a common interior point.
Suggestion. Assume, to the contrary, that the sets have no common

interior points. Then

S(A1 ∪A2 ∪ · · · ∪ Am) = S(A1) + S(A2) + · · ·+ S(Am).

Since A1, . . . , Am ⊆ A and the complement A − (A1 ∪ A2 ∪ · · · ∪ Am) are
measurable, we have

S(A1 ∪A2 ∪ · · · ∪Am) ≤ S(A),

a contradiction.
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7.5.4. Let A be a measurable set, and let A1, . . . , Am be measurable subsets
of A. Suppose that

nS(A) < S(A1) + S(A2) + · · ·+ S(Am)

for some positive integer n < m. Then at least n+ 1 of A1, . . . , Am have a
common interior point.

Suggestion. If no n + 1 sets share an interior point, then each interior
point of the set A1∪ · · · ∪Am is “counted” no more than n times in the sum

S(A1) + S(A2) + · · ·+ S(Am),

and therefore

S(A1) + S(A2) + · · ·+ S(Am) ≤ nS(A).

7.5.5. A unit square contains a set whose area is more than 1
2 . Prove that

this set contains two points, symmetric about the center of the square.

7.5.6. The area of a set on the sphere is greater than half of the area of the
sphere. Prove that this set covers a pair of diametrically opposite points on
the sphere.

The theorems of Blichfeldt and Minkowski

Fix a rectangular Cartesian coordinate system on the plane and through
each point with integer coordinates draw two lines, parallel to the coordinate
axes. The resulting system of lines is called an integer lattice, and points
with integer coordinates are called lattice points. The integer lattice cuts
the plane into unit squares.

Consider an integer lattice and a measurable plane set. The number of
lattice points covered by the set depends not only on the shape of the set,
but also its location. For example, there are sets with arbitrarily large area
that do not cover a single lattice point (give an example!).

7.5.7. Blichfeldt’s theorem. Let A be a measurable set on the coordinate
plane with area greater than n. Then A can be translated so that it covers
at least n+ 1 lattice points.

Suggestion. The integer lattice cuts A into a finite number of pieces (the
figure A is bounded!). The condition S(A) > n shows that the number of
pieces is not less than n+ 1. Place all the squares that our figure intersects
“in a single deck” (see Fig. 10). We will get at least n + 1 shapes inside a
unit square with the total area greater than n.

Applying problem 7.5.4 to the unit square we see that there is a point
P that belongs to at least n+ 1 pieces of our set. It suffices to translate A
by the vector that connects P with the lattice point.
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Figure 10

For n = 1, Blichfeldt’s theorem can be reformulated as follows:

7.5.8. Let A be a measurable figure on the coordinate plane whose area is
more than 1. Then A contains two distinct points (x1, y1) and (x2, y2) such
that x2 − x1 and y2 − y1 are integers.

Recall that a plane figure A is called convex if the segment joining any
two of its points lies entirely in A.

The following theorem, due to the German mathematician Hermann
Minkowski, appears in geometric number theory.

7.5.9. Minkowski’s theorem. Let A be a convex measurable set with
area greater than 4 that is symmetric with respect to the origin. Then A
contains a point with integer coordinates different from the origin.

Suggestion. Apply a homothety with the center at the origin and co-
efficient 1

2 to A, obtaining the set B, whose area is greater than 1. By
Blichfeldt’s theorem, B contains distinct points (x1, y1) and (x2, y2), for
which x2 − x1 and y2 − y1 are integers. By symmetry, (−x1,−y1) also lies
in B, and because B is convex, the midpoint O of the segment connecting
(−x1,−y1) and (x2, y2) also lies in B. The point O has the coordinates(
x2−x1

2 , y2−y1
2

)
. Therefore, the point with coordinates (x2 − x1, y2 − y1) lies

in A.

7.5.10. Show by an example that the condition S(A) > 4 in Minkowski’s
theorem cannot be replaced by S(A) ≥ 4.

7.5.11. Let A be a measurable set on the coordinate plane whose area is
less than n. Prove that A can be translated so that it covers at most n− 1
lattice points.
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7.5.12. Let A be a convex measurable set that is symmetric with respect
to the origin and has area greater than 4n. Prove that A contains at least
2n+ 1 lattice points.

Dirichlet’s theorem on approximation of irrational numbers

7.5.13. Dirichlet’s theorem. For an arbitrary irrational number α and an
arbitrary natural number s there exist integers x and y such that 0 < x ≤ s
and

|αx− y| < 1

s
.

Suggestion. We give a sketch of a proof using Minkowski’s theorem. A
direct proof can be obtained by following the suggestion to problem 7.5.14.

Consider

A =
{
(x, y) : |αx− y| < 1

s
, |x| ≤ s+

1

2

}
.

This set is a parallelogram whose area is

2

s
· 2

(
s+

1

2

)
= 4

(
1 +

1

2s

)
> 4.

This figure is convex and symmetrical with respect to the origin (see Fig.
11). Minkowski’s theorem states that in A there is a point with integer
coordinates other than (0, 0). We can assume that the first coordinate of
this point is positive (explain this!). Thus, the theorem is proved.

7.5.14. Prove that for arbitrary irrational number α and natural number s

there is a rational number m
n such that 0 < n ≤ s and

∣∣∣α− m
n

∣∣∣ < 1
ns .
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7.5.15. Prove that for an arbitrary irrational number α there are infinitely
many rational numbers m

n such that∣∣∣α− m

n

∣∣∣ < 1

n2
.

Suggestions, solutions, and answers

7.5.1. Given a disk, one can circumscribe a regular n-gon around it and
also inscribe a regular n-gon in it. The difference in the areas of these two
polygons can be made arbitrarily small by choosing a sufficiently large n.
Consequently, disks and segments of disks are measurable.

7.5.2. Any simple set is obviously bounded. Since a measurable set is
contained in a simple set, it is also bounded.

7.5.5. Let F be the given figure, and let F ′ be the figure symmetric to
it with respect to the center of the square. Then S(F ) + S(F ′) > 1 and
by the pigeonhole principle for areas (problem 7.5.3) there exists a point
X ∈ F ∩ F ′. Obviously, X and the point X ′ symmetric to X form the
required pair.

7.5.6. Consider a figure that is symmetrical to a given one relative to
the center of the sphere, and repeat the arguments of the previous problem.

7.5.10. Consider the open square {(x, y) : |x| < 1, |y| < 1}.
7.5.11. Note that the half-open square −k ≤ x, y < k covers exactly 4k2

lattice points when translated by any vector. Choose k large enough so that
A is contained in some such half-open square K. By Blichfeldt’s theorem,
one can translate the set K −A to cover at least 4k2 − n+ 1 lattice points.
Since all these lattice points lie in the translated image of the square K, the
image of A will cover at most n− 1 nodes.

7.5.12. Apply a homothety with center at the origin and coefficient 1
2

to A, getting the figure B whose area is greater than n. It follows from
Blichfeldt’s theorem that B contains distinct points (x0, y0), . . . , (xn, yn),
for which all the differences xi−xj and yi− yj are integers. We can assume
that x0 ≥ x1 ≥ · · · ≥ xn and that among the points (xi, yi) for which
xi = x0, the maximum value of the second coordinate is y0. As in the proof
of Minkowski’s theorem, it can be shown that A contains distinct points
(0, 0), (x0 − xi, y0 − yi), (xi − x0, yi − y0).

7.5.14. It suffices to divide both sides of the inequality in Dirichlet’s
theorem by x.

Alternatively, you can solve this problem without using geometric con-
siderations: consider the fractional parts of the numbers α, 2α, . . . , sα and
divide the segment [0, 1] into s equal parts. There are two cases possible.

1. Each of the s segments contains exactly one of the numbers α,
2α, . . . , sα. Then for some n ≤ s the inequality {nα} < 1/s holds, and
the desired number has the form m/n, where m = [nα].

2. The fractional parts of the numbers n1α and n2α lie in one segment.
Then the desired number is m/n, where m = |[n1α]− [n2α]|, n = |n1 − n2|.
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6. Phase spaces (3) By A.Ya.Kanel-Belov

Informally, the phase space of a system is the set of all its possible states.
For example, the phase space for a system where a state is a real number

is a straight line. The phase space of the system of ordered pairs of real
numbers is the plane. If the coordinates are restricted to intervals, the
phase state is a rectangle.

The idea of phase space is indispensable for defining geometric proba-
bilities (see Section 2 of Chapter 6 and [Vas91]).

7.6.1. Konstantinov’s cart problem. Two nonintersecting (except at
endpoints) roads lead from A to B. It is known that cars (points) connected
by a rope of length shorter than 2L are able to travel from A to B along the
two different roads without breaking the rope. Will round carts of radius L
be able to pass if they travel towards each other along these two roads?

7.6.2. Decanting. Three containers have volumes of 6, 7, and 12 liters,
respectively. The two smaller containers are filled. Is it possible to pour 9
liters of liquid into the largest container?

7.6.3. External “billiards.” (a) Consider a square on a plane with a point
A1 lying outside the square at a distance a from the center of the square.
From this point a line is drawn, intersecting the square at a single point B1.
The starting point A1 is reflected symmetrically with respect to the point
B1, obtaining the point A2. From A2 we again draw a new line, intersecting
the square at the single point B2 �= B1 (assuming that such a line exists).
Reflect A2 with respect to B2 to obtain A3, and so on. Suppose that at
each step it is possible to draw a straight line to continue this process. Is
it possible that eventually the distance from An to the center of the square
exceeds 1 000 000 · a?

(b)∗ What will happen if instead of a square we consider an arbitrary
polygon?

7.6.4. Three pedestrians walk along straight roads on a plane, each at their
own constant speed. Prove that if their locations were collinear at any three
time moments, then the locations are always collinear.

7.6.5. In Moscow there are 7 high-rise buildings. A visiting mathematician
wants to find a point from which they are all visible in a given order (starting
with Moscow State University, going clockwise). Is this possible for any given
order?

7.6.6. N lines are marked in the plane, where no three intersect at one
point, no two are parallel, and any three of their intersection points either
do not lie on a straight line or lie on one of the marked lines. Call a line in
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the plane good if it does not pass through the intersection points of marked
lines. In how many different ways can one add a good line? We consider two
methods the same if one can be obtained from the other by continuously
moving a new straight line so that it remains good all the time.

7.6.7. On the unit sphere there is a curve (consisting of several arcs of
circles) of length less than π. Prove that there is a great circle that does not
intersect this curve.

7.6.8. On the unit sphere lies a curve (consisting of several arcs of circles)
of length greater than kπ. Prove that there is a great circle that crosses this
curve at least at k points.

7.6.9. We are given a polygon of unit area and also 1000 points on the plane.

Prove that you can move the polygon by a vector of length less than
√

1000
π

so that it does not cover any of the points.

7.6.10. In a unit square there is a piecewise linear path of length greater
than 1000. Prove that there is a horizontal or vertical line which intersects
this path at least at 500 points.

7. Linear variation (3)
By A.Ya.Kanel-Belov

The notion of linearity is central to the problems in this section.
A linear function is a function of the form f(x) = ax + b, where a and

b are real numbers.
Important properties of linear functions:
• a linear function either always increases or always decreases or remains

constant;
• a linear function reachs its maximal (minimal) values at the endpoints

of an interval.

7.7.1. The area of a triangle with vertices on the boundary of a parallelo-
gram does not exceed half the area of the parallelogram.

7.7.2. Prove that the area of the pentagon ABCDE is less than the sum of
the areas of the triangles ABC, BCD, CDE, DEA, EAB.

7.7.3. A circle contains n nonoverlapping triangles. What is the maximal
value of the ratio of the total area of the triangles to the area of the circle?

7.7.4. Let 0 < a0 < a1 < · · · < an. Prove that the expression

a0 + a1 cosx+ · · ·+ an cosnx
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(called a trigonometric polynomial) is equal to 0 for exactly n values of x
on the interval [0, π].

7.7.5. A crazy architect has n identical bricks. He wants to build an n-
level tower that will extend horizontally as far as possible. Each tower level
consists of exactly one horizontal brick. For each k = 1, . . . , n, the projection
of the center of gravity of the bricks of the tower that are located above the
kth level should fall on the kth-level brick. What will be the maximum
possible horizontal length of the entire tower?

Figure 12

7.7.6. Two travelers decided to visit all the cities of Russia. They started
independently of each other and, possibly, from different cities. The first
traveler, upon leaving one city, always goes to the farthest city which he has
not yet visited. The second traveler always chooses the nearest city. Prove
that after visiting all the cities, the route of the first traveler is not shorter
than the route of the second.

7.7.7. Define a rounding of a number to be the replacement of this number
by some integer (not necessarily the closest one). Given n numbers, prove
that they can be rounded so that the sum of any m of them differs from the
sum of their roundings by not more than (n+ 1)/4.

7.7.8. The numbers x1, x2, . . . , xn lie between 0 and 1 (possibly on an end-
point). Find the maximal possible value of the expression∑

1≤i<j≤n

|xi − xj |.

7.7.9. On the unit circle, n points a1, . . . , an are marked in counterclockwise
order so that the polygon formed by them contains the center of the circle.

(a) Prove that there are two points at a distance at least 4/n between
them.

(b) Prove that there is a point located at a distance at least 8/n2 from
the midpoint of the segment connecting its neighbors.
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7.7.10. Several points are marked on the plane, not all of them lying on the
same line. To each point a real number is assigned. Define the increment of
an arbitrary line containing at least two marked points to be the sum of all
the numbers assigned to the marked points on this line. Suppose that the
increment of every line is equal to 0. Prove that all the assigned numbers
are equal to 0.

7.7.11. Suppose that a1, . . . , ak are such that for all x, the following in-
equality holds: a1 cosx + a2 cos 2x + · · · + ak cos kx ≥ −1. Prove that
a1 + a2 + · · ·+ ak ≤ k.

7.7.12. There are 300 boots in the warehouse: 100 rubber, 100 canvas, 100
wool. Among those 300 boots, there are an equal number of left and right
boots. Prove that we can make 50 correct pairs (i.e., for which the right and
left boots are of the same material).

In conclusion, we suggest that you think about problems 7.8.9 and 7.8.10
in Section 8 of this chapter and consider the following difficult problem.

7.7.13.* The plane contains n > 2 nonparallel lines, not all of which go
through one point. Prove that among the polygons into which they divide
the plane, you can find n− 2 triangles (with no lines in the interior).

Suggestions, solutions, and answers

7.7.2 and 7.7.13. These problems are discussed in detail in [K-BK92].

8. Compose a square (3*) By M.B. Skopenkov, O.A.Malinov-
skaya, S.A.Dorichenko, and F.A. Sharov

This section is devoted to solving the following problem (in special cases):

Problem. When can a square be composed using rectangles similar to a
given one?

While solving this problem, we will see beautiful applications of algebra.
Namely, from systems of linear equations and polynomials with integer co-
efficients we come to combinatorial geometry. You will need to have some
knowledge of these topics (see, for example, [G]). It is also desirable to know
something about cutting problems; see, for example, [S87].

Our approach to solving these problems develops some ideas from the
book [Yag68].

Another approach to solving relies on a physical interpretation using
electrical circuits (although it is easier to not use this method). You can
learn about this physical interpretation and its application to the solution
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of the problem posed in [SPD,SMD]. A fascinating story about the history
of this approach can be found in the book [G].

Leading questions
“I have a thought!,” said Boa Constrictor, opening
its eyes. “A thought. And I am thinking it.”
“What is a thought?,” asked Monkey.
“It’s hard to say so right away. . . .”
“Wow!,” Monkey jumped up. “Oh, what a good
thought. And may I also think it a little?”

G.Oster, Grandma Boa

7.8.1.◦ Is it true that for any positive integers m and n you can compose a
square out of m× n rectangles?

7.8.2. A designer ordered frames for a square window. The projects (see
Fig. 13(A) and (B)) show how the glass should adjoin together and how
they should be oriented (short or long side up). Is it possible to make all
the glass in these two square windows to be similar rectangles?

(A) (B)

Figure 13. Window frame designs; see problem 7.8.2.

7.8.3. Is it possible to cut a square into three similar but noncongruent
rectangles?

7.8.4. Is it possible to cut a square into 5 squares?

7.8.5. All the shelves of the cabinet in Fig. 14(C), as well as all the scraps
from which the quilt is sewn in Fig. 14(D) are squares. Are the cabinet and
the quilt themselves square?
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(C) (D)

Figure 14. Cabinet and quilt; see problem 7.8.5.

7.8.6. Is it possible to tile the plane with pairwise distinct squares with
integer side lengths?

7.8.7. Is it possible to cut a square into rectangles with aspect ratio 2+
√
2?

Same question for 2−
√
2, for 3 + 2

√
2, and for 3− 2

√
2.

7.8.8. Can 1 +
√
2 be expressed as the sum of squares of numbers of the

form a+ b
√
2, where a and b are rational?

Definition. Consider a rectangular sheet of paper with a cutting into rect-
angles drawn on it. One can cut the rectangle along any line into two
rectangles, then perform this operation with each piece separately, and so
on. Such cuttings are called trivial. For example, the cuttings in Fig. 13 are
trivial, and those in Fig. 14 are nontrivial.

In the next four problems, first assume that the cuttings are trivial, and
then think about arbitrary cuttings. Hints for difficult problems will be
given.

7.8.9. What rectangles can be cut (trivially) into rectangles with one side
of length 1?

7.8.10. What rectangles can be cut (trivially) into squares?

7.8.11. Is it possible to cut a square (trivially) into rectangles with aspect
ratio

√
2? Same question for 1 +

√
2.
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By good numbers we mean all numbers that can be represented as x =
a+ b

√
2 with rational a and b.

7.8.12 (The main problem). For what good x can a square be cut (trivially)
into rectangles with aspect ratio x?

Rectangles from squares.

You road I enter upon and look around,
I believe you are not all that is here,

I believe that much unseen is also here.

Walt Whitman, Song of the Open Road

In this subsection, we outline a new version of the elementary solution
to problems 7.8.10 and 7.8.12. Below, the letters a, b, c, d (sometimes with
indices) denote rational numbers.

7.8.13. Can a 1 ×
√
2 rectangle be cut into squares with rational sides?

With sides that are either rational or have the form b
√
2? With sides that

are arbitrary good numbers? The same questions for a 1×(1+
√
2 ) rectangle

and for a 1× (2 +
√
2 ) rectangle.

To prove the impossibility of cutting, it is natural to consider the area
and its additivity : the area of the whole is equal to the sum of the areas of the
parts. It is unlikely that it will be possible to answer the question in problem
7.8.13 for the 1 × (2 +

√
2 ) rectangle without the following generalization

of the concept of area (we generalize the concept of area so that the area of
this rectangle becomes negative and area of squares remains nonnegative).

Definition. Let x be a real number. The x-area (also called the Hamel
area) of an (a+ b

√
2)× (c+d

√
2) rectangle is defined to be (a+ bx)(c+dx).

The number s̄ := a− b
√
2 is called conjugate to s = a+ b

√
2.

7.8.14. The usual area of a (a+b
√
2 )×(c+d

√
2 ) rectangle and the number

conjugate to it are possible x-areas of the rectangle. What is x in each case?

7.8.15. Find all rectangles of the form (a+ b
√
2 )× (c+ d

√
2 ) whose x-area

is nonnegative for all x.

7.8.16. Additivity of the x-area. If a rectangle is cut into a finite number
of rectangles whose sides are good numbers, then for any x ∈ R, the x-area
of the original rectangle is the sum of x-areas of the rectangles into which it
is cut.

Suggestion. Start with the case of a rectangle cut into two rectangles.
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7.8.17. Solve problems 7.8.10 and 7.8.12 for the special case where the sides
of all the squares and all the rectangles involved in the construction are good
numbers (cutting is not necessarily trivial).

To solve problems 7.8.10 and 7.8.12 in the general case, the definition
of x-area is no longer helpful; after all, it is defined only for good numbers,
and now squares with any side may occur.

In the next three problems, we suppose that the rectangle s0 × t0 is cut
into the rectangles s1 × t1, s2 × t2, . . . , sN × tN , and s0 and t0 are incom-
mensurable (i.e., the ratio s0/t0 is irrational).

7.8.18. Denote

P = {s0, t0, s1, t1, . . . , sN , tN}.
Then you can choose numbers e1, e2, . . . , en ∈ P , so that any number p ∈ P
is uniquely represented as

p = as0 + bt0 + a1e1 + a2e2 + · · ·+ anen.

Suggestion. Begin with the example shown in Fig. 15.

1

2 +
√
2

1/3×
√
3

2/3×
√
3

1×(2+
√
2−

√
3)

Figure 15. Toward constructing a basis.

Fix a set of numbers s0, t0, e1, e2, . . . , en from problem 7.8.18 above and
call it a basis.

Definition. Let y be a real number. We define the y-area of a rectangle
with sides

as0 + bt0 + a1e1 + a2e2 + · · ·+ anen

and

cs0 + dt0 + c1e1 + c2e2 + · · ·+ cnen

to be (a+ by)(c+ dy).

Note that for y = x and good incommensurable s0, t0, this definition is
not always equivalent to the definition of the x-area given earlier!

7.8.19. Calculate the y-area of the initial s0×t0 rectangle. Is it nonnegative
for all y?

7.8.20. Prove that for any y, the y-area of the initial s0 × t0 rectangle is
equal to the sum of the y-areas of the rectangles into which it is cut.
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7.8.21. Dehn’s theorem. If a rectangle can be cut into squares (not nec-
essarily congruent), then the ratio of its sides is rational.

7.8.22. If the 1× 1 square is cut into rectangles such that the aspect ratio
of each of them is a good number, then the lengths of sides of all rectangles
are good numbers.

From cutting to roots of polynomials

Here is the test of wisdom,
Wisdom is not finally tested in schools. . . .

Walt Whitman, Song of the Open Road

7.8.23. A rectangle is cut into finitely many rectangles with aspect ratio r.
Prove that the aspect ratio of the large rectangle is P (r) : Q(r), where P (x)
and Q(x) are polynomials with integer coefficients.

7.8.24. These polynomials can be chosen so that

P (−x)/Q(−x) = −P (x)/Q(x) for all x

and

P (x)/Q(x) > 0 for all x > 0.

7.8.25. From several rectangles with aspect ratio r a square is assembled.
Prove that r is a root of a nonzero polynomial with integer coefficients.

What’s next
FAUST:

Wohin soll es nun gehn?

MEPHISTOPHELES:

Wohin es dir gefällt.
Wir sehn die kleine, dann die große Welt.
Mit welcher Freude, welchem Nutzen
Wirst du den Cursum durchschmarutzen!

Goethe, Faust

Faust:
Where will we go, then?

Mephistopheles:
Where you please.

The little world, and then the great, we’ll see.
With what profit and delight,
This term, you’ll be a parasite!

Goethe, Faust
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But what can be said in the case of arbitrary r, not necessarily a good
one? We give the answer here, without proof (for a proof see [PraSko]).

Freiling–Laczkovich–Rinne–Szekeres theorem (1994). For r > 0, the
following three conditions are equivalent.

1. A square can be cut into rectangles with the aspect ratio r.
2. For some positive rational numbers ci the following equality holds:

c1r +
1

c2r +
1

c3r + · · ·+
1

cnr

= 1.

3. The number r is the root of a nonzero polynomial with integer coeffi-
cients such that all its complex roots have a positive real part.

Suggestions, solutions, and answers

7.8.1. Of course, if the ratio of the sides of the rectangle is m : n, where m
and n are integers, then a square can be constructed with mn such rectan-
gles; see Fig. 17. In our figure, the rectangles are congruent and are arranged
side by side. It is clear that with this method we will be able to construct
the square only if the aspect ratio is rational.

7.8.2. Answer in case (A): impossible.
Solution. Assume that three similar rectangles are located as in Fig. 18;

the top one is horizontal, and the two remaining are vertical.
Since the bottom rectangles are arranged vertically, their width is equal

to half the side of the square. Their length is more than half, but less than
the whole side length of the square. The width is obviously more than half
the length.

The width of the top rectangle and the length of the bottom one together
give the length of a side of the square. Therefore, the width of the top
rectangle is obviously less than half the length. Therefore these rectangles
cannot be similar.

Answer in case (B): possible.

Figure 16. Cutting into 5 rectangles.
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Solution (from [SMD]). Consider the partition into 5 similar rectangles
in Fig. 16 where the two top ones are horizontal and the remaining three are
vertical. Since the top rectangles are similar and lie horizontally, they are
equal. Let their sizes be 1 × r; then the side of the square is 2r. Since the
bottom rectangles are similar to the top ones and are arranged vertically,

we obtain the equation 32r−1
r = 2r. Solving it, we find the two roots 3±

√
3

2 .
For each of these roots, it is easy to construct the desired cutting.

m

n

Figure 17 Figure 18

7.8.3. Answer : yes.
Solution. Consider a k × 1 rectangle, where we will specify k later. We

will call this rectangle standard. Attach a k × k2 rectangle to it, as shown
in Fig. 19. Note that this rectangle is similar to the standard one with
similarity coefficient k. The resulting rectangle has a side of length 1 + k2.
Attach a rectangle similar to the standard one along the top side. Then the
lateral side has length k(1+k2) = k3+k. The resulting rectangle is a square
if 1 + k2 = k3 + 2k.

Consider the difference f(k) between the length of two sides of the re-
sulting rectangle; i.e., f(k) = k3 − k2 + 2k − 1. For k = 0 it is equal to −1,
and for k = 1 it is equal to +1. By the intermediate value theorem, f(k)
vanishes at some point in the interval (0, 1). This is the required number k.

Now it is easy to prove the existence of the desired cutting. The side
lengths of all rectangles are already expressed in terms of k, and from the
equality f(k) = 0 it follows that the resulting rectangle is a square. No
rectangles in the cut are congruent, since their largest sides are not equal:
k < 1 < 1 + k2.

Figure 19 Figure 20
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7.8.4. Answer : no (this is a problem from the Moscow Mathematical
Olympiad).

Suggestion. See Problem 3 in [SPD].
Solution. It can be foud in the book [Yag68].
7.8.5. Answers: C: no; D: yes.
Suggestion for C (from [SPD]). Enumerate the squares (shelves) as

shown in Fig. 21. We assume that the horizontal side of the rectangle (cab-
inet) is 1, and we denote the vertical side (excluding legs) by x. The side of
square number k is denoted by xk.

1

2

3 4

5

6

7
8

9

Figure 21. Cutting a rectangle into 9 unequal squares.

The left side of the rectangle is made of sides of squares 2, 3, and 8,
whence x = x2 + x3 + x8. Squares 1 and 4 are adjacent to the right side of
square 3, so x3 = x1 + x4. Similarly, x6 + x8 = x7 and x1 + x2 = x5 + x6,
x4 + x5 = x9. We do not write down the condition for the right side of the
rectangle since it follows from the previous ones (obtained by adding all the
equalities).

Considering the horizontal sides, we get 1 = x3 + x4 + x9, x4 = x1 + x5,
x1 + x3 = x2, x5 + x9 = x6 + x7, x2 + x6 = x8.

Solving the resulting system of linear equations (for a solution method,
see [G]), we find

x = 33/32, x3 = 9/32, x7 = 9/16, x1 = 1/32, x4 = 1/4,

x9 = 15/32, x5 = 7/32, x2 = 5/16, x8 = 7/16, x6 = 1/8.

In particular, x �= 1. In our example, the rectangle was cut into distinct
squares.

7.8.6. Answer : yes.
Solution (from [SPD, Solution of Problem 1]). Take the example shown

in Fig. 21, where the sides of all squares are integer; for example, you can
take a partition in which a 33× 32 rectangle is cut into squares (the length
of the vertical side is indicated first, then the horizontal one). We can tile
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the plane with this construction. Place a 33 × 33 square on the left of our
rectangle, then place a 65 × 65 square on the resulting 33 × 65 rectangle,
then place a 98 × 98 square on the 98 × 65 rectangle, and then we place a
163 × 163 square on the bottom, and so on. As a result, we tile the plane
“with a spiral,” and each new square has a side equal to the larger side of
the rectangle to which it is attached. Therefore, it is larger in size than all
previous squares.

7.8.7. Answer : it is possible.
Solution. See Fig. 22.
Path to solution. Consider a rectangle with sides of length 1 and a+b

√
2.

Rectangles of size k× k(a+ b
√
2) have the same aspect ratio. If for given a

and b we can find two rectangles of this kind with the additional condition
that in each of them one side has integer length and the sum of the two
remaining lengths is an integer, then the problem is solved. From rectangles
with integer sides, you can assemble a square. To answer the first question
of the problem, we take rectangles of sizes 1 × (2 +

√
2) and (2 −

√
2) × 2

and assemble a square as shown in Fig. 22(A). Similarly, for the remaining
questions, rectangles with sides 1, 2 −

√
2, and 2 +

√
2, 2 work (see Fig.

22(B)) and with sides 1 × (3 + 2
√
2) and (3 − 2

√
2) × 1. The partitions in

the last two cases coincide (see Fig. 22(C)).

(A) (B) (C), (D)

Figure 22

7.8.8. Answer : no.
Hint. If the number is a sum of squares, then the conjugate to it also

has this property.
7.8.9. Answer : rectangles for which one of the sides has integer length

(De Bruijn’s theorem).
Solution. See [TF, Theorem 4 on p. 25].
7.8.10. Answer : rectangles with a rational aspect ratio (Dehn’s theo-

rem).
Suggestion. One path to the proof was outlined in problems 7.8.13–

7.8.21.
Solution for the case of trivial partitions (written by A. Balakin). Let

us prove that if a rectangle can be trivially cut into squares, then the ratio
of its sides is rational.
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Take an arbitrary trivial cutting of a rectangle into squares. First, we
divided our rectangle into two. At the next step, we divided each of the
newly formed pieces into two, or leave it as is, etc. At the end, we obtained
a set of squares, into which our original rectangle was cut.

Now we take this set of squares and begin to perform the inverse process;
i.e., we glue at each step a certain number of pairs of rectangles along the
side so that at the end the original one is obtained.

Let us prove that if two rectangles with rational aspect ratios are glued
along the side, then the aspect ratio of the resulting rectangle is also rational.

Indeed, suppose we glue them along the side of length a. Then, for one
of them, the lengths of the sides are a and pa, and for the second one they
are a and qa, where p and q are rational. The glued rectangle will have sides
a and pa+ qa, and therefore, the rational aspect ratio is p+ q.

The squares we start with have the aspect ratio 1. This is a rational
number. Therefore, each of the obtained rectangles and, therefore, the orig-
inal one, has a rational aspect ratio.

7.8.11. Answer : for
√
2 the answer is no, and for 1 +

√
2 the answer is

no.
Hint for

√
2. Reduce to problem 7.8.10 using a scaling in one direction

with the coefficient 1/
√
2; see [SPD, solution of problem 7].

Solution for 1 +
√
2. It follows from problem 7.8.12.

7.8.12. Answer : for x = a + b
√
2 such that a2 > 2b2, where a, b are

rational numbers.

Figure 23

Suggestion. See Fig. 23. Use problems 7.8.22 and 7.8.17. For a more
general discussion, see [Sh].

For a solution using a physical interpretation, see [SMD] (but the non-
physics solution is easier).

7.8.13. Answer : no (for all questions).
Solution (L. Aliyeva). For the first question, suppose that a 1 ×

√
2

rectangle is cut into squares with rational sides. The sum of the lengths of
the sides of the squares adjacent to the side of the rectangle with length of√
2 should be equal to

√
2. Therefore, such a cutting is impossible, since the

sum of rational numbers cannot be irrational.
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Now we answer the second question. Suppose that the 1×
√
2 rectangle is

cut into squares with sides of the form a or b
√
2. The area of the rectangle is√

2. The areas of the squares are either a2 or 2b2. The area of the rectangle
is equal to the sum of the areas of squares. We get a contradiction since
an irrational number cannot be equal to the sum of rational ones. Here we
used the additivity of the area.

Answering the third question, suppose that a 1 ×
√
2 rectangle is cut

into n squares with sides a1 + b1
√
2, a2 + b2

√
2, . . . , an + bn

√
2. The areas

of the squares are a21+2a1b1
√
2+2b21, . . . , a

2
n+2anbn

√
2+2b2n, respectively.

Denote A := a21 + · · ·+ a2n, B := b21 + · · ·+ b2n, C := a1b1 + · · ·+ anbn. Then
A, B, C are rational numbers. The area of the rectangle is the sum of the
areas of the squares, so

√
2 = A+2C

√
2+2B. Thus

√
2 · (1−2C) = A+2B.

If C = 1/2, then A = B = 0 and a1 = · · · = an = b1 = · · · = bn = 0, which is
impossible. Therefore, both sides of the equation can be divided by 1− 2C.
Thus,

√
2 = (A+ 2B)/(1− 2C). We get a contradiction since an irrational

number cannot be equal to the quotient of two rational ones. Here we again
used the additivity of the area.

The answer to the fourth question follows from problem 7.8.8, and the
answer to the fifth question follows from problem 7.8.17.

The proposed method for proving the impossibility of a cutting is to find
an x such that the x-area of the cut figure is negative, but the x-area of all
figures into which we cut it is nonnegative. Then the additivity of x-area
(problem 7.8.16) produces a contradiction, so we conclude that the cutting
is impossible.

7.8.16. It is easy to verify that the sum of the x-area of two rectangles
with good sides having a common side is equal to the x-area of their union.
Indeed, let a rectangle with x-area S consist of two rectangles with x-areas
S1 and S2 (see Fig. 24, left). Then

S1 + S2 = (a+ bx)(c1 + d1x) + (a+ bx)(c2 + d2x)

= (a+ bx)((c1 + c2) + (d1 + d2)x) = S.

S1 S2
a+b

√
2

c1+d1
√
2 c2+d2

√
2

III

II

I

Figure 24. Proof of additivity; see solution to problem 7.8.16.

Now suppose that the number of rectangles in the cutting is greater
than two. Extend each cut as shown in Fig. 24 on the right. Then each
new rectangle will also have good side lengths. Consider horizontal layers
of rectangles sequentially attached to each other along the common side of

Licensed to American Mathematical Society. License or copyright restrictions may apply to redistribution.



182 7. COMBINATORIAL GEOMETRY

rectangles (I, II, III in Fig. 24 on the right). Using the already proved
additivity of x-area for two rectangles with a common side, it is easy to
prove by induction that the x-area of any such layer is equal to the sum of
x-areas of the rectangles in this layer. Now we attach these layers to each
other and use the additivity of x-areas of a series of rectangles. We conclude
that the x-area of the original rectangle is equal to the sum of x-areas of
the horizontal layers. This sum is equal to the sum of the x-areas of all the
rectangles in the cutting.

7.8.17. In problem 7.8.10 it suffices to prove the impossibility of cutting
rectangles of the form 1 ×

(
c+ d

√
2
)
, d �= 0, into squares. Let such a

rectangle be cut into squares with good sides. Its x-area is c + dx. Since
d �= 0, this x-area is negative for some x. At the same time, the x-area
of any square with side a + b

√
2 is (a + bx)2, which is nonnegative for any

x. We get a contradiction since the sum of nonnegative numbers cannot be
negative.

In problem 7.8.12, consider a number conjugate to the ordinary area.
7.8.18. We write consecutively the lengths of the sides of the rectangles

in the cutting, starting with s0 and t0. For example, for the cutting in
Fig. 15 we get the following sequence:

s0 = 1, t0 = 2 +
√
2, s1 = 1/3, t1 =

√
3,

s2 = 2/3, t2 =
√
3, s3 = 1, t3 = 2 +

√
2−

√
3.

Next, in this sequence we underline the numbers that cannot be represented
as a linear combination of the previous ones with rational coefficients (we
will explain what this means). For example, we underline s0 (there are
no previous numbers at all). We also underline the number t0, since it is
incommensurable with s0 and, therefore, it cannot be represented in the
form as0. Then, if s1 can represented in the form as0 + bt0, then s1 is not
underlined, but otherwise it is underlined. Similarly, if t1 can be represented
in the form as0 + bt0 + a1s1, then t1 is not underlined, and if it is not, it is
underlined, and so on. In our example, we get the following sequence:

1, 2 +
√
2, 1/3,

√
3, 2/3,

√
3, 1, 2 +

√
2−

√
3.

The set of all underlined numbers s0, t0, e1, e2, . . . , en will be the basis.
Comment. When constructing the basis, we never used the fact that the

numbers that we originally wrote are the lengths of the sides of rectangles
in a cutting; that is, a basis can be built for any set of numbers.

7.8.19. Answer : y.
7.8.20. The proof repeats the solution to problem 7.8.16 with the only

difference that the x-area should be replaced with the y-area and all numbers
of the form a+ b

√
2 should be replaced with the corresponding numbers of

the form as0 + bt0 + a1e1 + a2e2 + · · ·+ anen (including those in Fig. 24).
7.8.21. Let an s0× t0 rectangle be cut into squares, with s0 and t0 being

incommensurable. By definition, the y-area of this rectangle is y. Choose
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y < 0. The side of any square in the cutting is of the form as0 + bt0 +
a1e1 + a2e2 + · · · + anen. The y-area of this square is (a + by)2, which is
nonnegative for any y. For y < 0, we have a contradiction: the sum of
nonnegative numbers cannot be negative.

Comment. Note that y-area is not a trick, but an example of a “signed
measure”, which is an important concept in mathematics. For other proofs
of Dehn’s theorem, see [SPD] or [Yag68, § 3].

7.8.23 and 7.8.25. See article [SMD].

9. Is it possible to make a cube from a tetrahedron?2 (3)
By M.V. Prasolov and M.B. Skopenkov

This section is devoted to the proof of the following statement.

Dehn’s theorem (Hilbert’s third problem). A regular tetrahedron cannot
be cut into finitely many convex polytopes that can be assembled into a cube.

Surprisingly, one can prove this theorem by investigating only cuttings
of rectangles, not polytopes! This section develops a new version of the
elementary proof given in [Fuks] based on this idea. To solve these problems
the reader should be familiar with Section 8.3 in [ZS] and Section 4 in
Chapter 4 in the present book

7.9.1. (a) Cut a 1 × 2 × 4 rectangular box into two convex polytopes that
make up a cube.

(b) Cut a cube into 6 congruent pyramids.
(c) Cut a cube into 6 congruent tetrahedra.
(d)∗ Cut a 1× 2× 3 rectangular box into several convex polytopes that

make up a cube.

Reduction to a plane geometry problem

Let M be a convex polytope. Enumerate its edges 1, 2, . . . , n, and let
l1, l2, . . . , ln be the corresponding lengths and α1, α2, . . . , αn the correspond-
ing dihedral angles. To M we associate a set of rectangles of size li × αi on
the plane where li is the horizontal size and αi is the vertical size (see Fig.
25).

Two such sets are called rectangular scissor-congruent if the rectangles
of one set can be cut into smaller rectangles from which rectangles of the
second set can be assembled using only parallel translations (see Fig. 26).
We say that two polytopes are scissor-congruent if one of them can be cut

2The authors are grateful to S. Dorichenko, A. Zaslavsky, K. Kokhas, B. Frenkin,
G. Chelnokov, and A. Shapovalov for useful discussions.
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Figure 25

Figure 26

into several smaller convex polytopes, from which you can assemble the
second polytope, rotating parts freely.

7.9.2.◦ Consider the set of rectangles corresponding to the regular tetra-
hedron with side a and dihedral angles θ between faces. To which of the
following rectangles is this set rectangular scissor-congruent?

(1) 4a× θ; (2) 4a× 4θ; (3) 6a× θ; (4) 6a× 6θ.

The following lemma reduces the question of scissor-congruence of poly-
topes to a two-dimensional problem.

Reduction lemma. If two polytopes are scissor-congruent, then their cor-
responding sets of rectangles will be rectangular scissor-congruent after pos-
sibly adding rectangles of type l × π to these sets.

The proof of this lemma is contained in problem 7.9.3.

7.9.3. Suppose that a convex polytope M is cut into several convex poly-
topes M1,M2, . . . ,Mk.

(a) Let e be an edge of the polytope M , l the length of e, and α the
dihedral angle at e. Let l1, l2, . . . , ln be the lengths of all edges of the
polytopes Mi lying on the edge e, and let α1, α2, . . . , αn denote the di-
hedral angles at these edges. Then the l × α rectangle can be cut into the
l1 × α1, . . . , ln × αn rectangles.

(b) Let � be a line in space that does not contain the edges of M . Let
l1, l2, . . . , ln be the lengths of all the edges of the polytopesMi lying on �, and
let α1, α2, . . . , αn be the dihedral angles at the corresponding edges. Then
the set of l1 × α1, . . . , ln × αn rectangles is rectangular scissor-congruent to
an l × π rectangle.

(c) Prove the reduction lemma.
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To prove that the regular tetrahedron and cube of the same volume are
not scissor-congruent, we will show that the corresponding sets of rectangles
are not rectangular scissor-congruent. To do this, we need the following
result.

(d) The dihedral angle θ of the edge of a regular tetrahedron is incom-
mensurable with π; i.e., the ratio θ/π is irrational.

Thus, the proof of Dehn’s theorem is reduced to the following statement.

Incommensurability lemma. If θ and π are incommensurable (i.e., θ/π
is irrational), then for any a and b, the a × θ and b × π rectangles are not
rectangular scissor-congruent. Moreover, they will remain not rectangular
scissor-congruent after adding any rectangles of the form l × π.

Solution of the plane geometry problem

In this subsection we prove the incommensurability lemma. The proof is
contained in problem 7.9.4.

Let a set of rectangles be given. One can get a new set by cuttting
one of these rectangles into two new ones. Such the operation is called an
elementary transformation of the set.

7.9.4. (a) If two sets of rectangles are rectangular scissor-congruent, then
one of them can be obtained from the other by a sequence of elementary
transformations, transformations inverse to them, and parallel translations.

Let θ and π be incommensurable. Suppose, on the contrary, that from
the rectangle a × θ we get the rectangle b× π by a sequence of elementary
transformations, transformations inverse to them, and parallel translations
of parts. Let θ, π, y1, y2, y3, . . . , yN be the lengths of the vertical sides of
all rectangles that occurred in this sequence of elementary transformations.
Denote

Y := {θ, π, y1, . . . , yN}.
(b) There exist numbers {y′1, y′2, . . . , y′n} ⊂ Y such that any number

y ∈ Y is uniquely represented in the form

(*) y = pθ + qπ + p1y
′
1 + p2y

′
2 + · · ·+ pny

′
n,

for some rational numbers p, q, p1, p2, . . . , pn.
Fix a set of such numbers θ, π, y′1, . . . , y

′
n (called the basis). For each

y ∈ Y let f(y) := p, where p is the coefficient at θ in (*)
If M is a set of x1 × y1, x2 × y2, . . . , xn × yn rectangles, where yi ∈ Y ,

then define

J(M) := x1f(y1) + x2f(y2) + · · ·+ xnf(yn).

(c) The value of J(M) does not change under elementary transformations
of M .

(d) Prove the incommensurability lemma.
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(e) Prove Dehn’s theorem: the regular tetrahedron and cube are not
scissors-congruent.

This method allows us to establish other interesting facts about cutting
of figures.

7.9.5. (a) Prove another theorem due to Dehn: if an a× b rectangle can be
cut into squares, then a/b is rational (this was problem 7.8.21).

(b) Prove that a regular tetrahedron cannot be cut into two or more
regular tetrahedra.

Another approach to solving problem 7.9.5(a) is outlined in Section 8 of
this chapter; see 7.8.13–7.8.21.

Conclusion: complete invariants

The set of rectangles that correspond to a polytope is called the Dehn in-
variant.3 Surprisingly, the statement which, in a sense, is reciprocal to the
reduction lemma is also true.

If two polytopes have equal volumes and their corresponding sets of rec-
tangles become rectangular scissor-congruent after adding rectangles of the
form l × π, then the two original polytopes are scissor-congruent.

The rectangular scissor-congruent invariant J(M) of sets of rectangles in
the plane which we constructed in problem 7.9.4 is not a complete invariant.
Using similar methods, however, a complete invariant can be constructed (it
is called the Kenyon invariant ; see [Ken]).

Suggestions, solutions, and answers

7.9.1. (a) Cut the original parallelepiped into two 1× 2× 2 parallelepipeds.
(b) The vertices of the required pyramids are in the center of the cube;

the bases are the faces of the cube.
(c) Geometric solution. The cube ABCDA′B′C ′D′ is cut into 6 tetrahe-

dra AC ′BB′, AC ′B′A′, AC ′A′D′, AC ′D′D, AC ′DC, AC ′CB by six planes
passing through a pair of opposing vertices A,C ′ of the cube and one of the
remaining vertices. The congruence of these tetrahedra follow from symme-
try considerations (e.g., tetrahedron AC ′BB′ maps to tetrahedron AC ′A′D′

when you turn the cube by 120◦ about the line AC ′).
Algebraic solution. The cube 0 ≤ x, y, z ≤ 1 can be cut into 6 tetrahe-

drons:

0 ≤ x ≤ y ≤ z ≤ 1, 0 ≤ x ≤ z ≤ y ≤ 1, 0 ≤ y ≤ x ≤ z ≤ 1,

0 ≤ y ≤ z ≤ x ≤ 1, 0 ≤ z ≤ x ≤ y ≤ 1, 0 ≤ z ≤ y ≤ x ≤ 1.

In fact, we described the same cutting in two different ways.

3This definition is equivalent to the generally accepted algebraic definition in [Fuks].
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7.9.3. (a) Solution. Let ei be the edge of some polytope Mj lying on
the edge e. Consider the cylinder C with axis e and radius 1 (its bases pass
through the endpoints of e). The dihedral angle at e cuts out a “ribbon” L
on the surface of the cylinder of length l (along the direction of the cylinder
axis) and angular “width” α (in the lateral surface of the cylinder). On the
surface of a smaller cylinder Ci with axis ei and radius 1, the dihedral angle
of the edge ei of Mj cuts out a ribbon Li of length li and width αi. Since
the polyhedra in the cutting do not intersect and cover the entire polytope
M , the ribbon L is sliced into smaller ribbons L1, L2, . . . , Ln. It remains
to map the cylinder to the plane, i.e., to establish a natural correspondence
between the points of the ribbon L and the rectangle l × α, and we get the
cutting of this rectangle into rectangles li × αi.

(b) Solution. Any point on a line � belonging to the polytope M is either
an interior point of some Mi or lies on the boundary of several polytopes in
the cutting. Let e1, e2, . . . , en denote all the edges of the polytopes of the
partition that lie on � (denote their lengths by l1, l2, . . . , ln). The union of all
the edges e1, e2, . . . , en forms a family of line segments on �. Without loss of
generality we can assume that e1, e2, . . . , es are all the edges lying on one of
the segments I of this family. Let f1, f2, . . . , fm be all possible intersections
of this segment I with the interiors of the faces of the polytopes Mj .

Let us prove that the set of e1 × α1, e2 × α2, . . . , es × αs rectangles is
rectangular scissor-congruent to some rectangle of the form l × π. Then,
performing the same operation for all rectangles of width π obtained from
all the segments in our family, we obtain the required family.

Let C, Ci, Cj be cylinders of radius 1 with axes I, ei, fj , respectively.
The dihedral angle at the edge ei in the corresponding polytope cuts out an
li × αi ribbon on the surface of the cylinder Ci. The plane of the face of
Mj that contains the segment fj , slices two fj × π ribbons on Cj ; take the
ribbon lying in the same half-space as Mj . Since the polytopes are disjoint
and cover M , the cylinder C is cut into li × αi and fj × π ribbons.

Extend all the cuts perpendicular to the axis of the cylinder, cutting C
into rings. Throw out from all the rings the ribbons of width π (parts of the
“extra” ribbons of length fj), and cut each remaining ring into two ribbons
of width π. From these ribbons, we assemble a ribbon of width π. It is a
rectangle of width π cut into l1×α1, l2×α2, . . . , ls×αs rectangles obtained
by vertical and horizontal cuts and parallel translations.

(c) Solution. Suppose M and M ′ are scissor-congruent. Let M1,M2,
. . . ,Mn be a set of convex polytopes from which one can assemble both M
and M ′. By problems 7.9.3(a) and (b), the set of rectangles corresponding
to the polyhedron M , combined with some set of rectangles of width π, is
rectangular scissor-congruent to the union of the sets of rectangles cor-
responding to the polytopes M1,M2, . . . ,Mn. The same is true for M ′.
However, it is obvious that the relation of rectangular scissor-congruence is
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transitive and symmetrical. This means that the sets of rectangles corre-
sponding to the polytopes M and M ′ become equal after adding to them
suitable rectangles of width π, as required.

(d) Solution. Consider the tetrahedron ABCD. Let M be the midpoint
of CD. Since the segments AM and BM are perpendicular to CD, the
angle AMB is the dihedral angle at the edge CD of the tetrahedron. Let
the edge length of a tetrahedron be a. Since the faces of the tetrahedron

are equilateral triangles, AM = BM =
√
3
2 a. The law of cosines applied to

triangle AMB yields

cos θ =
AM2 +BM2 −AB2

2AM ·BM
=

1

3
.

We now prove by induction that cosnθ = an/3
n, where an is an integer

not divisible by 3. The base cases n = 0 and n = 1 are obvious.
Next, let n ≥ 1. By the formula for the sum of cosines we have

cos(n+ 1)θ + cos(n− 1)θ = 2 cosnθ cos θ,

so that

cos(n+ 1)θ = 2 cosnθ cos θ − cos(n− 1)θ =
2an − 3an−1

3n+1
.

By the induction hypothesis, an is not divisible by 3. Therefore, an+1 =
2an − 3an−1 is not divisible by 3.

Therefore, cosnθ �= 1 for any integer n, so nθ �= 2πm for any integers n
and m, which implies that θ �= m

n · 2π. The statement is proved.
7.9.4. (a) Solution. Let the first set be cut into rectangles and then the

pieces be moved to assemble the second set. Make additional cuts: continue
all vertical cuts in the cutting of the first set and all horizontal cuts in the
cutting of the second set. The resulting cutting can be performed by a
sequence of elementary transformations and inverses of them: first, cut the
first set sequentially along all vertical cuts, and then cut each of the resulting
vertical strips by horizontal cuts. Now collect the horizontal strips of the
partition of the second set, and then assemble them into the rectangles of
the second set.

(b) Suggestion. See section “A quite good proof of Lemma 2” in [Fuks]
or the solution to problem 7.8.18.

(c) Solution. Cut an x × y rectangle into two rectangles x1 × y, x2 × y
or x× y1, x× y2.

The case where the cut is vertical is obvious; indeed, the invariant J(M)
has changed by

x1f(y) + x2f(y)− xf(y) = 0;

i.e., it does not change.
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Suppose the cut is horizontal. Then the invariant changes by xf(y1) +
xf(y2)− xf(y). Let us prove that this value is equal to zero. Let

y1 = f(y1)θ + q1π + μ1y
′
1 + μ2y

′
2 + · · ·+ μny

′
n,

y2 = f(y2)θ + q2π + ξ1y
′
1 + ξ2y

′
2 + · · ·+ ξny

′
n.

Then

y = y1 + y2 = (f(y1) + f(y2))θ + (q1 + q2)π

+ (μ1 + ξ1)y
′
1 + (μ2 + ξ2)y

′
2 + · · ·+ (μn + ξn)y

′
n.

Thus f(y) = f(y1) + f(y2), and our invariant has not changed.
(d) Solution. Since the invariant J(M) is preserved under elemen-

tary transformations, part (a) above implies that the invariants of any two
rectangular scissor-congruent sets are equal. However, the invariant for the
set (a × θ, l × π) is equal to a, and for b × π it is equal to zero. Therefore,
these sets are not rectangular scissor-congruent.

(e) Solution. Assume that a regular tetrahedron with an edge a and a
cube with an edge b are scissor-congruent. Then, by the reduction lemma,
the set consisting of six a×θ rectangles and one l1×π rectangle is rectangular
scissor-congruent to the set of eight b× π

2 rectangles and one l2×π rectangle.
However, the first set is rectangular scissor-congruent to the set 6a×θ, l1×π,

and the second is rectangular scissor-congruent to the set
(

b
2 + l2

)
× π.

Therefore, the last two sets are rectangular scissor-congruent. However, the
incommensurability lemma and problem 7.9.3(d) imply that they are not
rectangular scissor-congruent, a contradiction.

7.9.5. (a) Solution. If an a×b rectangle can be cut into squares, then it is
rectangular scissor-congruent to a b×a rectangle (since the square transforms
into itself when rotated through 90◦). By the incommensurability lemma, a

b
is rational.

(b) Algebraic solution. Assume that the tetrahedron with edge of length
a can be cut into two or more tetrahedra. Let a1, a2, . . . , an be the edges of
these tetrahedra. By problems 7.9.3(a) and (b) (similarly to the reduction
lemma), the set 6a1×θ, 6a2×θ, . . . , 6an×θ is rectangular scissor-congruent
to the set 6a× θ, l × π. By problems 7.9.4(a) and (c) we have

a1 + a2 + · · ·+ an = a.

The equality of volumes implies

a31 + a32 + · · ·+ a3n = a3.

Raising the first equality to the third power we get

a31 + a32 + · · ·+ a3n +A = a3,

where A > 0, and we arrive at a contradiction with the second equality.
Geometric solution. Suppose that the tetrahedron can be cut into two

or more tetrahedra. The face of the original tetrahedron cannot be a face
of any of the tetrahedra into which it is cut. Hence, the edge of one of the
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smaller tetrahedra entirely lies on the face of the bigger one. In this edge,
several dihedral angles equal to θ meet, and their sum is equal to π. This
contradicts problem 7.9.3(d).
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Approximation, 165
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Bernoulli trials, 117
Bottleneck, 42

Circle inscribed, 43
Class precomplete, 93
Code, 84

error correcting, 84
Hamming, 86

Coloring, 54
Complexity, 95
Conditions

boundary, 122
of equilibrium, 123

Conductance, 122
of a tree, 128

Construction
by induction, 24
gradual, 42

Cube, 183
Cube Boolean, 86, 87
Cutting, 170, 183
Cycle, 36

nonself-intersecting, 36

Degree
of vertex, 36

Density, 26
Diameter of the graph, 36

Edge, 36
Electrical circuit, 122, 170
Evaluation, 56, 61
Expectation, 113

Failure, 117
Figure

bounded, 162

measurable, 162
simple, 161

Formula
Bayes’s, 110
full probability, 110
Pick, 148

Function
Euler, 6
linear, 168
of the algebra of logic, 93

Game
joke, 72
on outstripping, 72
with imperfect information, 76
with perfect information, 76

Graph, 36
connected, 36

Independence, 108
Induction, 76
Inequality

Bonferroni, 8
Chebyshev, 114

Invariant, 60, 71
complete, 56, 186
Dehn, 56, 186
Kenyon, 186

Lattice
integer, 147, 163

Lattice point, 163
Law

of conservation of energy, 127
of large numbers, 118

Leap, 147
little-o, 97

Mass function, 112
Measure, 26, 183

σ-additive, 26
additive, 26
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irrational, 165
of successes, 117

Order lexicographic, 65
Orientation, 55

Palindrome, 42
Parity, 53, 72, 154
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trivial, 172
Passing the move, 74
Path, 36

nonself-intersecting, 36
Period, 18
Periodicity, 18, 20
Phase space, 167
Point

interior, 161
Polarity, 149
Polygon, 147

dual, 149
Polyhedra

scissor-congruent, 184
Polynomial

trigonometric, 169
Zhegalkin, 91

Polytope, 183
Position

equilibrium, 123
losing, 79
winning, 79

Power of circuits, 127
Preperiod, 18
Principle

extremal, 16, 141
inclusion-exclusion, 7
maximum, 124
of cutting and shorting, 127
pigeonhole, 13, 161

continuous, 13
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generalized, 13
geometric, 162
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variational, 127

Probability, 26, 41, 103
conditional, 109
geometric, 107
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of return, 123, 126
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Hilbert’s Third, 183

Progression

arithmetic, 22

Random variable, 112
Random variables independent, 113
Random walk, 119, 123

biased, 121
one-dimensional, 119
three-dimensional, 128
two-dimensional, 127

Reduction, 41
of dimension, 143

Resistance, 122
Rule
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Semi-invariant, 72
nonstrict, 63, 64
strict, 63
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cyclical, 18
Fibonacci, 18
periodic, 18, 20
recursive, 18

Set
countable, 22
finite, 22
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Stiffness, 123
Strategy

complementary, 71
symmetric, 71
winning, 71

Subgraph spanning, 36
Success, 117
Superposition, 91
Symmetry, 40
Symmetry central, 76
System

invariants
complete, 56

System of springs, 123

Tetrahedron regular, 183
Theorem

Blichfeldt, 163
Bolyai-Gerwien, 56
De Bruijn, 179
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Dirichlet, 165
Foster’s on average resistance, 133
Hahn-Banach, 144
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Minkowski, 164
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of the existence of voltage, 124
Pólya, 119
Post’s, 93
Sydler, 186
Tellegen, 127
twelve-point, 150
uniqueness, 124

Transformartion
affine of lattice, 151

Tree, 36, 128
maximum, 36
of positions, 74

Triangle
minimal, 147
primitive, 147

Triangulation, 148

Variable
nonessential, 93

Variance, 114
Vertex, 36
Voltage, 122

Weighing, 83
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Problems are often accompanied by hints and/or complete solutions.

The book is based on classes taught by the authors at different times at the 

Independent University of Moscow, at a number of Moscow schools and math circles, 
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