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The objective of this course is to introduce various methods of Riemannian geometry. We
will solve basic visual problems in Riemannian geometry on a mathematical level of rigor and
thus will become competent in its basic notions, tools, general principles, and applications.
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1. Spherical geometry

1.1. a) What oceans does the Beijing-New York plane �y over?
b) Where will you end up if you keep moving northwest?

Consider the unit sphere centered at the origin O of three-dimensional space. A great circle
(spherical straight line) is a section of this sphere by an arbitrary plane, passing through O.

1.2. a) Two arcs of great circles join two diametrically-opposite points of a unit sphere and
meet at angle α. Find the area bounded by the two arcs.

b) The area of a spherical triangle with angles α, β, γ on a unit sphere equals α+β+γ−π.
The distance between two points on the sphere is the minimal length of an arc of a great

circle joining the points. The circle of radius R with the center A on the sphere is the set of
points on the sphere at the distance R from A.

1.3. Find the length of a circle of radius R on a unit sphere and the area bounded by it.
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Figure 1: Points, straight lines on the sphere, and vectors

To each nonzero space vector assign two objects: a point on the sphere and a great circle.
First, to a vector we assign the intersection point of the sphere with the ray emanating from
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the point O in the direction of the vector (Fig. 1a). Second, we assign the section of the sphere
with the plane, passing through the point O and orthogonal to the vector (Fig. 1b). Point
(or spherical line) assigned to the given vector is denoted by the same letter as the vector
itself, only without vector sign. Denote by [ ~A, ~B] the cross product of vectors ~A and ~B.

1.4. a) If the vectors ~A and ~b are orthogonal, then the point A lies on the spherical line b
(Fig 1c).
b) The vector [ ~A, ~B] corresponds to a spherical line passing through A and B (Fig. 1d).

c) Vector [~A,~b] (if nonzero) corresponds to the perpendicular dropped from point A to spher-
ical line b (Fig. 1e).

d) If ~a+~b+~c = 0, then the spherical lines a, b, c have at least two common points.
e) Prove the 'bac minus cab' identity : [ ~A, [ ~B, ~C]] = ~B( ~A, ~C)− ~C( ~A, ~B).
f) Prove the Jacobi identity: [ ~A, [ ~B, ~C]] + [ ~B, [~C, ~A]] + [~C, [ ~A, ~B]] = 0.
g) (V.I. Arnold) Let A, B, and C be vertices of a spherical triangle. What does the Jacobi
identity mean geometrically for vectors ~A, ~B, and ~C?
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2. Curves

2.1. Draw approximately the following trajectories and curves in the plane or in space. Find
their �equations� r(t) = (x(t), y(t)) or r(t) = (ρ(t), ϕ(t)) in Cartesian or polar coordinates
on the plane; r(t) = (x(t), y(t), z(t)) or r(t) = (ρ(t), ϕ(t), z(t)) in Cartesian or cylindrical
coordinates in space. Choose your own coordinate system. All velocities in this problem are
assumed to be nonzero.

a) Parabola � the set of points in the plane equidistant from the given line (directrix) and
the given point (focus).

b) Ray OA rotates uniformly about its �xed origin O with angular velocity ω. A point
M moves uniformly along the ray OA, starting from the point O, with the speed v. The
trajectory described by the point M is called the Archimedes' spiral.

c) A helix is the trajectory of the end of a rod of length 2r, uniformly with the speed of
v falling to the ground, remaining parallel to the ground and simultaneously rotating in a
horizontal plane around its midpoint uniformly with the angular velocity ω.

d) A wheel of radius R rolls uniformly without slip along a straight line. The trajectory
described by a point on the wheel rim is called a cycloid.

A parametrized regular smooth curve in space is an in�nitely di�erentiable map r : [a, b]→
R3 such that r′(t) 6= 0 for each t ∈ [a, b].

A non-parametrized smooth curve, or just a curve, is a subset Π ⊂ R3 such that for each
point P ∈ Π there is a closed neighborhood NP in R3 such that Π∩NP is the image r([a, b])
of some injective parametrized regular smooth curve r : [a, b]→ R3.

A parametrization of a non-parametrized curve Π ⊂ R3 is a parametrized curve r : [a, b]→
R3 such that Π = r([a, b]).

2.2. a) Give an example of two di�erent parametrizations of the same circle.
b) Is the image of a parametrized regular smooth curve always a non-parametrized curve?

The length of a parametrized curve r : [a, b]→ R3 is L(r) :=
∫ b
a |r

′(t)| dt.

2.3. a�d) Calculate the lengths of parameterized curves from r(a) to r(b) for the parameter-
izations you have chosen in Problem 2.1 (specify the parameterization explicitly!)

The length of nonparametrized curve is the length of some its one-to-one parametrization.

2.4. (a) If r1, r2 : [a, b]→ R2 are one-to-one parametrizations of one nonparametrized curve,
then the mapping r−1

2 ◦ r1 : [a, b]→ [a, b] is one-to-one and monotone.
(b) Theorem. The length of a nonparametrized curve is well-de�ned, i.e. if r1 and r2 are

two one-to-one parametrizations of the same nonparametrized curve, then L(r1) = L(r2).
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3. Surfaces

Let D be a rectangle in the plane.
A parametrized regular smooth surface is an in�nitely di�erentiable map r : D → R3 such

that the vectors ∂r/∂u and ∂r/∂v are linearly independent for each (u, v) ∈ D.
A non-parametrized smooth surface, or just a surface, is a subset Π ⊂ R3 such that for

each point P ∈ Π there is a closed neighborhood NP in R3 such that Π ∩ NP is the image
r(D) of some injective parametrized smooth surface r : D → R3.

A system of coordinates on a non-parametrized surface Π ⊂ R3 is a parametrized surface

a b

Figure 2: A torus and a hyper-

boloid of one sheet

r : D → R3 such that r(D) ⊂ Π.

3.1. Find out which of the following subsets of R3 are surfaces
(and prove your answers):

a) a square in a plane;
b) the lateral surface of a right circular cylinder of hight 1;
c) the lateral surface of a right circular cone of hight 1;
d) the lateral surface of a right circular truncated cone;
e) the boundary of a cube;
f) a sphere;
g) a torus, i.e., the result of rotation of a circle about a line lying in the plane of the circle

and disjoint with the circle (see Fig. 2a);
h) the hyperboloid z2 = x2 + y2 − 1 of one sheet (see Fig. 2b);
i) the surface of revolution of the graph of an in�nitely di�erentiable positive function

R→ R about the x-axis;
j) the graph of an in�nitely di�erentiable function D → R;
k) the preimage of 0 under an in�nitely di�erentiable function R3 → R with nowhere

vanishing gradient.

The tangent plane TPΠ to a surface Π at a point P is the union of tangent lines at P to
all curves on Π passing through P .

3.2. The tangent plane TPΠ is indeed a plane; it contains the vectors ∂r
∂u(r−1(P )) and

∂r
∂v(r

−1(P )), where r : D → R3 is a system of coordinates on Π covering P .

3.3. Prove that the hyperboloid z2 = x2 + y2− 1 of one sheet contains in�nitely many lines.
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4. Curves on surfaces and isometries

4.1. Express the length of a curve [a, b]
(u,v)→ D

r→ R3

a) on the cylinder r(u, v) = (cosu, sinu, v);
b) on the sphere r(u, v) = (cosu sin v, sinu sin v, cos v)
through the functions u and v (the formula may contain derivatives and integrals; Fig. 3a).

4.2. Prove that the shortest curve between the north pole N and a point A on the sphere is
the arc of the meridian joining N and A. (Hint : use spherical coordinates; see Problem 4.1b.)

The angle between two intersecting parametrized curves at their common point is the angle
between their tangents at the point.

4.3. Find the angle between the images of curves v = u + 1 and v = 3 − u under the map
r(u, v) = (v cosu, v sinu, v2), which is a system of coordinates on the paraboloid z = x2 + y2

(Fig. 3b).

a b

Figure 3: A cylinder and a paraboloid

Two surfaces are intrinsically isometric, if there is an intrinsic isometry between them, i.e.,
a smooth one-to-one map preserving the lengths of all curves on the surfaces. Two subsets of
R3 are ambient isometric, if there is an ambient isometry between them, i.e., a map R3 → R3

preserving the distances in R3 and taking one subset to the other one.

4.4. An arbitrary rectangle in the plane:
a) is intrinsically isometric to some subset of the lateral surface of arbitrary cylinder with

the diameter greater than the side of the rectangle.
b) is not ambient isometric to no subset of the lateral surface of no cylinder.

4.5. a) A sphere and a plane are not intrinsically isometric.
b) A disk in the plane is not intrinsically isometric to no subset of no sphere.
c) A spherical cap is not intrinsically isometric to no subset of a sphere of di�erent radius.
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5. Geodesics

The distance along the surface Π between points P,Q ∈ Π is the in�mum |P,Q| of the
lengths of curves lying on the surface and joining P and Q.

A (non-parametrized) curve Γ ⊂ Π is called a geodesic on Π, if Γ is locally shortest, i.e.,
if each point P ∈ Γ has a neighborhood NP ⊂ Π such that the distance (along Π) between
any two points P1, P2 ∈ NP ∩ Γ is equal to the length of a segment of Γ from P1 to P2.

5.1. In this problem (similarly de�ned) geodesics on surfaces of polytopes are considered.
a) Draw a geodesic on a cube joining its opposite vertices.
b) The sum of face angles of a polyhedral angle is not greater than 2π.
c) A geodesic on the surface of a convex polytope does not pass through the vertices (i.e.,

it can only start and �nish there) and crosses the edges according to the law 'the angle of
incidence is equal to the angle of re�ection'.

5.2. a) The shortest curve on the surface joining two given points is a geodesic.
b) A geodesic is not necessarily the shortest curve.
c) Find at least one geodesic on the hyperboloid z2 = x2 + y2 − 1 of one sheet.
d) An intrinsic isometry takes geodesics to geodesics.
e)* During the motion along a geodesic, the left and the right wheels of a car of width ε

travel the same length up to O(ε2).
f)* Draw an arbitrary curve on the plane. Roll an egg (i.e., a convex body with smooth

boundary) along the plane following the curve (without slipping). The resulting curve on the
egg is a geodesic if and only if the curve on the plane is a straight line.

5.3. * Theorem. The image of a parametrized curve γ : [a, b]→ Π having constant speed is
a geodesic on a surface Π, if and only if γ′′(t) ⊥ Tγ(t)Π for each t ∈ [a, b].

A parametrized curve γ : [a, b] → Π is a parametrized geodesic on a surface Π, if γ′′(t) ⊥
Tγ(t)Π for each t ∈ [a, b].

5.4. Find all the geodesics on the surfaces from Problems 3.1abdf (a parametrization is
su�cient for d).

5.5. a) A straight line on a surface is a geodesic.
b) A meridian of a surface of revolution is a geodesic.
c) A parallel of a surface of revolution is a geodesic if and only if the tangent to the meridian

at each point of the parallel is parallel to the rotation axis.
d)* Klero's Theorem. For a parametrized geodesic γ : [a, b] → Π on a surface Π of

revolution, the value r(t) sin∠(γ′(t),m(t)) is constant. Here r(t) is the distance to the
rotation axis and m(t) is the meridian through the point γ(t).
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6. Equation of geodesics and the exponential mapping

6.1. Write a di�erential equation of the parametrized geodesics on the surface z = xy.

6.2. Let x1, x2 : R → R and γ = r(x1, x2) be a parameterized curve on the parametrized
surface r : D → R3. We will further skip the argument (x1(t), x2(t)) of the function r and
its derivatives. Primes will denote the di�erentiation with respect to t, and indices of r (but
not of Γ and g) will denote the partial di�erentiation with respect to corresponding variable.

a) The curve γ is a parameterized geodesic if and only if γ′′ · r1 = γ′′ · r2 = 0 for any t.
b) γ′ = r1x

′
1 + r2x

′
2 is the velocity vector of the curve γ at the point r(x1(t), x2(t)).

c) γ′′ = x′′1r1 + x′1r
′
1 + x′′2r2 + x′2r

′
2.

d) r′1 = r11x
′
1 + r12x

′
2.

e) Theorem. The parametrized geodesics on the surface r(D) are exactly the solutions
x1(t) and x2(t) of the following system of di�erential equations:{
−x′′1 = Γ1

11(x
′
1)

2 + (Γ1
21 + Γ1

12)x
′
1x
′
2 + Γ1

22(x
′
2)

2

−x′′2 = Γ2
11(x

′
1)

2 + (Γ2
21 + Γ2

12)x
′
1x
′
2 + Γ2

22(x
′
2)

2
or x′′k +

∑
i,j

Γkijx
′
ix
′
j = 0, where

gij = ri · rj and Γkij :=
g3−k,3−krk · rij − gk,3−kr3−k · rij

det g
are the Christo�el symbols .

6.3. a) Corollary. Exactly one parametrized geodesic passes through every point in every
direction on the surface with any given speed at the starting point.

b) Compute the Christo�el symbols for the spherical coordinate system on the sphere.

Figure 4: Exponential map

Let Π be proper. De�ne the (geodesic) exponential map

exp = exp P : TPΠ→ Π by exp(u) := γP,u(1),

where γP,u : [−1, 1] → Π is the parametrized geodesic for which
γP,u(0) = P and γ′P,u(0) = u.

6.4. a) For the unit sphere S2, the exponential mapping T(0,0,1) →
S2 sends polar coordinates to spherical ones:

exp(ρ cosϕ, ρ sinϕ) = (sin ρ cosϕ, sin ρ sinϕ, cos ρ).

b) Generalize this result for surfaces of revolution.

6.5. a) The exponential mapping expP takes each line passing through P to a geodesic.
b) Does the exponential mapping expP always take an arbitrary line to a geodesic?
c) Does the exponential mapping expP always take a circle (in TP ) of radius R centered

at P to a circle (on the surface) of radius R centered at P ?
d) Gauss lemma. The exponential mapping expP takes any line passing through P and

any circle (in TP ) centered at P to two orthogonal curves.

6.6. a) There is rP > 0 such that (the restriction of) the exponential mapping expP from the
disk of radius rP centered at P in TP onto the analogous disk on the surface is one-to-one.

b) For each point Q within distance at most rP from P , the shortest curve joining P and
Q on the surface is the image of the parametrized geodesic. (Return to Problem 5.3 here).
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7. Parallel transport

7.1. Take a cube. Two vectors lying in adjacent faces are parallel, if they form equal �vertical�
angles with the common side of the faces (i.e., their directions become the same, if one
�unfolds� the two faces around the common side; see the �gure). Let f1, f2, f3 be 3 faces
with a common vertex. Take any vector ~e1 ⊂ f1, then a vector ~e2 ⊂ f2 parallel to ~e1, then
~e3 ⊂ f3 parallel to ~e2, �nally ~e4 ⊂ f1 parallel to ~e3. What is the angle between ~e4 and ~e1?

Let Π ⊂ R3 be a surface and γ : [a, b] → Π be a parametrized curve. A vector
�eld v : [a, b]→ R3 is parallel along the curve γ (in the sense of Levi�Civita), if v(t)
is tangent to and v′t(t) is perpendicular to the surface at the point γ(t) for any t.

The vector v(b) is obtained from the vector v(a) by translation along the given curve.

7.2. a) Which tangent vectors to a plane in space are obtained from each other by translation?
b) The velocity vector �eld of a parameterized curve on the surface is parallel along the

curve if and only if the curve is a parametrized geodesic.
c) Parallelism along a parametrized curve with given image does not depend on the curve.
d) Result of parallel translation along curve with given endpoints may depend on the curve.

Figure 5: Parallel �eld

A vector �eld on a surface is parallel along a nonparametrized curve,
if it is parallel along any of its parametrizations (see Problem 7.2c).

7.3. On a meridian of a surface of revolution, a continuous family of
unit vectors tangent to parallels is parallel along the meridian.

7.4. If both vector �elds u(t) and v(t) are parallel along the same parametrized curve, then
a) |v(a)| = |v(b)|. b) u(a) · v(a) = u(b) · v(b). c) ∠(u(a), v(a)) = ∠(u(b), v(b)).
d) The vector �elds u+ v and 3u are parallel along the same parametrized curve.

7.5. a) Theorem. Parallel translation along a given curve on a given surface de�nes an
orthogonal mapping of tangent spaces.

b) A vector �eld v(t) is parallel along a parametrized geodesic γ(t) if and only if both
|v(t)| and ∠(v(t), γ′(t)) are constant along the geodesic.

7.6. Let v(t) = a1(t)r1

(
x1(t), x2(t)

)
+a2(t)r2

(
x1(t), x2(t)

)
be a vector tangent to the surface

at the point r(x1(t), x2(t)). Use notation of Problem 6.2.
a) v′ = a′1r1 + a1r

′
1 + a′2r2 + a2r

′
2.

b) v(t) is parallel along the curve γ = r(x1, x2) if and only if v′ · r1 = v′ · r2 = 0.
c) Theorem. A vector �eld v(t) is parallel along the curve γ = r(x1, x2) if and only if{

−a′1 = (Γ1
11x
′
1 + Γ1

21x
′
2)a1 + (Γ1

12x
′
1 + Γ1

22x
′
2)a2

−a′2 = (Γ2
11x
′
1 + Γ2

21x
′
2)a1 + (Γ2

12x
′
1 + Γ2

22x
′
2)a2

or a′k +
∑
i,j

Γkijx
′
iaj = 0.

d) Any vector can be translated along any curve.

7.7. What angle does a tangent vector rotate through during the parallel translation along
the parallels on

a) a cylinder; b) the cone z2 = x2 + y2; c) the unit sphere?

9
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8. Area and scalar curvature

Let r : D → Π be a 1�1 parametrization of a nonparametrized surface Π ⊂ R3. The area
of Π is S(r(D)) :=

∫ ∫
D |ru × rv|dudv.

8.1. a) Find the area of the intersection of the cylinder x2 + y2 ≤ 1 and the surface z = xy.
b) The area of r(D) does not depend on the choice of a 1�1 parametrization r.
c) The area of the surface formed by rotating the graph of a function f : [a, b]→ [0,+∞)

around the Ox axis is equal to 2π
∫ b
a f(x)

√
1 + f ′(x)2 dx.

d) Hulden's First Theorem. If the surface is formed by a rotation around the axis of some
curve lying in one plane with the axis entirely on one side of the axis, then the surface area
is equal to the product of the length of the curve and the length of the circle described by
the center of mass of the curve.

The disc BΠ,P (R) on the surface Π with the center P ∈ Π and the radius R is the set
of points of Π within distance R from P . Denote by SΠ,P (R) the area of the disc and by
LΠ,P (R) the length of its boundary circle.

8.2. a) A circle of su�ciently small radius on Π is a curve (hence its length is well-de�ned).
b) A disk of su�ciently small radius on a surface is a surface (hence its area is well-de�ned).
c) For su�ciently small R we have LΠ,P (R) = S ′Π,P (R).

The scalar curvature of the surface Π at an interior point P is

τ = τΠ,P := 6 lim
R→0

2πR− LΠ,P (R)

πR3
.

8.3. Find the scalar curvature at points of surfaces from Problem 3.1abdf.

8.4. a) How does the scalar curvature change under spatial homothety?

b) τ = 24 lim
R→0

πR2 − SΠ,P (R)

πR4
.

c) An intrinsic isometry preserves scalar curvature.
d)* The limit de�ning the scalar curvature exists.

10
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9. Gaussian curvature

A coorientation of a surface Π is the family of unit vectors n(P ) normal to the surface
(that is, perpendicular to TPΠ) and continuously depending on the point P ∈ Π.

The mapping n : Π→ S2 ⊂ R3 is called spherical or Gaussian. The set n(Π) ⊂ S2 ⊂ R3

is called the spherical or Gaussian image of the cooriented surface Π.

9.1. Equip the surfaces in Problem 3.1abdfg with coorientations. Find their spherical images.

If n : Π→ n(Π) is 1�1, then the area of the spherical map-
ping (with a sign) or total Gaussian curvature K(Π) is the
area of the spherical image with a plus (respectively, a minus)
sign, if when going around the boundary of the surface clockwise (viewed from to the normals),
the boundary of the spherical image is passed clockwise (respectively, counterclockwise).

If n : Π→ n(Π) is 1�1 outside the boundary, then the sign of the area is de�ned analogously,
only we go around a curve on Π close to the boundary. If Π can be decomposed into
pieces Π1, . . . ,Πm with n : Πi → n(Πi) being 1�1 outside the boundary, then set K(Π) :=
K(Π1) + · · ·+K(Πm). If S(n(Π)) = 0, then set K(Π) := 0.

9.2. Find the total Gaussian curvatures of the surfaces in Problem 3.1abdfg.

9.3. The total Gaussian curvature K(Π) does not depend on n, if n : Π→ n(Π) is 1�1.

In general, the area of a parametrized surface (not necessarily 1�1!) with coorientation
n : r(D) → R3 is S(r, n) :=

∫ ∫
D ru ∧ rv ∧ n dudv, where we write n instead of n(r(u, v))

hereafter. The total Gaussian curvature K(Π) of the surface Π = r(D) is the area of the
parametrized surface n ◦ r : D → S2 with the coorientation n, where n = ru × rv/|ru × rv|.
9.4. a) This number S(r, n) can be di�erent for di�erent r with the same r(D) and n.

b) The vector n(r(u, v)) is perpendicular to the surface n(r(D)) at its point n(r(u, v)). I.e.,
the normal �eld ñ(n(r(u, v))) := n(r(u, v)) de�nes a coorientation of the surface n(r(D)).

c) The area S(n◦r, n) for n = ru×rv
|ru×rv| does not depend on a 1�1 parametrization r : D → Π.

d) Ambient isometries preserve the total Gaussian curvature.
e)∗ Gauss's Theorem Egregium. Intrinsic isometries keep the total Gaussian curvature.

The Gaussian curvature of a surface Π at a point P is K := KΠ,P := lim
R→0

K(BΠ,P (R))
S(BΠ,P (R)) , where

BΠ,P (R) is the disc on Π with the radius R and the center P .

9.5. Find the Gaussian curvature at the points of the surfaces in Problem 3.1abdfgi.

9.6. a) Theorem. We have

K =
nu ∧ nv ∧ n
|ru × rv|

= fxxfyy − f 2
xy =

(ruu ∧ ru ∧ rv)(rvv ∧ ru ∧ rv)− (ruv ∧ ru ∧ rv)2

|ru × rv|4
,

where n = ru × rv/|ru × rv|, and the second formula holds at the origin for the surface
z = f(x, y) tangent to the Oxy plane at the origin.

In particular, the limit de�ning the Gaussian curvature exists.
b)∗ Theorem. For a two-dimensional surface in R3 we have τ = 2K.
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http://users.mccme.ru/mskopenkov/courses/geometry-22.html


KAUST, Riemannian geometry, http://users.mccme.ru/mskopenkov/courses/geometry-22.html 2022

10. Sectional curvature

The total sectional curvature σ(Π) of a cooriented two-dimensional surface Π with smooth
boundary ∂Π is the couterclockwise angle between the tangent vector at a boundary point
and the vector obtained from it by a parallel translation along the curve ∂Π in the counter-
clockwise direction.

If ∂Π is piecewise smooth, then the de�nition is analogous.

10.1. The total sectional curvature is:
a) preserved by an ambient isometry;
b) additive, i.e. σ(Π1∪Π2) = σ(Π1) +σ(Π2), if Π1 and Π2 are surfaces bounded by closed

piecewise smooth curves such that Π1 ∩Π2 ⊂ ∂Π1 ∩ ∂Π2 is a connected curve and Π1 ∪Π2 is
a surface (on Π1 and Π2, we take coorientations obtained by restricting some coorientation
on Π1 ∪ Π2);

c) independent of the coorientation.

10.2. a) Find the total sectional curvature of a spherical triangle with the angles α, β, γ.
b) How the total sectional curvature and the area of a polygon on a unit sphere are related?
c) The same for a part of the unit sphere bounded by a closed curve.

10.3. Let n : Π→ S2 be the spherical mapping.
a) A vector tangent to the surface Π at a point P is tangent to the sphere S2 at n(P ).
b) If a vector �eld v(t) is parallel along a curve γ(t) on Π and n(γ(t)) is a curve, then v(t)

is parallel along n(γ(t)) on S2.
c) σ(Π) = σ(n(Π)).
d) Gauss�Bonnet theorem. σ(Π) = K(Π) mod 2π.

The sectional curvature of the surface Π at the point P is

σ(P ) := lim
R→0

σ(BΠ,P (R))

S(BΠ,P (R))
.

10.4. How does the sectional curvature at a point changes under spatial homothety?

To summarize, we shall see that for a two-dimensional surface in R3, the scalar, sectional,
and Gaussian curvatures coincide (up to a factor of 2).
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11. Riemannian metric and isometries

A Riemannian metric on Π (induced from R3) or the �rst quadratic form of Π is the family
of bilinear forms

gP : TPΠ× TPΠ→ R, where P ∈ Π, de�ned by gP (a, b) := a · b.

11.1. a) The length of the image of the curve γ : [a, b]→ Π is
∫ b
a

√
gγ(t)(γ′(t), γ′(t)) dt.

b) The cosine of the angle between parametrized curves γ, β : [−1, 1]→ Π on Π at a point

P = γ(0) = β(0) equals
gP (γ′, β′)√

gP (γ′, γ′)gP (β′, β′)
. Here γ′ := γ′(0) and β′ := β′(0).

11.2. The Riemannian metric is symmetric and positive de�nite.

11.3. a) Theorem. The matrix of the Riemannian metric of the surface r(D) at a point
P = r(x1, x2) in the standard basis (r1, r2) is gij = ri · rj. (See notation in Problem 6.2.)

b) Calculate the matrix of the Riemannian metric of r(D) at the point r(u, v) in the
standard basis for parameterized surface r(u, v) = (u, v, f(u, v)) (in terms of the function f
and its partial derivatives).

c) The same for the parametrized surface r(u, v) = (x(u, v), y(u, v), z(u, v)) (in terms of
the functions x, y, z and their partial derivatives).

d) Theorem. For two parametrizations r, r̃ : D → R3 of one nonparametrized surface, the
matrices G, G̃ of the Riemannian metric of the surface r(D) = r̃(D) at the point r(u0, v0) =
r̃(ũ0, ṽ0) in bases (ru, rv) and (r̃u, r̃v) are related via G̃ = JTGJ , where J = (r−1 ◦ r̃)′.
11.4. Theorem. The following 3 conditions on the mapping between surfaces are equivalent:

(I) the mapping is an intrinsic isometry;
(R) the mapping (more precisely, its derivative) takes the Riemannian metric on the �rst

surface to the Riemannian metric on the second one;
(D) the mapping preserves distances.

11.5. a) An intrinsic isometry (more precisely, its derivative) preserves the lengths of the
tangent vectors.

b) An intrinsic isometry preserves angles between curves.
c) For a surface Π and a point P ∈ Π, de�ne the function f : Π→ R by f(X) = |P,X|2/2,

where |P,X| is the distance along the surface. Then f ′(P ) = 0 and f ′′(P ) is the Riemannian
metric. We de�ne f ′′(P ) as the symmetric bilinear form F : TPΠ × TPΠ → R such that
F (γ′(0), γ′(0)) = f(γ(t))′′|t=0 for each parametrized curve γ : [−ε, ε]→ Π with γ(0) = P .

11.6. a) Given a parametrized surface r : D → R3, express rk · rij through gij := ri · rj and
their derivatives. (See notation in Problem 6.2.)

b) If f : Π1 → Π2 is an intrinsic isometry, then the Christo�el symbols in a coordinate
system r : D → Π1 equal the Christo�el symbols in the coordinate system f ◦ r : D → Π2.

c)Theorem. An intrinsic isometry takes parametrized geodesics to parametrized geodesics.
d) Theorem. An intrinsic isometry of surfaces takes a family of vectors parallel along

some curve to a family of vectors parallel along its image. (Return to Problem 9.4.e here).
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12. Riemannian metric in a coordinate system

A Riemannian metric in a coordinate system r : D → R3 on Π (or the inverse r-image of
the Riemannian metric on r(D)) is the family of matrices G = gij of the following bilinear
forms in the standard basis (0, 1), (1, 0):

g : R2 × R2 → R for each X ∈ D, de�ned by g(a, b) := r′(X)a · r′(X)b.

Let detG be the determinant of the matrix gij.

12.1. a) The length of the image of the curve γ = (u1, u2) : [a, b] → D on a parametrized
surface r : D → R3 equals∫ b

a

√∑
i,j

giju′iu
′
j dt =

∫ b

a

√
g(γ′, γ′) dt =

∫ b

a

√
gr(γ)(r′γ′, r′γ′) dt.

Here the arguments t of the functions γ, u1, u2 and the argument (u1(t), u2(t)) of the functions
r′, gij are missing.

b) Theorem. gij = ri · rj.
c) detG = g11g22 − g2

12 > 0 at any point.
d) Theorem. For two parametrizations r, r̃ of one nonparametrized surface the matrices

G, G̃ are related via G̃ = JTGJ , where J = (r−1 ◦ r̃)′.
e) Let γ, β : [−1, 1] → D be parameterized curves, where γ(0) = β(0) = X. Denote

(a1, a2) := γ′(0) and (b1, b2) := β′(0). Then the cosine of the angle between the curves r ◦ γ
and r ◦ β (on the parameterized surface r : D → R3) at the point r(X) equals∑

i,j gijaibj√
(
∑

i,j gijaiaj)(
∑

i,j gijbibj)
=

g(γ′, β′)√
g(γ′, γ′)g(β′, β′)))

=
gr(r

′γ′, r′β′)√
gr(r′γ′, r′γ′)gr(r′β′, r′β′)

.

Here γ′ and β′ are evalated at the point 0, and r, r′, gij are evalated at the point X.
f) |r1 × r2|2 = detG.
g) The area of the surface r(D) is

∫ ∫
D

√
detGdu1du2.

12.2. a) The coordinate system of the exponential mapping is Euclidean at the point P , i.e.
in an orthonormal basis in the tangent plane,

gij(P ) = δij :=

{
1, if i = j;

0, if i 6= j
and g′ij(P ) = 0.

(Return to Problem 8.4.d here).
b)* Express the scalar curvature τ through r : D → R3 and its partial derivatives.
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13. Ricci bilinear form

The Ricci and the Riemann curvature tensors are interesting for higher-dimensional sur-
faces. For two-dimensional ones, they essentially reduce to the scalar (or Gaussian) curvature.
However, we continue to work with two-dimensional surfaces by default and just mention
modi�cations required for the higher-dimensional ones. It is suggested to try solving the
problems of the following sections in the higher-dimensional case as well (unless a problem
indicates explicitly that a two-dimensional surface is considered).

The Ricci bilinear form (tensor) of Π at P ∈ Π is a symmetric bilinear form ρ =
ρΠ,P : TPΠ× TPΠ→ R such that for each bounded surface A ⊂ TP containing P we have

S(exp(A)) = S(A)− 1

6

∫
A

ρ(u, u)du+O(diam(A)5).

(For an n-dimensional surface Π, the surface A must also be n-dimensional, and the area S
is replaced by the n-dimensional volume V .)

13.1. a) Such a symmetric bilinear form exists and is unique.
b) In the coordinate system of the exponential mapping, the matrix of the Ricci form is

ρkl = −3
∑
i

∂2gii
∂uk∂ul

.

c) An intrinsic isometry preserves the Ricci bilinear form.
d) Find the matrix ρij of the Ricci form for a surface r : D → R3 in the basis (r1, r2).

13.2. For a symmetric bilinear form ω : R2 × R2 → R:
a) There exists a unique ω̃ : R2 → R2 such that ω̃(u) · v = ω(u, v) for each u, v ∈ R2.
b) We have

∫
B ω(u, u)du = (π/4)tr ω̃ = (π/4)

∑
i ω(ei, ei), where B is the unit disk in R2

and (e1, e2) is the standard basis in R2. (In the n-dimensional case, π/4 should be replaced
by V (B)/(n+ 2).)

13.3. a) Theorem. τ = tr ρ̃, where the operator ρ̃ : TPΠ → TPΠ is de�ned by ρ̃(u) · v =
ρ(u, v) for each u, v ∈ TPΠ.

b)* Theorem. For a two-dimensional surface Π, the Ricci bilinear form is proportional to
the Riemannian metric with the coe�cient τ/2: 2ρ(u, v) = τu · v. In other words, for each
bounded surface A ⊂ TPΠ containing P we have

S(exp(A)) = S(A)− τ

12

∫
A

|u|2du+O(diam(A)5).
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14. Sectional-curvature operator

Let A ⊂ TPΠ be a surface bounded by an oriented piecewise smooth curve ∂A containing
the point P . Denote by σ(A) : TPΠ → TPΠ the linear operator taking a vector x ∈ TPΠ
to the vector obtained from x by the parallel translation along the oriented curve expP (∂A).
We assume that ∂A is contained in the domain of expP .

Figure 6: The σ(A) operator and the sectional-curvature operator

The sectional-curvature operator of the surface Π at the point P ∈ Π, correspond-
ing to a pair u, v ∈ TPΠ of linearly independent vectors, is a linear operator R(u, v) =
R(u, v)P : TPΠ→ TPΠ such that for the parallelogram Au,v spanned by u, v, we have

σ(hAu,v) = Id + h2R(u, v) + o(h2) as h→ 0.

Here the oriented curve ∂(hAu,v) leaves P in the direction of u. If u, v are linearly dependent,
then set R(u, v) = 0. (For a higher-dimensional surface Π, the de�nition is the same.)

Denote by Rα
PQ : TPΠ → TPΠ the counterclockwise (if viewed from Q) rotation through

an angle α about a vector PQ ⊥ TPΠ.

14.1. For a two-dimensional surface Π with a coorientation n : Π → S2 and two vectors
u, v ∈ TPΠ such that u ∧ v ∧ n > 0 we have:

a) σ(hAu,v) = R
σS(exp(hAu,v))+o(h2)
n as h→ 0, where σ is the sectional curvature at P .

b) σ(hAu,v) = R
h2σS(Au,v)+o(h2)
n as h→ 0.

c) R(u, v) = σ u ∧ v ∧ nRπ/2
n .

14.2. a)∗ The sectional-curvature operator R(u, v) exists and is unique.
b) It depends linearly on u, v.
c) An intrinsic isometry preserves the sectional-curvature operator.

14.3. Riemann-tensor symmetry theorem.

a) R(u, v) is skew-symmetric, that is, [R(u, v)x] · y = −[R(u, v)y] · x.
b) R(u, v) is skew-symmetric in u, v: R(u, v) = −R(v, u).
c) The Bianchi identity (algebraic). R(u, v)x+R(v, x)u+R(x, u)v = 0.
d) [R(u, v)x] · y = [R(x, y)u] · v.
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15. Riemann curvature tensor

The Riemann curvature tensor of Π at P is the trilinear mapping

R : (TPΠ)3 → TPΠ, de�ned by formula R(u, v, x) := R(u, v)x.

Given a coordinate system r : D → Π, denote R(ri, rj, rk) =:
∑

lR
l
ijkrl.

15.1. a) Find Rl
ijk on a sphere in spherical coordinates.

b) Theorem. For a two-dimensional surface Π with a coorientation n : Π → S2 the

Riemann tensor is expressed through the sectional curvature: R(u, v, x) = σ u∧v∧nRπ/2
n (x).

(Or, in the exponential mapping coordinate system, R1
122 = σ det(gij); the remaining

components are zero or equal to ±R1
122 due to the symmetries of the Riemann tensor.)

c) Express Rl
ijk through the Christo�el symbols and their derivatives.

15.2. Consider the coordinate system of the exponential mapping expP . Let u
k be the k-th

coordinate of a point.
a) For each point and each k we have

∑
ij Γkiju

iuj = 0.
Prove the following identities at the point P for each i, j, k, l:
b) Γkij = 0.

c)
∂Γl

ij

∂uk
+

∂Γl
jk

∂ui +
∂Γl

ki

∂uj = 0.

d)
∂Γl

ij

∂uk
− ∂Γl

jk

∂ui = Rl
ikj.

e) 3
∂Γl

ij

∂uk
= Rl

ikj −Rl
kji = Rl

ikj +Rl
jki.

f) Rl
ikj +Ri

lkj = 3 ∂2gil
∂uj∂uk

. (Hint: use Problem 14.3.)
g) Theorem. The bilinear Ricci form is equal to the contraction of the Riemann tensor:

ρ(u, v) =
∑

iR(u, ei)v · ei and ρkl =
∑

iR
i
kil. (Return to Problems 9.6.b and 13.3.b here.)
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16. Riemann manifolds

A (local) Riemannian manifold is a pair (D, g), where D ⊂ R2 is open and g is a family
of positive-de�nite symmetric bilinear maps R2 × R2 → R smoothly depending on P ∈ D.

The family is called the Riemannian metric. In other words, it is a collection of smooth
functions gij : D → R with 1 ≤ i, j ≤ 2 such that gij = gji, gii > 0, and giigjj − (gij)

2 >
0. The Riemannian metric is often denoted by

∑
i,j gij(x

1, x2) dxidxj, where x1, x2 are the
Cartesian coordinates and dx1, dx2 is just a notation for independent variables.

Curve lengths, angles, and areas on (D, g) are de�ned in terms of the Riemannian metric
by the formulae from Problems 12.1.aeg. Intrinsic isometries, (non-parametrized) geodesics,
distance, circles, and scalar curvature on (D, g) are de�ned literally as for surfaces in R3.

16.1. Poincar�e model of the hyperbolic plane. Let (H, gH) be the half-plane y > 0

with gH := (dx)2+(dy)2

y2 . Let (D2, gD) be the unit circle x2 + y2 < 1 with gD := 4 (dx)2+(dy)2

(1−x2−y2)2 .

a) For any two intersecting curves on (H, gH), the angle between them on (H, gH) equals
the angle between them in the Euclidean plane.

b) The map (x, y) 7→ (ax± b, ay) is an intrinsic isometry of (H, gH) for each a, b > 0.

c) The map (x, y) 7→ (2x,x2+y2−1)
x2+(1+y)2 is an intrinsic isometry from (H, gH) to (D2, gD).

d) Find the shortest curve and the distance between (0, 0) and (x, y) on (D2, gD).
e) Find the length of the circle of radius R centered at (0, 0) on (D2, gD) and the scalar

curvature at (0, 0). (Hint: this circle is a circle of some radius r(R) in the Euclidean plane.)
f) Theorem. The scalar curvature at each point of (H, gH) and (D2, gD) equals −2.

A parametrized geodesic on (D, g) is a curve γ(t) = (x1(t), x2(t)) satisfying the equation

x′′k +
∑
i,j

Γkijx
′
ix
′
j = 0, where Γkij :=

1

2

∑
l

gkl
(
∂glj
∂xi

+
∂gli
∂xj
− ∂gij
∂xl

)
(1)

and gkl are the entries of the inverse matrix of gij.

16.2. a) Exactly one parametrized geodesic passes through every point in every direction
with any given speed at the starting point.

b) An intrinsic isometry takes parametrized geodesics to parametrized geodesics.
c) Each parametrized geodesic γ(t) has constant speed: g(γ′(t), γ′(t)) = const.

16.3. Find the parametrized geodesics on: a) (H, gH) (hint: use the previous two problems);
b) the half-plane y > 0 with the Riemannian metric y(dx)2 + y(dy)2.

The tangent plane TPD at a point P ∈ D is the plane R2. The exponential mapping expP
is de�ned literally as for surfaces in R3. To a point with the polar coordinates (r, φ) in R2, it
assigns the point x(r, φ) := γ(r), where γ(t) is the solution of (1) with the initial conditions
γ(0) = P , |γ′(0)| = 1, ∠(γ′(0), (1, 0)) = φ (the latter is the angle on (D, g)).

16.4. The exponential mapping x(r, φ) satis�es the following identities for each r 6= 0:
a) g(xr, xr) = 1; b) ∂

∂φg(xr, xr) = ∂
∂rg(xr, xφ); c) xφ → 0 and g(xr, xφ)→ 0 as r → 0;

d) g(xr, xφ) = 0. e) Corollary. The image of a parametrized geodesic is a geodesic.
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17. Literature

The literature is not required to solve the problems unless otherwise explicitly indicated.
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