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1. Introduction

The present constitutes the lecture notes from a mini course at the
Summer School ”Structures in Lie Representation Theory” from Bre-
men in August 2009.

The aim of these lectures is to describe algebraic varieties on which
an algebraic group acts and the orbit structure is simple. The methods
that will be used are representation theory of Lie algebras, algebraic
geometry and algebraic groups.
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2. Homogeneous spaces

Let G be a connected algebraic group over C and g = TeG the Lie
algebra of G.

Definition. A G-variety is an algebraic variety X with a G-action
G×X → X, (g, x) 7→ g · x which is a morphism of algebraic varieties.

If X is a G-variety then the Lie algebra of G acts on X by vector
fields. If X is smooth we denote by TX the tangent sheaf and we have
a homomorphism of Lie algebras

opX : g −→ Γ(X, TX),

and at the level of sheaves

op
X

: OX ⊗ g −→ TX .

Examples
1) Linear algebraic groups : G ↪→ GLn(C) closed.
2) Abelian varieties, that is, complete connected algebraic groups.

E.g. elliptic curves. Such groups are always commutative as will be
shown below.

3) Adjoint action: consider the action of G on itself by conjugation.
The identity e ∈ G is a fixed point, and so G acts on TeG = g. We
obtain the adjoint representation Ad : G −→ GL(g) whose image is
called the adjoint group; its kernel is the center Z(G). The differential
of Ad is ad : g −→ gl(g), given by ad(x)(y) = [x, y].

Definition. A G-variety X is called homogeneous if G acts transitively.

Let X be a homogeneous G-variety. Choose a point x ∈ X and
consider Gx = StabG(x) the stabilizer of x in G. Then the orbit map
G → X, g 7→ g · x factors through an isomorphism of G-varieties
G/Gx

∼= X. We actually have more than that since on the right-
hand side we have a distinguished point, namely eGx. We have an
isomorphism of G-varieties with a base point (X, x) → (G/Gx, eGx).
Moreover, every homogeneous variety X is smooth, and the morphism
op

X
is surjective.

Lemma 2.1.
(i) Let X be a G-variety, where G acts faithfully, and x ∈ X. Then

Gx is linear.
(ii) Let Z(G) denote the center of G. Then G/Z(G) is linear.
(iii) Abelian varieties are commutative groups.
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Proof. (i) Let OX,x denote the local ring of all rational functions on X
defined at x, and mx denote its maximal ideal consisting of all elements
vanishing at x. We will use the following two facts from commutative
algebra:
OX,x/mn

x is a finite dimensional C-vector space for any n ≥ 1.
Krull’s Intersection Theorem:

⋂
n mn

x = {0}.
Now, Gx acts faithfully on the local ring OX,x and preserves mx. This

induces an action of G on each of the quotientsOX,x/mn
x, n ≥ 1. Denote

by Kn the kernel of the morphism G→ GL(OX,x/mn
x). Then (Kn)n is a

decreasing sequence of closed subgroups of Gx and
⋂
nKn = {e} from

Krull’s Intersection Theorem. Since we are dealing with Noetherian
spaces, Kn must stabilize, i.e. Kn = {e},∀n � 1. Therefore we have
obtained a faithful action of Gx on a finite dimensional vector space,
which represents Gx as a linear algebraic group.

(ii) The adjoint representation has image G/Z(G), a closed subgroup
of GL(g). Thus G/Z(G) is linear algebraic.

(iii) If G is an abelian variety then G/Z(G) is both complete and
affine, hence a point.

�

2.1. Homogeneous bundles.

Definition. Let X be a G-variety and p : E → X a vector bundle. We
say that E isG-linearized ifG acts on E, the projection p is equivariant,

and G acts ”linearly on fibers”, i.e. if x ∈ X, g ∈ G, then Ex
g→ Egx is

linear. We will work only with vector bundles of finite rank.

If X is homogeneous, a G-linearized vector bundle E is also called
homogeneous. If we write (X, x) = (G/H, eH) then H acts linearly on
the fiber Ex. In fact, there is an equivalence of categories :(

homogeneous vector
bundles on G/H

)
'
(

linear representations
of H

)
.

More precisely, if E is a homogeneous vector bundle then Ex is a
linear representation of H. Conversely, if V is a linear representation
of H then

E = G
H
× V := {(g, v) ∈ G× V }/(g, v) ∼ (gh−1, hv)

is a homogeneous vector bundle on X with Ex ∼= V .

Examples: 1) The tangent bundle TG/H corresponds to the quo-
tient of the H-module g (where H acts via the restriction of the Ad
representation) by the submodule h.
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2) The cotangent bundle T ∗G/H , with its sheaf of differential 1-forms

Ω1
G/H , is associated with the module (g/h)∗ = h⊥ ⊆ g.

More generally, if Y is an H-variety then we can form in a similar

way a bundle X := G
H
× Y with projection X → G/H which is G-

equivariant. The fiber over eH is Y . The bundle G
H
× Y is called a

homogeneous fiber bundle.
Remark. X is always a complex space but it is not true in general

that it is an algebraic variety. However, if Y is a locally closed H-stable
subvariety of the projectivization P(V ), where V is an H-module, then
X is a variety (as follows from [17, Prop. 7.1]). This holds e.g. if Y
is affine; in particular, for homogeneous vector bundles X is always a
variety.

Our next aim is to classify complete homogeneous varieties. It is well
known that the automorphism group Aut(X), of a compact complex
space, is a complex Lie group (see [1, Sec. 2.3]). For any topological
group G, we denote by G◦ the connected component of the identity
element. In particular, Aut◦(X) is a complex Lie group.

Theorem 2.1. (C.P. Ramanujam [19]) If X is a complete complex
algebraic variety, then Aut◦(X) is a connected algebraic group with
Lie algebra Γ(X, TX).

Corollary 2.2. Let X be a complete variety. Then X is homogeneous
if and only if TX is generated by its global sections, i.e. if and only if
op

X
: OX ⊗ Γ(X, TX)→ TX is surjective.

Proof. The fact that homogeneity of X implies surjectivity of op
X

was
already noted above.

For the converse, denote G = Aut◦(X). We know from Ramanujam’s
theorem that the Lie algebra g of G is identified with Γ(X, TX). For
x ∈ X denote by ϕx : G → X the orbit map: g 7→ g · x. We observe
that the surjectivity of the differential at the origin (dϕx)e : g→ TxX
is equivalent to the surjectivity of the stalk map (op

X
)x : Γ(X, TX) =

g → TxX, which is assumed to hold. Since ϕx is equivariant with
respect to G and G is homogeneous as a G-variety (considered with
the left multiplication action) it follows that dϕx is surjective at every
point. Hence ϕx is a submersion and therefore Im(ϕx) = G · x is open
in X.

We proved that for every x the orbit G · x is open in X but since X
is a variety, it follows that G · x = X, i.e. X is homogeneous. �
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Corollary 2.3. Let X be a complete variety. Then X is an abelian
variety if and only if TX is the trivial bundle, i.e. if and only if op

X
is

an isomorphism.

Proof. The fact that abelian varieties have trivial tangent bundle is
clear, since algebraic groups are parallelizable.

Let us show the converse implication. From Corollary 2.2 we know
that X is homogeneous and hence can be written as X = G/H where
G = Aut◦(X) and H is the stabilizer of a given point. Now, since the
tangent bundle of X is trivial we have that dim(X) = dim(Γ(X, TX)) =
dim(g) = dim(G) and hence H is finite. Therefore G is complete, that
is, an abelian variety. Now because H fixes a point and is a normal
subgroup of G it follows (from the homogeneity) that it acts trivially
on X from which we get H = {e}. �

In what follows we will extensively make use of the following theorem
of Chevalley (see [8] for a modern proof) regarding the structure of
algebraic groups:

Theorem 2.4. If G is a connected algebraic group, then there exists
an exact sequence of algebraic groups

1 −→ Gaff −→ G
p−→ A −→ 1

where Gaff E G is an affine, closed, connected, normal subgroup, and
A is an abelian variety. Moreover, Gaff and A are unique.

As an easy consequence we obtain the following lemma:

Lemma 2.2. Any connected algebraic group G can be written as G =
GaffZ(G)◦.

Proof. We have

G/GaffZ(G) = A/p(Z(G))︸ ︷︷ ︸
complete

=
G/Z(G)

GaffZ(G)/Z(G)

and since G/Z(G) is affine (see Lemma 2.1), it follows that G/GaffZ(G)
is complete and affine. Hence G = GaffZ(G) = GaffZ(G)◦. �

We also need another important result (see [12] ch. VIII):

Theorem 2.5. (Borel’s fixed point theorem)
Any connected solvable linear algebraic group that acts on a com-

plete variety has a fixed point.

Theorem 2.6. Let X be a complete homogeneous variety. Then X =
A× Y where A is an abelian variety and Y = S/P with S semisimple
and P parabolic in S.
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Proof. Let G := Aut◦(X). Borel’s theorem implies that Z(G)◦aff acting
on X has a fixed point. This group is normal in G and since X is
homogeneous it follows that Z(G)◦aff is trivial. Therefore, according to
Chevalley’s theorem, Z(G)◦ =: A is an abelian variety and Gaff ∩ A is
finite (since it is affine and complete).

By Lemma 2.2, the map Gaff × A→ G, defined by (g, a) 7→ ga−1, is
a surjective morphism of algebraic groups. Its kernel is isomorphic to
Gaff∩A. Thus, G ' (Gaff×A)/K where K is a finite central subgroup.

The radical R(Gaff) has a fixed point in X by Borel’s theorem. Hence
it acts trivially, and we can suppose Gaff semisimple. Likewise, we
derive that Z(Gaff) = {e}, i.e. Gaff is adjoint. In particular, Gaff ∩A =
{e}, i.e., K = {e}. We can conclude that G = Gaff × A.

Let x ∈ X and consider Gx = StabG(x). From Lemma 2.1 it follows
that Gx is affine and therefore G◦x ⊆ Gaff. Since G/Gx is complete,
G/G◦x and Gaff/G

◦
x are also complete. This implies that G◦x =: P is a

parabolic subgroup in Gaff.
Now, consider the projection G = Gaff×A→ Gaff and its restriction

p1 : Gx → Gaff, with kernel Ax. Since Ax = A ∩ Gx, it follows that it
has a fixed point and therefore acts trivially. Hence Ax = {e}. Since
[p1(Gx) : P ] <∞ and P is parabolic, hence connected and equal to its
normalizer, we find that p1(Gx) = P . We have proved that Gx = P
and putting all together we get X = Gaff/P × A. �

3. Log-homogeneous varieties

Definition. Let X be a smooth variety over C and D an effective,
reduced divisor (i.e. a union of distinct subvarieties of codimension 1).
We say that D has normal crossings if for each point x ∈ X there exist
local coordinates t1, ..., tn at x such that, locally, D is given by the
equation t1 · · · tr = 0 for some r ≤ n. More specifically, the completed

local ring ÔX,x is isomorphic to the power series ring C[[t1, . . . , tn]], and
the ideal of D is generated by t1 · · · tr.
Definition. For a pair (X,D) consisting of a smooth variety and a
divisor with normal crossings, we define the sheaf of logarithmic vector
fields

TX(− logD) =

{
derivations of OX which
preserve the ideal sheaf of D

}
⊂ TX .

Example: X = Cn and D = (t1 · · · tr = 0), r ≤ n the union of
some of the coordinate hyperplanes. Here TX(− logD) is generated at
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x = (0, ..., 0) by t1
∂

∂t1
, . . . , tr

∂

∂tr
,

∂

∂tr+1

, . . . ,
∂

∂tn
.

The sheaf TX(− logD) is locally free, hence corresponds to a vector
bundle. But it does not correspond to a subbundle of the tangent bun-
dle, since their quotient has support D, and hence is torsion. Observe
that TX(− logD) restricted to X \D is precisely TX\D.

If we take the dual of the sheaf of logarithmic vector fields, we obtain
the sheaf of rational differential 1-forms Ω1

X(logD) with poles of order
at most 1 along D, called the sheaf of differential forms with logarithmic
poles. For the previous example we see that Ω1

X(logD) is generated at

x = (0, ..., 0) by
dt1
t1
, ...,

dtr
tr
, dtr+1, . . . , dtn.

Now, suppose a connected algebraic group G with Lie algebra g acts
on X and preserves D. We get the map

opX,D : g −→ Γ(X, TX(− logD)) ,

and its sheaf version

op
X,D

: OX ⊗ g −→ TX(− logD) .

Definition. We call a pair (X,D) as above log-homogeneous under
G, if op

X,D
is surjective. We call it log-parallelizable if op

X,D
is an

isomorphism.

Examples: 1) Let X = Cn, D = (t1 · · · tn = 0), and let G = (C∗)n
act on X by coordinate-wise multiplication. Then g = Cn acts via

(t1
∂

∂t1
, . . . , tn

∂

∂tn
) and actually in this case op

X,D
is an isomorphism,

so that (X,D) is log-parallelizable.

2) Let X = P1. Its automorphism group G = PGL(2) acts transi-
tively, so X is homogeneous. Let B be the subgroup of G consisting of

the images of the matrices of the form

(
a b
0 d

)
, and let U ⊂ B consist

of the images of the matrices of the form

(
1 b
0 1

)
. Then B acts on

X with two orbits: the fixed point ∞ and its complement. Moreover,
(P1,∞) is log-homogeneous for B.

On the other hand, U acts on P1, with the same orbits, but the
action on (P1,∞) is not log-homogeneous.
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The 1-torus C∗ =

(
a 0
0 a−1

)
acts on (P1, {0,∞}), which is is log-

parallelizable under this action.

3) Smooth toric varieties: let X be a smooth algebraic variety on
which a torus T = (C∗)n acts with a dense open orbit, and trivial
stabilizer for points in that orbit. Thus, T can be identified with its
open orbit in X. Put D = X \ T . It can be shown that D has normal
crossings, and the pair (X,D) is log-parallelizable for the T -action.
More precisely, a smooth and complete toric variety admits a covering
by open T -stable subsets which are isomorphic to Cn where T acts
by coordinate-wise multiplication. Noncomplete smooth toric varieties
admit a smooth equivariant completion satisfying the above (for these
facts, see [18, Sec. 1.4]).

Remark. If (X,D) is log-homogeneous under a group G, then X0 :=
X \D consists of one G-orbit. Indeed, the map op

X0
: OX0⊗g −→ TX0

is surjective, and the assertion follows by arguing as in the proof of
Corollary 2.2. If (X,D) is log-parallelizable, then the stabilizer of any
point in X \D is finite.

3.1. Criteria for log-homogeneity.

Criterium 1. Let X = G
H
× Y be a homogeneous fibre bundle. Then

every G-stable divisor in X is of the form D = G
H
× E with E = D∩Y

an H-invariant divisor in Y . Moreover, (X,D) is log-homogeneous
(resp. log-parallelizable) for G, if and only if (Y,E) is log-homogeneous
(resp. log-parallelizable) for H◦.

(The proof is easy, see [7, Prop. 2.2.1] for details).
The second criterium formulated below uses a stratification of the

divisor. Let X be a G-variety, where G is a connected algebraic group,
and let D be an invariant divisor with normal crossings. A stratification
of D is obtained as follows. Let

X1 = D, X2 = Sing(D), . . . , Xm = Sing(Xm−1), . . .

Now, the strata are taken to be the connected components of Xm−1 \
Xm. Each stratum is a smooth locally closed subvariety, and is pre-
served by the G-action. Let S be a stratum and x ∈ S be a point. Let
t1, ..., tn be local coordinates for X around x such that D is defined by
the equation t1 · · · tr = 0. The normal space to S at x is defined by

N = NS/X,x = TxX/TxS.
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The stabilizer Gx acts on TxX, TxS and N . The normal space N can
be written as a direct sum of 1-dimensional subspaces:

N = L1 ⊕ · · · ⊕ Lr
where

Li = NS/(t1=···=bti=···=tr=0),x

Since the divisor D is G-invariant, the connected component G◦x pre-
serves each of the lines Li, and the full stabilizer Gx is allowed only to
permute them. Thus, we obtain a map

ρx : G◦x −→ (C∗)r

with differential

dρx : gx −→ Cr .

We can now formulate

Criterium 2. The pair (X,D) is log-homogeneous (resp. log-
parallelizable) for G, if and only if each stratum S consists of a single
G-orbit and for any x ∈ S the map dρx is surjective (resp. bijective).

Furthermore, if these conditions hold, then there is an exact sequence

0 −→ g(x) −→ g −→ TX(− logD)x −→ 0

where g(x) = ker(dρx) is the stabilizer of the point x and all normal to
S directions at that point.

Proof. 1 Since TX(− logD) preserves the ideal sheaf of S, we have a
morphism

TX(− logD)|S −→ TS .
Hence, at the point x there is a linear map

p : TX(− logD)x −→ TxS .

In suitable local coordinates t1, ..., tn for X around x, the map p is
given by the projection

span{t1
∂

∂t1
, ..., tr

∂

∂tr
,

∂

∂tr+1

, ...,
∂

∂tn
} −→ span{ ∂

∂tr+1

, ...,
∂

∂tn
} .

So, we have an exact sequence

0 −→ span{t1
∂

∂t1
, ..., tr

∂

∂tr
} −→ TX(− logD)x

p−→ TxS −→ 0 .

1This proof was not presented in the lectures, and is taken from [7, Prop. 2.1.2].
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Observe that the composition p ◦ opX,D : g −→ TxS equals opS, and
hence yields an injective map ix : g/gx −→ TxS. Thus we have a
commutative diagram, where the rows are exact sequences:

0 → gx → g → g/gx → 0
↓ dρx ↓ opX,D ↓ ix

0 → span{t1 ∂
∂t1
, ..., tr

∂
∂tr
} → TX(− logD)x → TxS → 0

Since ix is injective, the snake lemma implies that: opX,D is surjective
if and only if dρx and ix are surjective. Notice that ix is onto exactly
when the orbit G · x is open in S. This proves the first statement of
the criterium.

The second statement follows: if the conditions hold, then we have
an isomorphism ker(dρx)

∼−→ ker(opX,D). This yields the desired exact
sequence. �

Using the above criteria we can now deduce the following character-
ization of log-parallelizable varieties, due to Winkelmann (see [23]).

Theorem 3.1. Let X be a smooth, complete variety, and D be a
divisor with normal crossings. Let G = Aut◦(X,D). Then (X,D) is
log-parallelizable for G, if and only if Gaff is a torus and X is a fibre

bundle of the form X = G
Gaff

× Y , where Y is a smooth complete toric
variety under Gaff.

In particular, according to Chevalley’s theorem, the automorphism
group G must be an extension of an abelian variety by a torus.

Proof. If we suppose that X has the described fibration properties,
then log-parallelizability follows directly from Criterium 1 above.

To prove the other direction we will use the Albanese fibration, which
is sketched below (see [7, Sec. 2.4] for details). SupposeG is a connected
algebraic group, and X is a G-variety containing an open G-orbit, say
X0. Let H be the stabilizer of a given point x ∈ X0, so that we can
write X0

∼= G/H. We also have the exact sequence

1 −→ Gaff −→ G
p−→ A −→ 1

given by Chevalley’s theorem. Then GaffH is a closed subgroup of G.
Notice that this subgroup is independent of the choice of the base point
x ∈ X0 since the quotient G/Gaff = A is commutative and hence we
have GaffgHg

−1 = GaffH for g ∈ G. Moreover, the quotient G/GaffH =
A/p(H) is an abelian variety. By Weil’s extension theorem (see e.g. [16,
Thm. 3.1], the morphism

α0 : G/H −→ G/GaffH
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extends to a morphism 2

α : X −→ G/GaffH .

This morphism is G-equivariant, and hence defines a fibre bundle

X = G
GaffH
× Y

where the fibre Y = α−1α(x) is smooth and complete. If G act
faithfully on X (this is the case for the automorphism group), then
H is affine by Lemma 2.1, and hence H◦ ⊂ Gaff. We can deduce
that (GaffH)◦ = Gaff. Now, Criterium 1 tells us that (X,D) is log-
parallelizable under G, if and only if (Y,D ∩ Y ) is log-parallelizable
under Gaff.

Having this construction in hand we can now proceed with the proof
of the theorem. Suppose (X,D) is log-parallelizable for G. Then,
with the above notation, it follows that (Y,D ∩ Y ) is log-parallelizable
under Gaff. Since Y is complete, there exists y ∈ Y such that the orbit
Gaff · y is closed in Y (y must necessarily belong to the divisor D ∩ Y ).
Then the stabilizer (Gaff)y is a parabolic subgroup of Gaff, in particular
connected. From Criterium 2, it follows that (Gaff)◦y is a torus. But
this implies that Gaff itself must be a torus. The variety Y is then a
toric variety under Gaff.

Furthermore, since G = GaffZ(G)◦ (Lemma 2.2), it follows that the
group G itself is commutative. Thus we must have H = {e}, and

finally, X = G
Gaff

× Y . �

Example: Let E be an elliptic curve. Let L be a line bundle on
E of degree zero. Thus L is of the form OE(p − q) for some p, q ∈ E.
Then G := L \ (zero section) is a principal C∗-bundle on E. In fact, G
is a connected algebraic group and we have an exact sequence

1 −→ C∗ −→ G −→ E −→ 0

(as follows e.g. from [16, Prop. 11.2]). Take X = P(L ⊕ OE). Then
the projection X −→ E is a G-equivariant P1-bundle, that is, X can

be written as X = G
C∗

× P1. The divisor is D = G
C∗

× {0,∞}.

3.2. The Tits morphism. Let (X0, x0) = (G/H, eH) be a homoge-
neous space. For each x ∈ X0, the isotropy Lie algebra is denoted by

2The abelian variety G/GaffH is denoted by A(X), and the morphism α is called
the Albanese morphism. This is a universal morphism to abelian varieties.
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gx. All these isotropy Lie algebras are conjugate to h, and in particular
have the same dimension. Let

L := {l ⊂ g Lie subalgebra | dim l = dim h},

the variety of Lie subalgebras of g. The group G acts on L via the
adjoint action on g. We have a G-equivariant map

τ : X0 −→ L
x 7−→ gx .

This map is called the Tits morphism. The image of τ is

τ(X0) = G · h = G/NG(h) = G/NG(H◦) .

Thus τ is a fibration, with fibre

NG(H◦)/H = (NG(H◦)/H◦)/(H/H◦) .

Observe that NG(H◦)/H◦ is an algebraic group, and H/H◦ is a finite
subgroup. Since G = GaffZ(G)◦, and τ is clearly Z(G)-invariant, the
image τ(X0) is a unique orbit under Gaff. If the action of G on X0 is
faithful, then H is affine, so that H◦ ⊂ Gaff, and hence

τ(X0) = Gaff/NGaff
(H◦) .

Now, let (X,D) be a log-homogeneous variety for a group G, and
take X0 = X \ D. Then the Tits morphism defined on X0 as above,
extends to X by

τ : X −→ L
x 7−→ g(x) .

Notice that the Tits morphism is constant if and only of (X,D) is
log-parallelizable for G.

Remark. If X is a complete homogeneous variety, write X = A×Y
according to Theorem 2.6. Then the Albanese and Tits morphisms are
given by the two projections of this Cartesian product; respectively

α : X −→ A , τ : X −→ Y .
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4. Local structure of log-homogeneous varieties

Let (X,D) be a complete log-homogeneous variety for a connected
linear algebraic group G. Then there are only finitely many orbits of
G in X, and they form a stratification (Criterium 2). Let Z = G · z =
G/Gz be a closed orbit, through a given point z. The stabilizer Gz is
then a parabolic subgroup of G. Let Ru(G) and Gred be respectively
the unipotent radical and a Levi subgroup (i.e., a maximal connected
reductive subgroup) of G, so that

G = Ru(G)Gred .

(Gred is unique up to conjugation by an element in Ru(G).) Then Gred

acts transitively on Z and we have

Z = Gred · z = Gred/(Gred ∩Gz) .

with Gred∩Gz a parabolic in Gred. We are aiming to describe the local
structure of X along Z.

More generally, let G be a connected reductive group acting on a
normal variety X. Suppose Z ⊂ X is a complete orbit of this action.
Fix a point z ∈ Z. The stabilizer Gz is a parabolic subgroup of G. Let
P be an opposite parabolic, i.e., L := P ∩ Gz is a Levi subgroup of
both Gz and P . Then P · z = Ru(P ) · z is an open cell in Z. In fact,
the action of the unipotent radical on this orbit is simply transitive, so
that Ru(P ) · z ∼= Ru(P ). With this notation, we have the following

Theorem 4.1. There exists a subvariety Y ⊂ X containing z, which
is affine, L-stable, and such that the map

ψ : Ru(P )× Y −→ X
(g, y) 7−→ g · y

is an open immersion. In particular Y ∩ Z = {z}.

Proof. 3 First notice that X can be replaced with any G-stable neigh-
borhood of Z. A result of Sumihiro (see [21]) implies that such a neigh-
borhood can be equivariantly embedded in a projective space P(V ),
where V is a G-module. We may even assume that X is the entire
projective space P(V ).

In this case V contains an eigenvector vλ for Gz with weight λ, such
that z = [vλ]. There exists an eigenvector f = f−λ ∈ V ∗ for P with
weight −λ, such that f(vλ) 6= 0. Let Xf = P(V )f ∼= X \ (f = 0) be
the localization of X along f . Our aim is to find an L-stable closed

3This proof, due to Knop (see [13]), was not presented in the lectures, and is
taken from the professor’s notes.
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subvariety Y ⊂ Xf , such that ψ : Ru(P )×Y −→ Xf is an isomorphism.
It is sufficient to construct a P -equivariant map

ϕ : Xf −→ P/L ∼= Ru(P ) .

Then we may take Y = ϕ−1(eL).
Start with

ϕ : Xf −→ g∗

[v] 7−→
(
ξ 7→ (ξf)(v)

f(v)

)
Note that for [v] ∈ Xf and ξ ∈ p we have

ϕ[v](ξ) =
(ξf)(v)

f(v)
=
−λ(ξ)f(v)

f(v)
= −λ(ξ) .

Now, choose a G-invariant scalar product on g. This choice yields an
identification g∗ ∼= g. The composition of this identifying map and ϕ
is a P -equivariant map, still denoted by ϕ : Xf −→ g. Let ζ ∈ g be
the element corresponding to −λ ∈ g∗. Let n be the nil-radical of p.
We have n = p⊥, and hence ϕ : Xf −→ ζ + n. The affine space ζ + n
consists of a single P -orbit, and we have Pζ = L. Thus

ϕ(Xf ) = ζ + n ∼= P · ζ ∼= P/L .

We have obtained the desired fibre bundle structure on Xf . �

Theorem 4.2. Let (X,D) be a complete, log-homogeneous variety
under a connected affine algebraic group G. Let G = Ru(G)Gred be
a Levi decomposition. Let Z = G · z be a closed orbit. Let P,L, Y
be as in Theorem 4.1. Then Y ∼= Cr, where L acts via a surjective
homomorphism to (C∗)r.

Proof. The tangent space TzX is a Gz-module. The subspace TzZ
tangent to the orbit Z is a submodule. The normal space to Z at that
point is

N = TzX/TzZ ,

which is in turn a Gz-module. Put r = dimN . From our Criterium
2 for log-homogeneity (paragraph 3.1), we deduce that Gz = G◦z acts
on N diagonally, via a surjective homomorphism Gz −→ (C∗)r. So
the unipotent radical Ru(Gz) acts trivially, and the restriction to the
Levi subgroup L −→ (C∗)r is surjective as well. Let χ1, ..., χr be the
corresponding characters of L.

Theorem 4.1 implies that we can decompose TzX into a direct sum
of L-modules as

TzX = TzZ ⊕ TzY .
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As a consequence, there is an isomorphism of L-modules

TzY ∼= N .

It follows that L acts on TzY diagonally, with weights χ1, ..., χr. Now,
let O(Y ) be the coordinate ring of Y , and m the maximal ideal of z.
Then L acts on the cotangent space m/m2 via −χ1, ...,−χr. The action
on mk/mk+1 is given by the characters of the form −k1χ1 − · · · − krχr
with ki ≥ 0 and

∑
ki = k. Since O(Y ) is filtered by the powers mk,

and is a semisimple L-module, it follows that O(Y ) ∼= C[t1, ..., tr]. The
coordinate ti is taken to be an L-eigenvector in m mapped to the i-
th coordinate in m/m2, an eigenvector with character −χi. We can
conclude that Y ∼= Cr with a diagonal action of L. �

Corollary 4.3. With the notation from the above theorem, let B ⊂
Gred be any Borel subgroup. Then B has an open orbit in X.

Proof. Since all Borel subgroups of Gred are conjugate, it suffices to
prove the statement for a particular one. So we can assume that B ⊂
P . Then we can write B = Ru(P )(B ∩ L), and B ∩ L is a Borel
subgroup of L. We have Z(L)◦ ⊂ B ∩ L. By Theorem 4.2, Z(L)◦ has
an open dense orbit in Y . By Theorem 4.1, we have an open immersion
Ru(P )× Y −→ X. This proves the corollary. �

5. Spherical varieties and classical homogeneous spaces

Let G be a connected reductive group over C. Let X be a G-variety.

Definition. X is called spherical if it contains an open B-orbit, where
B is a Borel subgroup of G.

Definition. A closed subgroup H ⊂ G is called spherical if the homo-
geneous variety G/H is spherical.

Exercise. Show that G/H is spherical if and only if there exists a
Borel subgroup B such that the set BH is open in G, if and only if
g = b + h for some Borel subalgebra b ⊂ g.

Recall that the Tits morphism for a homogeneous space X = G/H
is given by

τ : X −→ L
x 7−→ gx



16 ———

where L is the variety of all Lie subalgebras of g (one may also con-
sider those of fixed dimension dim h as was done before). The map is
G-equivariant, and its image is isomorphic to G/NG(h). Thus τ defines
a homogeneous fibration τ : G/H −→ G/NG(h).

Examples: 1) Every complete log-homogenous variety under a lin-
ear algebraic group G is spherical under a Levi subgroup Gred (see
Corollary 4.3).

2) Flag varieties : Every homogeneous space X = G/P , where P is a
parabolic subgroup, is spherical. This follows from the properties of the
Bruhat decomposition. Since parabolic subgroups are self-normalizing,
i.e. P = NG(p), the Tits morphism is an isomorphism onto its image.

3) All toric varieties are spherical. Here G = (C∗)n = B is its own
Borel subgroup. The Tits morphism here is constant.

4) Let U ⊂ G be a maximal unipotent subgroup. Let n ⊂ g be
the corresponding Lie subalgebra. Then we have the decomposition
g = b−⊕ n = n−⊕ h⊕ n. Thus the variety G/U is spherical. It can be
written as a homogeneous fibre bundle in the following form

G/U = G
B
× B/U .

The fibre B/U is isomorphic to a maximal torus T in G (we have
B = TU). The base space is the flag variety G/B.

Now, let Y be a complete smooth toric variety under the torus T .

Then G/U is embedded in G
B
× Y which is smooth, complete and

log-homogenous (see Criterium 1, paragraph 3.1). Thus G
B
× Y is

spherical. The Tits morphism is the projection map G
B
× Y −→ G/B

(recall that NG(n) = B).
Remark. There are some other compactifications of G/U which are

not log-homogenous. For example, if

G = SL2 , U =

(
1 ∗
0 1

)
,

then we have the embeddings SL2/U ↪→ C2 = (SL2/U) ∪ {0} ↪→ P2 =
(SL2/U) ∪ {0} ∪ P1 (the first embedding is gU 7→ g · e1), and we see
that {0} is an isolated orbit of codimension 2.
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5) Horospherical varieties : Suppose we have a subgroup H satisfying
U ⊂ H ⊂ G for a maximal unipotent subgroup U . It is an exercise to
show that the normalizer P := NG(U) is parabolic, [P, P ] ⊂ H, and
P/H is a torus. Then P/H can be embedded in a (complete, smooth)

toric variety Y and then X = G
P
× Y is an equivariant completion of

G/H with Tits morphism τ : X → G/P .

6) Reductive groups : Let X = G, where G × G acts by (x, y) · z =
xzy−1. Then (G × G)e = diag(G). Note that X is spherical, since
B− × B is a Borel subgroup of G × G whenever B, B− are opposite
Borel subgroups of G, and then (B−×B) ·e = B−B is open in G (since
b− + b = g).

Let G be semisimple and adjoint (i. e. Z(G) = {e}). Consider the
representation G→ GL(Vλ) where Vλ is a simple G-module of highest
weight λ. This defines a map G→ PGL(Vλ) that is injective for regular
(dominant) λ. Let G be the closure of G in P(End(Vλ)). Then we have
the following result, due to De Concini and Procesi (see [11]).

Theorem 5.1. G is a smooth log-homogenous G × G-variety with a
unique closed orbit, and is independent of the choice of λ.

Recall that End(Vλ) ∼= V ∗λ ⊗ Vλ as a G×G-module. Let f−λ ⊗ vλ ∈
V ∗λ ⊗Vλ be an eigenvector of B−×B formed as the tensor product of a
highest weight vector vλ ∈ Vλ and a corresponding functional f−λ ∈ V ∗λ .
Then f−λ ⊗ vλ is an eigenvector for B− ×B, and any such eigenvector
is a scalar multiple of f−λ ⊗ vλ. Therefore, the orbit

(G×G) · [f−λ ⊗ vλ] ⊂ P(End(Vλ))

is the unique closed orbit in P(End(Vλ)), and hence in G.
The main step in the proof of the remaining assertions is to obtain

a precise version of the local structure theorem 4.1 for G, with z :=
[f−λ ⊗ vλ], P := B × B−, and L := T × T . Specifically, there exists a
T × T -equivariant morphism

ϕ : Cr −→ G, (0, . . . , 0) 7−→ z,

where T × T acts on Cr via

(t1, t2) · (z1, . . . , zr) := (α1(t1t
−1
2 )z1, . . . , αr(t1t

−1
2 )zr)

(α1, . . . , αr being the simple roots), such that the morphism

ψ : U × U− × Cr −→ G, (x, y, z) 7−→ (x, y) · ϕ(z)
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is an open immersion; in particular, ϕ is an isomorphism over its image,
the subvariety Y of Theorem 4.1. Since the image of ψ meets the unique
closed orbit, its translates by G form an open cover of G; this implies
e.g. the smoothness of G.

The regularity assumption for λ cannot be omitted, as shown by the
following

Example: Let G = PGLn ⊂ P(Matn) = X (so that λ is the first
fundamental weight). Then D = X \ G = (det = 0). This is an irre-
ducible divisor, singular along matrices of rank ≤ n− 2. Thus, (X,D)
is not log-homogeneous for n ≥ 3.

7) Symmetric spaces : Let G be a connected reductive group and
let θ be an involutive automorphism of G. Let Gθ be the subgroup of
elements fixed by θ. This is a reductive subgroup, and the homogeneous
space G/Gθ is affine; it is called a symmetric space (see [20], that we
will use as a general reference for symmetric spaces).

The involution θ of G yields an involution of G/Gθ that fixes the
base point; one can show that this point is isolated in the fixed locus of
θ. Since G/Gθ is homogeneous, it follows that each of its points is an
isolated fixed point of an involutive automorphism; this is the original
definition of a symmetric space, due to E. Cartan.

A symmetric space is spherical, by the Iwasawa decomposition that
we now recall. A parabolic subgroup P ⊂ G is called θ-split if P and
θ(P ) are opposite. Let P be a minimal θ-split parabolic subgroup.
Then L := P ∩ θ(P ) is a θ-stable Levi subgroup of P . In fact, the
derived subgroup [L,L] is contained in Gθ; as a consequence, every
maximal torus T ⊂ L is θ-stable. Thus, T = T θA, where A := {t ∈
T |θ(t) = t−1}, and T θ ∩ A is finite. In fact, A is a maximal θ-split
subtorus, i.e., a θ-stable subtorus where θ acts via the inverse map.

The Iwasawa decomposition asserts that the natural map

Ru(P )× A/Aθ −→ G/Gθ

is an open immersion. Since Ru(P )A is contained in a Borel subgroup
of G, we see that the symmetric space G/Gθ is spherical. Another
consequence is the decomposition of Lie algebras

n(p)⊕ a⊕ gθ = g,

where n denotes the nilradical (see [22, Prop. 38.2.7]).
(For instance, consider the group G × G and the automorphism θ

such that θ(x, y) = (y, x). Then (G×G)θ = diag(G).)
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Next, consider a G-module Vλ containing non-zero Gθ-fixed points.
Let v be such a fixed point; then we have a G-equivariant map

G/Gθ −→ Vλ, gGθ 7−→ g · v.

One can show that dimV Gθ

λ is either 1 or 0 (see Proposition 5.1).
If it is 1, the weight λ is called spherical. Spherical weights form a
finitely-generated submonoid of the monoid of dominant weights.

Theorem 5.2. Let G be a semisimple adjoint group, θ an involution,
and λ a regular spherical weight. Then the map G/Gθ → P(Vλ) is
injective and the closure of its image is a smooth, log-homogenous G-
variety, independent of λ and containing a unique closed orbit G· [vλ] ∼=
G/θ(P ).

This generalization of Theorem 5.1 is again due to De Concini and
Procesi; they have also shown that the Tits morphism

X := G · [vλ] −→ L

is an isomorphism over its image. This yields an alternative construc-
tion of X as the closure of G · gθ in the variety of Lie subalgebras.

Proposition 5.1. Let G be a connected reductive group, and H ⊂ G
a closed subgroup. Then H is spherical if and only if for any dominant
weight λ and any character χ ∈ Hom(H,C∗) we have

dim(Vλ)
(H)
χ ≤ 1 ,

where (Vλ)
(H)
χ denotes the subspace of all H-eigenvectors of weight χ.

Moreover, if H is reductive and dimV H
λ ≤ 1 for any λ, then H is

spherical.

Proof. It is known that the G×G-module C[G] can be decomposed as
follows (see e.g. [22, Thm. 27.3.9])

C[G] ∼=
⊕

λ dominant weight

V ∗λ ⊗ Vλ.

The embeddings of the direct summands are given by

f ⊗ v 7−→ af,v = (g 7→ f(gv)).

Let H be spherical and consider v1, v2 ∈ (Vλ)
(H)
χ . Let B be a Borel

subgroup such that BH is open in G, and choose f ∈ (V ∗λ )(B). Then

af,v2

af,v1

∈ C(G)
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is an invariant for the right H-action. It is also an invariant for the left
B-action. Thus,

af,v2

af,v1

∈ C(G)B×H = C∗,

since B × H has an open orbit in G. Hence, there exists t ∈ C∗ such
that af,v2 = taf,v1 . Now,

0 = f(gv2)− tf(gv1) = f(gv2 − tgv1) = f(g(v2 − tv1)).

But Vλ is irreducible and f 6= 0. Hence v2 = tv1. This shows the “only
if” part of the first assertion.

We now show the second assertion. Let H be reductive and such
that dimV H

λ ≤ 1 for all dominant λ. By a theorem of Rosenlicht, to
show that G/H contains an open B-orbit, it suffices to show that every
rational B-invariant function on G/H is constant, i.e., C(G/H)B = C∗.
Since G/H is affine, C(G/H) is the fraction field of C[G/H]. Let
f ∈ C(G/H)B. Then the set of all “denominators” D ∈ C[G/H]
such that fD ∈ C[G/H], is a non-zero B-stable subspace of C[G/H].
Hence this subspace contains an eigenvector of B, i.e., we may write

f = f1/f2, where f1, f2 ∈ C[G/H]
(B)
µ = C[G]

(B)×H
µ . Using the above

decomposition of the G×G-module C[G], it follows that

fi = aφ,vi (i = 1, 2)

where φ ∈ (V ∗λ )(B), v1, v2 ∈ V H
λ , and Vλ = V ∗µ . Thus, v2 = tv1, and

f = t.
The proof in the non-reductive case relies on the same ideas; the

details will not be given here. �

Proposition 5.2. Let H ⊂ G be a spherical subgroup, and NG(H) its
normalizer. Then NG(H)/H is diagonalizable (i. e., it is isomorphic to
a subgroup of some (C∗)N). Moreover, NG(H) = NG(h) = NG(H◦).

Proof. For any homogeneous space G/H, the quotient NG(H)/H acts
on G/H on the right as follows:

γ · gH = gγ−1H = gHγ−1.

This yields an isomorphism

NG(H)/H = AutG(G/H).

Also, note that NG(H) ⊂ NG(H◦) = NG(h).
We now prove the first assertion in the case thatH is reductive. Then

the natural action of NG(H)/H on C[G/H] is faithful, since C(G/H)
is the fraction field of C[G/H]. But we have a decomposition

C[G/H] ∼=
⊕
λ

V ∗λ ⊗ V H
λ
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as G × NG(H)/H-modules, in view of the decomposition of C[G] as
G×G-modules. Moreover, each non-zero V H

λ is a line, by Proposition
5.1. Thus, NG(H)/H acts on V H

λ via a character χλ, and this yields
the desired embedding NG(H)/H ↪→ (C∗)N .

The argument in the case of a non-reductive subgroup H follows
similar lines, by replacing invariants of H with eigenvectors.

It remains to show that NG(H) ⊃ NG(H◦). For this, observe that
H◦ is spherical. Hence the group NG(H◦)/H◦ is diagonalizable; in par-
ticular, commutative. So NG(H◦)/H◦ normalizes H/H◦, i.e., NG(H◦)
normalizes H. �

We state without proof the following important result, with contribu-
tions by several mathematicians (among which Demazure, De Concini,
Procesi, Knop, Luna) and the final step by Losev (see [15]).

Theorem 5.3. Let G/H be a spherical homogenous space. Then

(1) G/H admits a log-homogenous equivariant completion.
(2) If H = NG(H), then G · h ⊂ L is a log-homogenous equivariant

completion with a unique closed orbit.

Definition. A wonderful variety is a complete log-homogenous G-
variety X with a unique closed orbit.

The G-orbit structure of wonderful varieties is especially simple: the
boundary divisor has the form D = D1 ∪ . . . ∪Dr, with Di irreducible
and smooth. The closed orbit is D1 ∩ . . . ∩Dr, and the orbit closures
are precisely the partial intersections Di1 ∩ . . . ∩ Dis , where 1 ≤ i1 <
· · · < is ≤ r. In particular, r is the codimension of the closed orbit,
also known as the rank of X.

For a wonderful variety X, the Tits morphism τ : X → L is finite.
In particular, the identity component of the center of G acts trivially
on X, and hence we may assume that G is semisimple.

Let us discuss some recent results and work in progress on the clas-
sification of wonderful varieties.

Theorem 5.4. There exist only finitely many wonderful G-varieties
for a given semisimple group G.

This finiteness result, a consequence of [2, Cor. 3.2], is obtained
via algebro-geometric methods (invariant Hilbert schemes) which are
non-effective in nature. On the other hand, a classification program
developed by Luna has been completed for many types of semi-simple
groups: in type A by Luna himself (see [14]), D by Bravi and Pezzini
(see [3]), E by Bravi (see [4]) and F by Bravi and Luna (see [6]).
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There is a geometric approach to Luna’s program, initiated by Bravi
and Cupit-Foutou (see [5]) via invariant Hilbert schemes, and currently
developed by Cupit-Foutou (see [9, 10]). The starting point is the
following geometric realization of wonderful varieties: let X be such

a variety, with open orbit G/H, and let v ∈ (Vλ)
(H)
χ , where λ and χ

are regular. Then X is the normalization of the orbit closure G · [v] ⊂
P(Vλ).

This orbit closure may be non-normal, as shown by the example of
P1 × P1 viewed as the wonderful completion of SL2/T . If V = Vn =

C[x, y]n and v = xpyq, p 6= q, then SL2 · [v] ⊂ P(V ) is singular, but its
normalization is P1×P1. (Here SL2 acts on C[x, y]n in the usual way.)

Finally, the structure of general complete log-homogeneous varieties
reduces to those of wonderful and of toric varieties, in the follow-
ing sense. Let X be a log-homogenous equivariant completion of a
spherical homogeneous space G/H. Let X be the wonderful comple-
tion of G/NG(H). Then the natural map G/H → G/NG(H) extends
(uniquely) to an equivariant surjective map τ : X → X. Moreover, the
general fibers of τ are finite disjoint unions of complete, smooth toric
varieties. (Indeed, τ is just the Tits morphism, and its general fibers
are closures of NG(H)/H, a finite disjoint union of tori). We refer to
[7, Sec. 3.3] for further results on that reduction.
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