
1 Introduction

Let G be a simple algebraic group over C with a simply laced Dynkin diagram, let B ⊂ G be a Borel
subgroup, and let T ⊂ B be a maximal torus.

Denote the corresponding root system by ∆, the subset of positive roots by ∆+, and the set of simple
roots by Π. Denote the simple roots by α1, . . . , αr. Denote the corresponding fundamental weights by
$1, . . . , $r. Denote the Weil group by W . Denote the reflection correspnding to a root α by σα. Denote
the length of an element w ∈W by `(w).

Consider the generalized flag variety G/B. We have two canonical kinds of subvarieties. First, one
can associate a divisor to any weight λ, denote this divisor by Dλ. Second, one can assciate a subvariety
of codimension k to any Weil group element w of length k, denote this subvariety by Xw.

Note that Xσαi
= D$i .

The classes of Xw in Chow group for all w ∈W form a basis of the Chow group as of a linear space.
In particular, every monomial consisting of divisors D$i equals a linear combination of some classes of
Xw:

[D$1
]n1 [D$2

]n2 . . . [D$r ]
nr =

∑
Cw,n1,...,nr [Xw].

We fix the notation Cw,n1,...,nr in the whole paper. Our goal is to solve the following problem:
Suppose that G is of type E8. What is the maximal number of divisors that we can multiply (i. e.

what is the maximal value of the sum n1 + · · ·+ nr) such that at least one coefficient Cw,n1,...,nr equals
1?

2 Preliminaries

We choose the scalar multiplication on ∆ so that the scalar square of each simple root is 2. The scalar
product of two roots α and β is denoted by (α, β). Note that with this choice of scalar multiplication,
we can use a simple formula for reflection: usually, we write

σαβ = β − 2(α, β)

(α, α)
α.

But with our chouce of scalar product, we can write

σαβ = β − (α, β)α.

We use the following Pieri formula:

Proposition 2.1 (add reference!!!). Let $i be a simple weight, and let w ∈W . Then

[D$i ][Xw] =
∑
α∈∆+

`(σαw)=`(w)+1

$i(α)[Xσαw].

Note that $i(α) is precisely the coefficient at αi in the decomposition of α into a linear combination
of simple roots.

We will use the following well-known combinatorial Hall representative lemma and its generalization.

Lemma 2.2 (Hall representative lemma). Let A1, . . . , An be several finite sets. Suppose that for each
subset I ⊆ {1, . . . , n} one has | ∪i∈I Ai| ≥ |I|. Then one can choose ai ∈ Ai for all i (1 ≤ i ≤ n) so that
all elements ai are different.

Lemma 2.3 (Geralized Hall representative lemma). Let A1, . . . , Ar be several finite sets, and let
k1, . . . , kr ∈ N. Suppose that for each subset I ⊆ {1, . . . , n} one has

| ∪i∈I Ai| ≥
∑
i∈I

ki

Then one can choose ai ∈ Ai for all i (1 ≤ i ≤ n) so that all elements ai are different.
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Proof. Consider the following collection of sets Bij : Bij = Ai, 1 ≤ i ≤ r, 1 ≤ j ≤ ki. Let J be a subset
of double indices. Let mi (1 ≤ i ≤ r) be the number of double indices in J that begin with i. Then
mi ≤ ki. Also denote the projection of J onto the first coordinate by I. Then ∪(i,j)∈JBij = ∪i∈IAi, and

| ∪(i,j)∈J Bij | = | ∪i∈I Ai| ≥
∑
i∈I

ki ≥
∑
i∈I

mi = |J |.

So, the collection {Bij} satisfies the hypothesis of Lemma 2.2.

The following facts about root systems and Weil groups are well-known and can e found, for example,
in [1].

Lemma 2.4. Let α, β ∈ ∆, α 6= β, α 6= −β. Then all possible values of (α, β) are 0, 1, and −1.

Lemma 2.5. Let α, β ∈ ∆. Then:

1. α+ β ∈ ∆ if and only if (α, β) = −1.

2. α− β ∈ ∆ if and only if (α, β) = 1.

Corollary 2.6. For each α ∈ ∆, the reflection σα has the following orbits on ∆:

1. {α,−α}

2. {β} (a fixed point) for each β ∈ ∆, (α, β) = 0.

3. {β, γ} for β, γ ∈ ∆, (α, β) = 1, (α, γ) = −1, and β = α+ γ.

Lemma 2.7. If α, β, γ ∈ ∆ and (α, β) = 1, (β, γ) = 1, (α, γ) = 0,
then δ = α+ γ − β ∈ ∆, and (α, δ) = 1, (δ, γ) = 1, (δ, β) = 0

Proof. Direct computation of scalar products.
α− β ∈ ∆ by Lemma 2.5.
(α− β, γ) = 0− 1 = −1
δ = α− β + γ ∈ ∆ by Lemma 2.5.
(δ.α) = 2− 1 + 0 = 1.
(δ, β) = 1− 2 + 1 = 0.
(δ, γ) = 0− 1 + 2 = 1.

Lemma 2.8. If α, β, γ ∈ ∆ and (α, β) = 1, (β, γ) = 1, (α, γ) = 0, and there exists a simple root αi that
appears in the decompositions of all three roots α, β, and γ into linear combinations of simple roots with
coefficient 1,

then αi appears in the decomposition of δ = α− β + γ into a linear combination of simple roots also
with coefficient 1, and δ ∈ ∆+.

Proof. Direct calculation.

Lemma 2.9. If w ∈W , then `(w) = |∆+∩w∆−|. Moreover, the set |∆+∩w∆−| determines w uniquely.

We will have several examples involving permutation groups. More precisely, there permutation
groups will appear as the Weyl groups of groups of type Ar. The Weyl group of a group of type Ar is
Sr+1. For brevity, we will write (s1, s2, . . . , sr+1) instead of(

1 2 . . . r + 1
s1 s2 . . . sr+1

)
.

The transposition interchanging the ith and the jth positions will be denoted by (i↔ j).

Example 2.10. The length of an element (s1, . . . , sr+1) ∈ W is the number of inversions, i. e. the
number of pairs (i, j) with i < j and si > sj .
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We use the follwing terminology to compute products of several divisors using Pieri formula.

Definition 2.11. Let α ∈ ∆+ and let w ∈W . We say that the reflection σα is:

1. A sorting reflection for w if `(σαw) < `(w);

2. A desorting reflection for w if `(σαw) > `(w);

3. An admissible sorting reflection for w if `(σαw) = `(w)− 1;

4. An antisimple sorting reflection for w if `(σαw) = `(w)− 1 and w−1α ∈ −Π.

Example 2.12. If G = SLr+1, then W = Sr+1. If w = (s1, . . . , sr+1), then the sorting reflections for
w are precisely the transpositions (i↔ j) with i < j and si > sj , and the desorting reflections for w are
precisely the transpositions (i ↔ j) with i < j and si < sj . This example motivates the usage of the
words ”sorting” and ”desorting”.

We will also need to consider two different kidns of orders on ∆. First, there is the standard order
≺ on ∆: we say that α ≺ β if β − α is a sum of positive roots. Additionally, for each w ∈ W we will
need an order we will denote by ≺w: we say that α ≺w β if w−1α ≺ w−1β.

Remark 2.13. If α, β ∈ ∆ and (α, β) = 1, then, by Lemma 2.5, α and β are comparable for ≺ and for
the orders ≺w for all w ∈W .

Definition 2.14. Let v be a linear combination of roots, v =
∑
aiαi. The set of simple roots αi such

that ai 6= 0 is called the support of v (notation: supp v).

Lemma 2.15. Let w ∈W .
If α, β, γ ∈ w∆− and (α, β) = 1, (β, γ) = 1, (α, γ) = 0, and (α ≺w β or γ ≺w β),
then δ = α− β + γ ∈ w∆−

Proof. Without loss of generality, α ≺w β.
By Lemma 2.5, α− β ∈ ∆. α ≺w β, so α− β ∈ w∆−.
By Lemma 2.7, δ = α− β + γ ∈ ∆. α− β ∈ w∆− and γ ∈ w∆−, so δ ∈ w∆−.

3 Sorting

Lemma 3.1. Let α ∈ ∆+, and β ∈ ∆. Suppose that (α, β) = 1. σα interchanges β with another simple
root, which we denote by γ.

Then there are exaclty three possibilities:

(i) β, γ ∈ ∆+.

(ii) β ∈ ∆+, γ ∈ ∆−.

(iii) β, γ ∈ ∆−.

Proof. The only remaining case is β ∈ ∆−, γ ∈ ∆+. Let us check that this is impossible. Note that
β = α+ γ. So, if α ∈ ∆+, γ ∈ ∆+, then β = α+ γ ∈ ∆+, a contradiction.

Lemma 3.2. Let w ∈W , α ∈ ∆+, and β ∈ ∆. Suppose that (α, β) = 1. σα interchanges β with another
simple root, which we denote by γ.

Then there are exaclty three possibilities:

1. α ∈ w∆−, β ∈ ∆+, γ ∈ ∆−, β ∈ w∆−, γ ∈ w∆+.

Then {β, γ} ∩ (∆+ ∩ w∆−) = {β}, {β, γ} ∩ (∆+ ∩ σαw∆−) = ∅, and |{β, γ} ∩ (∆+ ∩ w∆−)| >
|{β, γ} ∩ (∆+ ∩ σαw∆−)|.
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2. α ∈ w∆+, β ∈ ∆+, γ ∈ ∆−, β ∈ w∆+, γ ∈ w∆−.

Then {β, γ} ∩ (∆+ ∩ w∆−) = ∅, {β, γ} ∩ (∆+ ∩ σαw∆−) = {β}, and |{β, γ} ∩ (∆+ ∩ w∆−)| <
|{β, γ} ∩ (∆+ ∩ σαw∆−)|.

3. Otherwise, |{β, γ} ∩ (∆+ ∩ w∆−)| = |{β, γ} ∩ (∆+ ∩ σαw∆−)|. More precisely:

(a) If α ∈ w∆−, β ∈ ∆+, γ ∈ ∆+, β ∈ w∆−, and γ ∈ w∆+, then {β, γ} ∩ (∆+ ∩ w∆−) = {β},
{β, γ} ∩ (∆+ ∩ σαw∆−) = {γ},

(b) If α ∈ w∆+, β ∈ ∆+, γ ∈ ∆+, β ∈ w∆+, and γ ∈ w∆−, then {β, γ} ∩ (∆+ ∩ w∆−) = {γ},
{β, γ} ∩ (∆+ ∩ σαw∆−) = {β},

(c) Otherwise, {β, γ} ∩ (∆+ ∩ w∆−) = {β, γ} ∩ (∆+ ∩ σαw∆−).

Proof. Note that (α, γ) = −1, and β = α+ γ.
Note also that β ∈ w∆− if and only if γ ∈ σαw∆−, and γ ∈ w∆− if and only if β ∈ σαw∆−.
Let us consider the 3 cases from Lemma 3.1:

(i) β, γ ∈ ∆+.

Then β ∈ ∆+ ∩ w∆− if and only if γ ∈ ∆+ ∩ σαw∆−, and γ ∈ ∆+ ∩ w∆− if and only if
β ∈ ∆+ ∩ σαw∆−. Therefore, |{β, γ} ∩ (∆+ ∩ w∆−)| = |{β, γ} ∩ (∆+ ∩ σαw∆−)|.
If β, γ ∈ w∆−, then {β, γ} ∩ (∆+ ∩ w∆−) = {β, γ} ∩ (∆+ ∩ σαw∆−) = {β, γ}, and 3c is true.

If β, γ ∈ w∆+, then {β, γ} ∩ (∆+ ∩ w∆−) = {β, γ} ∩ (∆+ ∩ σαw∆−) = ∅, and 3c is true.

If β ∈ w∆+ and γ ∈ w∆−, then α must be in w∆+, otherwise β = α + γ would be in w∆−. So,
{β, γ} ∩ (∆+ ∩ w∆−) = {γ}, {β, γ} ∩ (∆+ ∩ σαw∆−) = {β}, and 3b is true.

If β ∈ w∆− and γ ∈ w∆+, then α must be in w∆−, otherwise β = α + γ would be in w∆+. So,
{β, γ} ∩ (∆+ ∩ w∆−) = {β}, {β, γ} ∩ (∆+ ∩ σαw∆−) = {γ}, and 3a is true.

(ii) β ∈ ∆+, γ ∈ ∆−.

If β, γ ∈ w∆−, then {β, γ} ∩ (∆+ ∩ w∆−) = {β, γ} ∩ (∆+ ∩ σαw∆−) = {β}, and 3c is true.

If β, γ ∈ w∆+, then {β, γ} ∩ (∆+ ∩ w∆−) = {β, γ} ∩ (∆+ ∩ σαw∆−) = ∅, and 3c is true.

If β ∈ w∆+ and γ ∈ w∆−, then α must be in w∆+, otherwise β = α + γ would be in w∆−. So,
{β, γ} ∩ (∆+ ∩ w∆−) = ∅, {β, γ} ∩ (∆+ ∩ σαw∆−) = {γ}, and 2 is true.

If β ∈ w∆− and γ ∈ w∆+, then α must be in w∆−, otherwise β = α + γ would be in w∆+. So,
{β, γ} ∩ (∆+ ∩ w∆−) = {β}, {β, γ} ∩ (∆+ ∩ σαw∆−) = ∅, and 1 is true.

(iii) β, γ ∈ ∆−.

Then {β, γ} ∩ (∆+ ∩ w∆−) = {β, γ} ∩ (∆+ ∩ σαw∆−) = ∅, and 3c is true.

Lemma 3.3. Let w ∈W and let α ∈ ∆+. Then:
σα is a sorting reflection for w if and only if α ∈ ∆+ ∩w∆−. Otherwise, σα is a desorting reflection

for w.

Proof. The reflection σα acting on ∆ has some fixed points (they are precisely the roots orthogonal to
α), and the other roots can be split into pairs (β, γ) such that σα interchanges β and γ ((α,−α) is one
of such pairs).

Consider a pair (β, γ) such that σα interchanges β and γ. Suppose also that β 6= ±α. Then, since the
Dynkin diagram is simply laced, (α, β) = ±1. Without loss of generality, let us assume that (α, β) = 1.
Then (α, γ) = −1, and β = α+ γ.

Suppose first that α ∈ w∆−. Then, in the classification of Lemma 3.2, case 2 is impossible, since it
requires α ∈ ∆+. And in both of the other cases, we have |{β, γ} ∩ (∆+ ∩ w∆−)| ≥ |{β, γ} ∩ (∆+ ∩
σαw∆−)|.

END Suppose first that α ∈ w∆−.
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Now suppose that α ∈ w∆+. Then, in the classification of Lemma 3.2, case 1 is impossible, since
it requires α ∈ ∆−. And in both of the other cases, we have |{β, γ} ∩ (∆+ ∩ w∆−)| ≤ |{β, γ} ∩ (∆+ ∩
σαw∆−)|.

END Now suppose that α ∈ w∆+.
END Consider a pair (β, γ)
So, we can conclude that if α ∈ w∆−, then for every pair (β, γ) such that σα interchanges β and

γ, and β 6= ±α, we have |{β, γ} ∩ (∆+ ∩ w∆−)| ≥ |{β, γ} ∩ (∆+ ∩ σαw∆−)|. Also, if α ∈ w∆−, then
{α,−α}∩(∆+∩w∆−) = {α}, {α,−α}∩(∆+∩σαw∆−) = ∅, and |{α,−α}∩(∆+∩w∆−)| > |{α,−α}∩
(∆+ ∩ σαw∆−)|. The summation over all orbits of σα in ∆ gives us |(∆+ ∩ w∆−)| > |(∆+ ∩ σαw∆−)|
if α ∈ w∆−.

And we can also conclude that if α ∈ w∆+, then for every pair (β, γ) such that σα interchanges β
and γ, and β 6= ±α, we have |{β, γ}∩ (∆+ ∩w∆−)| ≤ |{β, γ}∩ (∆+ ∩σαw∆−)|. Also, if α ∈ w∆+, then
{α,−α}∩(∆+∩w∆−) = ∅, {α,−α}∩(∆+∩σαw∆−) = {α}, and |{α,−α}∩(∆+∩w∆−)| < |{α,−α}∩
(∆+ ∩ σαw∆−)|. The summation over all orbits of σα in ∆ gives us |(∆+ ∩ w∆−)| < |(∆+ ∩ σαw∆−)|
if α ∈ w∆+.

Lemma 3.4. Let w ∈W and α ∈ ∆+ ∩ w∆−.
Then σα is an admissible sorting reflection for w if and only if it is impossible to find roots β, δ ∈

∆+ ∩ w∆− such that α = β + δ.

Proof. Again, note that {α,−α} ∩ (∆+ ∩w∆−) = {α}, {α,−α} ∩ (∆+ ∩ σαw∆−) = ∅, and |{α,−α} ∩
(∆+ ∩ w∆−)| > |{α,−α} ∩ (∆+ ∩ σαw∆−)|.

Also note again that if (β, γ) is a pair such that σα interchanges β and γ and β 6= ±α, then case 2
in Lemma 3.2 is not possible since it requires α ∈ w∆+, and |{β, γ} ∩ (∆+ ∩ w∆−)| ≤ |{β, γ} ∩ (∆+ ∩
σαw∆−)|.

So, the summation over all orbits of σα on ∆ tells us that |(∆+ ∩ w∆−)| = |(∆+ ∩ σαw∆−)| + 1 if
and only if all inequalities

|{β, γ}∩(∆+∩w∆−)| ≤ |{β, γ}∩(∆+∩σαw∆−)| for all pairs (β, γ) such that σα interchanges
β and γ and β 6= ±α,

become equalities.
And all these inequalities become equalities if and only if case 1 does not occur for any pair (β, γ)

such that σα interchanges β and γ and β 6= ±α. In other words, `(w) = `(σαw) + 1 if and only if there
are no pairs (β, γ) such that

σα interchanges β and γ, (α, β) = 1, β ∈ ∆+, γ ∈ ∆−, β ∈ w∆−, γ ∈ w∆+.

And if we denote δ = −γ, then we see that the non-existance of such pairs is eqivalent to the
non-existance of pairs (β, δ) such that

α = β + δ, (α, β) = 1, β ∈ ∆+, δ ∈ ∆+, β ∈ w∆−, δ ∈ w∆−.

Finally, note that by Lemma 2.5, if β, δ, β + δ ∈ ∆+, then automatically (β, δ) = −1.

Example 3.5. If G = SLr+1, then W = Sr+1. If w = (s1, . . . , sr+1), then the admissible sorting
reflections for w are precisely the transpositions (i↔ j) such that i < j, si > sj , and there are no indices
k such that i < j < k and si > sk > sj .

Lemma 3.6. Let w ∈W and α ∈ ∆+∩w∆−. Suppose that σα is an admissible sorting reflection. Then
the set ∆+ ∩ σαw∆− can be obtained from the set ∆+ ∩ w∆− by the following procedure:

For each β ∈ ∆+ ∩ w∆−:

1. If β = α, don’t put anything into ∆+ ∩ σαw∆−.

2. If (α, β) = 1, α ≺ β, and β − α /∈ ∆+ ∩ w∆−, then put β − α into ∆+ ∩ σαw∆−.

3. Otherwise, put β into ∆+ ∩ σαw∆−.
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Note that this lemma in fact establishes a bijection between (∆+ ∩ w∆−) \ α and ∆+ ∩ σαw∆−.

Proof. Let us check that for every orbit of σα on ∆, the above procedure gives the correct intersection
of this orbit with ∆+ ∩ σαw∆−. See Corollary 2.6 for the list of orbits.

If the orbit consists of one root, β, then (α, β) = 0. We apply case 3 of the procedure, and indeed,
{β} ∩ (∆+ ∩ w∆−) = {β} ∩ (∆+ ∩ σαw∆−) since σαβ = β.

If the orbit is α,−α, then we apply case 1 of the procedure. And indeed, it is clear that {α,−α} ∩
(∆+ ∩ σαw∆−) = ∅.

Finally, consider an orbit {β, γ}, where (α, β) = 1, (α, γ) = −1, and β = α+ γ. Lemma 3.2 gives us
5 possibilities in total, among them:

Case 1 is prohibitied by Lemma 3.4 (if case 1 was true, then we would have β ∈ ∆+ ∩ w∆−,
−γ ∈ ∆+ ∩ w∆−, and α = β + (−γ)).

Case 2 is impossible since α ∈ w∆−.
If case 3a of Lemma 3.2 holds, then α, β ∈ ∆+ ∩ w∆−. Also, γ ∈ ∆+, γ = β − α, so α ≺ β.

Finally, γ /∈ w∆−, so the conditions of case 2 are satisfied. By Lemma 3.2, {β, γ} ∩ (∆+ ∩w∆−) = {β},
{β, γ}∩(∆+∩σαw∆−) = {γ}, and indeed, case 2 tells us that we should put γ = β−α into (∆+∩σαw∆−)
instead of β.

Case 3b is impossible since α ∈ w∆−.
Finally, suppose that case 3c of Lemma 3.2 holds. Let us check that the conditions of case 2 of the

procedure are not satisfied (and the procedure tells us that we should use case 3).
Clearly, the conditions of case 2 of the procedure are not satisfied for γ since (α, γ) = −1
Assume the contrary, assume that the conditions of case 2 are satisfied for β. α ∈ ∆+, α ∈ w∆−,

β ∈ ∆+, β ∈ w∆−. Since β ≺ α, γ = β − α ∈ ∆+. Since β − α /∈ ∆+ ∩ w∆−, γ ∈ w∆+. So, case 3a of
Lemma 3.2 holds, and we have assumed that case 3c of Lemma 3.2 holds. A contradiction.

END Assume the contrary.
So, the procedure tells us that we should use case 3 and put all roots from {β, γ}∩ (∆+ ∩w∆−) into

∆+∩σαw∆−. And this is correct since by case 3c of Lemma 3.2, {β, γ}∩ (∆+∩w∆−) = {β, γ}∩ (∆+∩
σαw∆−).

Lemma 3.7. If w ∈W , α ∈ ∆+ ∩ w∆−, and w−1α ∈ −Π, then σα is an antisimple sorting reflection.

Proof. The only thing we have to check is that σα is an admissible sorting reflection. We use Lemma
3.4. Assume that there are roots β, γ ∈ ∆+ ∩ w∆− such that α = β + γ. But then −w−1α =
(−w−1β) + (−w−1γ), −w−1α ∈ Π, and −w−1β,−w−1γ ∈ ∆+, a contradiction.

Example 3.8. If G = SLr+1, then W = Sr+1. If w = (s1, . . . , sr+1), then the antisimple sorting
reflections for w are precisely the transpositions (i↔ j) such that i < j and si = sj + 1.

Lemma 3.9. Let w ∈ W . The roots α ∈ ∆+ ∩ w∆− such that w−1α ∈ −Π are exaclty the maximal
elements of the set ∆+ ∩ w∆− with respect to the order ≺w.

Proof. Direction 1.
Let α ∈ ∆+ ∩ w∆−, w−1α ∈ −Π. Assume that β ∈ ∆+ ∩ w∆−, α ≺w β. Then, by the definition of

≺w, w−1α ≺ w−1β. But w−1β ∈ ∆−, w−1α ∈ −Π, a contradiction.
Direction 2.
Let α be a maximal element of ∆+ ∩ w∆− with respect to ≺w. Assume that w−1α /∈ −Π. Then,

since w−1α ∈ ∆−, it is possible to decompose w−1α = β + γ, where β, γ ∈ ∆−. We have wβ + wγ = α.
wβ and wγ cannot be both negative, since their sum, α, is positive. At least one of the roots wβ and
wγ is positive, let us assume without loss of generality that wβ ∈ ∆+. We have wβ ∈ ∆+, wβ ∈ w∆−,
and w−1wβ − w−1α = −γ ∈ ∆+, so α ≺w wβ, a contradiction with maximality of α.

Corollary 3.10. For every w ∈W , w 6= id, there exists at least one α ∈ ∆+ ∩w∆− such that σα is an
antisimple sorting reflection for w.

The following lemma illustrates an advantage of antisimple sorting reflections.

Lemma 3.11. Let w ∈ W . If α ∈ ∆+ ∩ w∆− is such that σα is an antisimple sorting reflection, then
∆+ ∩ σαw∆− = (∆+ ∩ w∆−) \ α.
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Proof. We use Lemma 3.6. We have to check that case 2 never occurs.
Assume that case 2 occurs for some β ∈ ∆+ ∩ w∆−. This means that γ = β − α ∈ w∆+, w−1γ =

w−1β − w−1α ∈ ∆+, and α ≺w β. But then α is not a maximal element of ∆+ ∩ w∆− with respect to
≺w, a contradiction with Lemma 3.9.

To use Chevalley-Pieri formula, we will use the following terminology.

Definition 3.12. Let w ∈ W , n = `(w). We say that a process of sorting of w is a sequence of roots
β1, . . . , βn such that:

1. w = σβ1
σβ2

. . . σβn .

2. Denote wi = σβi . . . σβ1
w = σβi+1

. . . σβn (0 ≤ i ≤ n). Then for each i, 0 ≤ i < n, σβi+1
has to be

an admissible sorting reflection for wi. In other words, `(wi) has to be n− i for 0 ≤ i ≤ n.

We say that the ith step (1 ≤ i ≤ n) of the sorting process is the reflection σβi , and that the
current element of W after the ith step of the process (before the (i + 1)st step of the process) is
wi = σβi . . . σβ1

w = σβi+1
. . . σβn .

We say that the sorting process is antireduced, and the equality w = σβ1
σβ2

. . . σβn is an antireduced
expression for w, if σβi is an antisimple reflection for wi−1 for all i, 1 ≤ i ≤ n.

If we only know for some i, 1 ≤ i ≤ n, that σβi is an antisimple reflection for wi−1, we will say that
the ith step of the sorting process is antisimple.

Definition 3.13. Let w ∈W , n = `(w). Similarly, we say that a sorting process prefix of w is a sequence
of roots β1, . . . , βk (k ≤ n) such that:

Denote wi = σβi . . . σβ1w (0 ≤ i ≤ k). Then for each i, 0 ≤ i < k, σβi+1 has to be an
admissible sorting reflection for wi. In other words, `(wi) has to be n− i for 0 ≤ i ≤ k.

We say that the sorting process prefix is antireduced, if σβi is an antisimple reflection for wi−1 for
all i, 1 ≤ i ≤ k.

Lemma 3.14. If β1, . . . , βn is an antireduced sorting process for w ∈W , then {β1, . . . , βn} = ∆+∩w∆−.
Moreover, if β1, . . . , βn is a sorting process for w ∈W such that the first k steps are antisimple, and

wk = σβk . . . σβ1
w = σβk+1

. . . σβn , then {βk+1, . . . , βn} = ∆+ ∩ wk∆−.

Proof. This follows directly from Lemma 3.11 and the definition of an antisimple sorting process.

Corollary 3.15. If β1, . . . , βn is an antireduced sorting process for w ∈W , then there are no coinciding
roots among β1, . . . , βn.

Example 3.16. If G = SLr+1, then W = Sr+1. If w = (s1, . . . , sr+1), and we have a sorting process of
w, then the sequence of the current elements of W is a sequence of (r+ 1)-tuples (”arrays”) of numbers,
where each next (r + 1)-tuple is obtained from the previous one by interchanging two numbers so that
this interchange is an admissible sorting reflection (see Example 3.5). In the end, our (r + 1)-tuple has
to become (1, 2, . . . , r + 1).

Such a sorting process is antireduced if at each step we actually interchange a number i with i + 1,
and i+ 1 has to be located to the left of i immediately before this interchange.

(Remark about relation to programming, we will not need it later: An antireduced sorting process
is not what is called ”bubble sorting” in programming. Bubble sorting can be obtained from a certain
reduced expression for w (but not from any reduced expression, only from a certain one)).

Definition 3.17. Given a set of positive roots A ⊆ ∆+ we call a function f : A → Π a distribution of
simple roots on A if f(α) ∈ suppα for each α ∈ A

For a given simple root αi, the number of roots α ∈ A such that f(α) = αi is called the D-multiplicity
of αi in the distribution.

If we have a distribution with f(α) = αi, we say that the distribution assigns the simple root αi to
α.
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Definition 3.18. Given a list of positive roots β1, . . . , βn, i. e. order matters, multiple occurrences
allowed, we call a function f : {1, . . . , n} → Π a distribution of simple roots on β1, . . . , βn if f(k) ∈ suppβk
for each k, 1 ≤ k ≤ n.

Sometimes we will treat this function as a list (an n-tuple) of its values: f(1), . . . , f(k). This is
convnient, for example, if we want to remove some roots from the list β1, . . . , βn, and at the same time
remove the corresponding simple roots from the list f(1), . . . , f(k).

For a given simple root αi, the number of indices k, 1 ≤ k ≤ n such that f(k) = αi is called the
D-multiplicity of αi in the distribution.

If we have a distribution with f(k) = αi, we say that the distribution assigns the simple root αi to
the kth root in the list, βk.

If we need to know the D-multiplicities of all simple roots in a distribution, we briefly say ”a dis-
tribution with D-multiplicities n1, . . . , nr” instead of ”a distribution with D-multiplicities n1, . . . , nr of
simple roots α1, . . . , αr, respectively”.

Definition 3.19. We call a tuple w, n1, . . . , nr, where w ∈ W , ni ∈ Z≥0, n1 + . . . + nr = `(w), a
configuration of D-multiplicities.

Definition 3.20. Let w, n1, . . . , nr be a configuration of D-multiplicities. We say that a simple root αi
is involved into this configuration if ni > 0.

Definition 3.21. Let w ∈W . We say that a labeled sorting process of w is a sorting process β1, . . . , βn
of w with the following addiotional information:

We have a simple root distribution on the list β1, . . . , βn.
This distribution will be called the distribution of labels, or the list of labels, of the labeled sorting

process. The simple root it assgns to βk will be called the label at βk.
In other words, when, at a certain (kth) step of the sorting process, we perform an admissible sorting

reflection along a root (βk), we assign to this step a label, which is a simple root from suppβk.
Note that the distribution of labels is actually a function from {1, . . . , n} to Π (i. e. just an n-tuple

of simple roots), so it makes sense, for example, to speak about ”two different labeled sorting processes
with the same distribution of labels”.

Instead of ”a labeled sorting process of w with distribution of labels that has D-multiplicities
n1, . . . , nr of simple roots”, we briefly say ”a labeled sorting process of w with D-multiplicities n1, . . . , nr
of labels”.

Definition 3.22. Let w ∈ W . Let β1, . . . , βn be a labeled sorting process of w with distribution of
labels f .

Since f(k) ∈ suppβi, f(k) is present in the decomposition of βi into a linear combination of simple
roots. Let ai be the coefficient in front of f(k) in this linear combination.

The X-multiplicity of the sorting process (not to be confused with the D-multiplicity of a simple root
in a list of simple roots) is the product a1 . . . an.

Definition 3.23. Let w ∈ W . We say that a labeled sorting process prefix of w is a sorting process
prefix β1, . . . , βk of w with the following addiotional information:

We have a simple root distribution on the list β1, . . . , βk.
Instead of ”a labeled sorting process prefix of w with distribution of labels that has D-multiplicities

m1, . . . ,mr of simple roots”, we briefly say ”a labeled sorting process prefix of w with D-multiplicities
m1, . . . ,mr of labels”.

Lemma 3.24. Let w, n1, . . . , nr be a configuration of D-multiplicities.
Cw,n1,...,nr , the coefficient in front of [Xw] in the decomposition of [D1]n1 . . . [Dr]

nr into a linear
combination of Schubert classes, can be computed as follows.

Choose any function f : {1, . . . , `(w)} → Π that takes each value αj exactly nj times for all j,
1 ≤ j ≤ r.

Then Cw,n1,...,nr is the number of [labeled sorting processes of w with the distribution of labels f ],
counting their X-multiplicities.
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Proof. Induction on `(w). For `(w) = 0, this is clear.
If w 6= id, denote by γ1, . . . , γm all of the roots from ∆+ ∩ w∆− such that σγj is an admissible

reflection for w. Also denote by gj the coefficient in front of f(1) in the decomposition of γj into a linear
combination of simple roots. (Note that gj may be 0.)

Then the set of all labeled sorting processes of w with distribution of labels f is split into the disjoint
union of m subsets: the sorting processes starting with γ1, . . ., the sorting processes starting with γm.

If we remove the first root (let it be γj) and its label f(1) from a labeled sorting process of w, we will
get a sorting process of σγjw with list of labels f(2), . . . , f(`(w)). And the X-multiplicity of this sorting
process of w equals gj times the X-multiplicity of this sorting process of σγjw.

So, using the induction hypothesis, it suffices to prove that

Cw,n1,...,nr =

m∑
j=1

gjCσγjw,n1,...,ni1−1,nr .

By the definition of Cv,n1,...,ni1−1,nr , we have

[D$1
]n1 . . . [D$i1

]ni1−1 . . . [D$r ]
nr =

∑
v∈W :`(v)=`(w)−1

Cv,n1,...,ni1−1,...,nr [Xv].

Proposition 2.1 applied to each [Xv] occurring on the right gives:

[D$i ][Xv] =
∑
α∈∆+

`(σαv)=`(v)+1

$i(α)[Xσαv].

[Xw] appears on the right-hand side if and only if σαv = w for some α ∈ ∆+, i. e. v = σαw for some
α ∈ ∆+. Since `(v) = `(w)− 1, the equlaity v = σαw implies that σα is an admissible reflection for w,
and α = γj for some j. The coefficient in front of this [Xw] in the Pieri formula is $i(γj) = gj .

Now let us take the linear combination of all Pieri formulas we wrote for all [Xv]s with coefficients
Cv,n1,...,ni1−1,...,nr .

On the left, we will get [D$1
]n1 . . . [D$i1

]ni1 . . . [D$r ]
nr .

On the right, we will get a linear combination of Schubert classes with some coefficients, and the
coefficient in front of [Xw] will be

∑
j gjCσγjw,n1,...,ni1−1,nr . But this coefficient also equals Cw,n1,...,nr .

Corollary 3.25. Given w ∈ W , the number of labeled sorting processes with a distribution of labels
f counting the X-multiplicities of processes, depends only on the D-multiplicities of simple roots in the
distribution f , but not on the distribution f itself itself.

4 Criterium of sortability

Lemma 4.1. For each w ∈W , there exists at least one antireduced sorting process.

Proof. Induction on `(w). Trivial for w = id.
By Corollary 3.10, there exists a root β1 ∈ ∆+∩w∆− such that σβ1

is an antisimple reflection for w.
Let us try to begin the sorting process with β1. Set w1 = σβ1w. `(w1) = `(w) − 1. There exists

an antireduced sorting process for w1, denote it by β2, . . . , βn. Then β1, β2, . . . , βn is an antireduced
sorting process for w, because the products βk+1 . . . βn occurring in the definitions of antireduced sorting
processes for w and for w1 are exactly the same (with the addition of w itself to the sorting process of
w, but we have checked explicitly that σβ1

is an antisimple reflection for w).

For each A ⊆ ∆+, for each I ⊆ {1, . . . , r}, denote by RI(A) the set of all roots α ∈ A such that
suppα contains at least one simple root αi with i ∈ I.

Lemma 4.2. Let A ⊆ ∆+, and let n1, . . . , nr ∈ Z≥0 be such that n1 + . . .+ nr = |A|.
Denote by J the set of indices i (1 ≤ i ≤ r) such that ni > 0.
The following conditions are equivalent:
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1. For each I ⊆ J , |RI(A)| ≥
∑
i∈I ni.

2. There exists a simple root distribution on A with D-multiplicities n1, . . . , nr.

3. For each I ⊆ {1, . . . , r}, |RI(A)| ≥
∑
i∈I ni.

Proof. Note that for each I ⊆ {1, . . . , r}, by definition of RI(A),

RI(A) =
⋃
i∈I

R{i}(A).

1⇒ 2
Condition 1 is equivalent to the hypothesis of generalized Hall representative lemma (Lemma 2.3)

appied to the |J | sets: R{j}(A) for each j ∈ J .
And Lemma 2.3 says that for each j ∈ J , we can choose nj elements of R{j}(A), i. e. nj roots α ∈ A

such that αj ∈ suppα, and all chosen roots (for different values of j) are different. In total, we chose∑
j∈J nj roots, and, by the definition of J ,

∑
j∈J nj = n1 + . . . + nr = |A|. So, each root from A was

chosen exactly once, and we can set f(α) = αj if α was chosen as an element of R{j}(A). This is a
simple root distribution on A, and it clearly has D-multiplicities n1, . . . , nr of simple roots.

2⇒ 3
Let f be a simple root distribution. Then for each i, 1 ≤ i ≤ r, f−1(αi) ⊆ R{i}(A) and ni = |f−1(αi)|.

So, for each I ⊆ {1, . . . , r}, ⋃
i∈I

f−1(αi) ⊆ RI(A).

and ∑
i∈I

ni =

∣∣∣∣∣⋃
i∈I

f−1(αi)

∣∣∣∣∣
Therefore,

∑
i∈I ni ≤ |RI(A)|.

3⇒ 1
Follows directly.

For each w ∈W , for each I ⊆ {1, . . . , r}, we briefly write RI(w) = RI(∆
+ ∩ w∆−).

Corollary 4.3. Let w, n1, . . . , nr be a configuration of D-multiplicities.
Denote by J the set of indices of involved roots, i. e. of indices i (1 ≤ i ≤ r) such that ni > 0.
The following conditions are equivalent:

1. For each I ⊆ J , |RI(w)| ≥
∑
i∈I ni.

2. There exists a simple root distribution on ∆+ ∩ w∆− with D-multiplicities n1, . . . , nr.

3. For each I ⊆ {1, . . . , r}, |RI(w)| ≥
∑
i∈I ni.

Proposition 4.4. Let w, n1, . . . , nr be a configuration of D-multiplicities.
Then the following conditions are equivalent:

1. There exists a labeled sorting process of w with D-multiplicities n1, . . . , nr of labels.

2. There exists a simple root distribution on ∆+ ∩ w∆− with D-multiplicities n1, . . . , nr.

If these conditions are satisified, then there actually exists an antireduced labeled sorting process of
w with D-multiplicities n1, . . . , nr of labels.

Proof. 1 ⇒ 2. Induction on `(w). Suppose that there exists a labeled sorting process of w with D-
multiplicities n1, . . . , nr of labels.

It has to start with some admissible sorting reflection, and all admissible sorting reflections are
reflections along some of the roots from ∆+ ∩ w∆−. Suppose that the sorting process starts with
β ∈ ∆+ ∩ w∆−, and the label assigned to the first step of the sorting process is αi. Denote w1 = σβw.
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The rest of the labeled sorting process of w actually gives us a labeled sorting process of w1 with
D-multiplicities n1, . . . , ni − 1, . . . , nr of labels.

Recall that Lemma 3.6 establishes a bijection between (∆+∩w∆−)\β and ∆+∩w1∆−. Denote this
bijection by ψ : (∆+ ∩ w∆−) \ β → ∆+ ∩ w1∆−

Lemma 3.6 says that either ψ(γ) = γ, or ψ(γ) = γ − β. In both cases, ψ(γ) � γ.
By the induction hypothesis, there exists a simple root distribution on ∆+ ∩ w1∆− with D-

multiplicities n1, . . . , ni − 1, . . . , nr of simple roots. Denote this distribution by f1 : ∆+ ∩ w1∆− → Π.
For each γ ∈ (∆+ ∩w∆−) \ β, since ψ(γ) � γ and f1(ψ(γ)) ∈ suppψ(γ), we have f1(ψ(α)) ∈ supp γ.

Also, αi ∈ suppβ. So, we can define the following simple root distribution f on ∆+ ∩ w∆−: f(β = αi,
and f(γ) = f1(ψ(γ)) for γ 6= β.

2⇒ 1
We are going to construct an antireduced labeled sorting process, then the last claim in the problem

statement will be simultaneously proved.
By Lemma 4.1, there exists an antireduced sorting process of w. Denote the roots occurring in

this sorting process by β1, . . . , β`(w) (in this order). By Lemma 3.14, the set of roots occurring in this
antireduced sorting process is exactly ∆+ ∩ w∆−, i. e. ∆+ ∩ w∆− = {β1, . . . , β`(w)}

We also know that there exists a simple root distribution on ∆+ ∩ w∆− with D-multiplicities
n1, . . . , nr, denote it by f : ∆+ ∩ w∆− → Π. Let us assign label f(βk) to the kth step of the sort-
ing process, and we will get an antireduced labeled sorting process with D-multiplicities n1, . . . , nr of
labels.

Corollary 4.5. Let w ∈W . Suppose we have a simple root distribution f : ∆+ ∩ w∆− → Π.
Then there exists a labeled antireduced sorting process for w such that if at a certain step we make

a reflection along α ∈ ∆+ ∩ w∆− (we make it only once, see Corollary 3.15), we assign the simple root
f(α) to it.

In other words, since all roots occurring in an antireduced sorting process are different, to define a
function on the set of occurring roots is equivalent to define a function on {1, . . . , `(w)}. And the claim
is that we can make the latter function, the distribution of labels of the labeled sorting process, the same
as the former function, an arbitrary simple root distribution on ∆+ ∩ w∆−.

Proof. The proof exactly repeats the argument 2⇒ 1 in the proof of Proposition 4.4.

Corollary 4.6. Let w, n1, . . . , nr be a configuration of D-multiplicities.
Then the following conditions are equivalent:

1. There exists a labeled sorting process of w with D-multiplicities n1, . . . , nr of labels.

2. For each I ⊆ {1, . . . , r}, |RI(w)| ≥
∑
i∈I ni.

If these conditions are satisified, then there actually exists an antireduced labeled sorting process of
w with D-multiplicities n1, . . . , nr of labels.

Proof. The claim follows from Corollary 4.3 and Proposition 4.4.

Definition 4.7. Let w ∈ W , and let α ∈ ∆+ ∩ w∆−. A simple root distribution f on ∆+ ∩ w∆− is
called α-compatible if σα is an admissible sorting reflection for w, and the distribution has the following
additional property:

If β ∈ ∆+ ∩ w∆−, α ≺ β, (α, β) = 1, and β − α /∈ ∆+ ∩ w∆−, then f(β) /∈ suppα.

Lemma 4.8. Let w ∈W , α ∈ ∆+ ∩ w∆−. Let f be simple root distribution on ∆+ ∩ w∆−.
The following conditions are equivalent:

1. f is α-compatible

2. For each β ∈ ∆+ ∩ w∆− such that α ≺w β and (α, β) = 1, we have f(β) /∈ suppα.
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Proof. 1⇒ 2
Assume that there exists β ∈ ∆+ ∩ w∆− such that α ≺w β, (α, β) = 1, and f(β) ∈ suppα. Set

γ = α− β (γ ∈ ∆ by Lemma 2.5). α ≺w β, so γ ∈ w∆−.
If γ ∈ ∆+, then σα cannot be an admissible reflection for w by Lemma 3.4. If γ ∈ ∆−, then β ≺ α,

and −γ = β − α /∈ ∆+ ∩ w∆−, so we have a contradiction with the definition of α-compatibility.
2⇒ 1
Admissibility of σα: assume the contrary. By Lemma 3.4, there exist β, γ ∈ ∆+ ∩ w∆− such that

β + γ = α. By Lemma 2.5, (β, γ) = −1, so (α, β) = 1. −γ = β − α ∈ w∆+, so α ≺w β. Also,
γ = α− β ∈ ∆+, so β ≺ α, and suppβ ⊆ suppα. f(β) ∈ suppβ, so f(β) ∈ suppα, a contradiction.

Now suppose that β ∈ ∆+ ∩ w∆−, α ≺ β, (α, β) = 1, and β − α /∈ ∆+ ∩ w∆−.
α ≺ β and (α, β) = 1, so β − α ∈ ∆+.
β − α /∈ ∆+ ∩ w∆−, so β − α /∈ w∆−, so β − α ∈ w∆+, and α ≺w β.
Condition 2 in the Lemma statement says that f(β) /∈ suppα, so the definition of α-compatibility

holds.

Lemma 4.9. Let w ∈W , α ∈ ∆+ ∩ w∆−. Let f be simple root distribution on ∆+ ∩ w∆−.
The following conditions are equivalent:

1. f is α-compatible

2. There are no roots β ∈ ∆+∩w∆− such that α ≺w β, (α, β) = 1, f(β) ∈ suppα, and f(α) ∈ suppβ.

Proof. 1⇒ 2
Assume that there exists β ∈ ∆+ ∩ w∆− such that α ≺w β, (α, β) = 1, f(β) ∈ suppα, and

f(α) ∈ suppβ. Set γ = α− β (γ ∈ ∆ by Lemma 2.5). α ≺w β, so γ ∈ w∆−.
If γ ∈ ∆+, then σα cannot be an admissible reflection for w by Lemma 3.4. If γ ∈ ∆−, then β ≺ α,

and −γ = β − α /∈ ∆+ ∩ w∆−, so we have a contradiction with the definition of α-compatibility.
2⇒ 1
Admissibility of σα: assume the contrary. By Lemma 3.4, there exist β, γ ∈ ∆+ ∩ w∆− such that

β + γ = α.
α, β, γ ∈ ∆+, so suppα = suppβ ∪ supp γ.
f(α) ∈ suppα, so we may assume without loss of generality (after a possible interchange of β and γ)

that f(α) ∈ suppβ.
By Lemma 2.5, (β, γ) = −1, so (α, β) = 1. −γ = β − α ∈ w∆+, so α ≺w β. Also, γ = α− β ∈ ∆+,

so β ≺ α, and suppβ ⊆ suppα. f(β) ∈ suppβ, so f(β) ∈ suppα, a contradiction.
Now suppose that β ∈ ∆+ ∩ w∆−, α ≺ β, (α, β) = 1, and β − α /∈ ∆+ ∩ w∆−.
α ≺ β and (α, β) = 1, so β − α ∈ ∆+.
β − α /∈ ∆+ ∩ w∆−, so β − α /∈ w∆−, so β − α ∈ w∆+, and α ≺w β.
α ≺ β, so suppα ⊆ suppβ. f(α) ∈ suppα, so f(α) ∈ suppβ.
Condition 2 in the Lemma statement says that f(β) /∈ suppα, so the definition of α-compatibility

holds.

Corollary 4.10. Let w ∈W , and let α ∈ ∆+ ∩ w∆− be such that w−1α ∈ −Π.
Then every simple root distribution on ∆+ ∩ w∆− is α-compatible.

Proof. Since w−1α ∈ −Π, there are no roots β ∈ w∆− such that α ≺w β.

Lemma 4.11. Let w, n1, . . . , nr be a configuration of D-multiplicities, and let α ∈ ∆+ ∩ w∆−.
Suppose that there exists an α-compatible distribution f of simple roots on ∆+ ∩ w∆− with D-

multiplicities n1, . . . , nr of simple roots. Suppose that f(α) = αi
Then there exists a labeled sorting process for w that starts with α, the label at this α is f(α), and

the whole list of labels is αi, α1, . . . , α1, . . . , αi, . . . , αi, . . . , αr, . . . , αr, where, after (excluding) the first
αi, [ each αj is written nj times, except for αi, which is written ni − 1 times ].

In particular, there exists [a labeled sorting process for w with D-multiplicities n1, . . . , ni, . . . , nr of
labels] that starts with α, and the label at this α is f(α).
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Proof. We start our sorting process with α. Set w1 = σαw.
By Lemma 3.6 establishes a bijection between (∆+∩w∆−)\β and ∆+∩w1∆−. Denote this bijection

by ψ : (∆+ ∩ w∆−) \ β → ∆+ ∩ w1∆−

The definition of α-compatibility says, in terms of Lemma 3.6, that if case 2 of the procedure in
Lemma 3.6 holds for some β ∈ ∆+ ∩ w∆−, then f(β) /∈ suppα. Since f(β) ∈ suppα for such β, then
also f(β) ∈ supp(β − α) = supp(ψ(β)).

And if case 3 holds in the procedure in Lemma 3.6 for some β ∈ ∆+ ∩ w∆−, then ψ(β) = β, so
clearly, f(β) ∈ supp(ψ(β)).

So, f(β) ∈ supp(ψ(β)) for all β ∈ (∆+∩w∆−)\α, and we can set f1 : ∆+∩w1∆−, f1(γ) = f(ψ−1(γ)).
Then f1(γ) ∈ supp γ, so f1 is a simple root distribution on ∆+ ∩ w1∆− with with D-multiplicities
n1, . . . , ni − 1, . . . , nr of simple roots.

By Proposition 4.4, there exists a labeled sorting process of w1 with D-multiplicities n1, . . . , ni −
1, . . . , nr of labels.

By Corollary 3.25, there exists a labeled sorting process of w1 with the list of labels
α1, . . . , α1, . . . , αi, . . . , αi, . . . , αr, . . . , αr, where each αj is written nj times, except for αi, which is
written ni − 1 times.

We write α with label αi in front of this sorting process, and we get the claim.

5 Clusters

Definition 5.1. Let A ⊆ Π be a set of simple roots.
A subset B ⊆ ∆+ is called a cluster with set of essential roots A (or, briefly, an A-cluster) if the

following conditions hold:

1. If α, β ∈ B, α 6= β, then (α, β) can be equal to 1 or 0, but not −1.

2. If α, β ∈ B and (α, β) = 0, then suppα∩ suppβ ∩A = ∅. In other words, suppα and suppβ don’t
have essential roots in common.

6 Criterion of unique sortability

6.1 Basic sufficient conditions for non-unique sortability

Lemma 6.1. Let w, n1, . . . , nr be a configuration of D-multiplicities.
If there exists a simple root distribution f : ∆+∩w∆− → Π with D-multiplicities n1, . . . , nr of simple

roots such that there exists a root α ∈ ∆+ ∩ w∆− such that the [coefficient in front of f(α) in the
decomposition of α into a linear combination of simple roots] is at least 2,

then Cw,n1,...,nr ≥ 2.

Proof. By Corollary 4.5, there exists an antireduced labeled sorting process such that when we perform
a reflection along a root β ∈ ∆+ ∩ w∆−, the label at this root is f(β). Denote the corresponding
distribution of simple roots {1, . . . , `(w)} → Π by f1. The D-multiplicities of labels of this sorting
process are n1, . . . , nr.

In particular, when we perform the reflection σα, the label is f(α). By the definition of X-multiplicity,
that means that the X-multiplicity of this sorting process is at least 2 (more precisely, it is a positive
integer divisible by 2).

By Lemma 3.24, Cw,n1,...,nr is the number of [labeled sorting processes of w with the distribution of
labels f1 ], counting their X-multiplicities, so, it is at least 2 since we have a labeled sorting process with
distribution of labels f1 and X-multiplicity at least 2.

Lemma 6.2. Let w, n1, . . . , nr be a configuration of D-multiplicities.
If there exists a simple root distribution f : ∆+∩w∆− → Π with D-multiplicities n1, . . . , nr of simple

roots such that there exist roots α, β ∈ ∆+ ∩ w∆− such that (α, β) = −1 and f(α) = f(β),
then Cw,n1,...,nr ≥ 2
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Proof. α, β ∈ ∆, (α, β) = −1, so α+ β ∈ ∆.
α, β ∈ ∆+, so α+ β ∈ ∆+.
α, β ∈ w∆−, so w−1α,w−1β ∈ ∆−, so w−1(α+ β) = w−1α+ w−1β ∈ ∆−, so α+ β ∈ w∆−.
Therefore, α+ β ∈ ∆+ ∩ w∆−.
Denote f(α) = f(β) = αi, f(α+ β) = αj .
Clearly, supp(α+β) = suppα∪ suppβ. αj ∈ supp(α+β), so αj is in at least one of (suppα, suppβ).
Without loss of generality, suppose that αj ∈ suppα.
Consider the following new simple root distribution g on ∆+ ∩ w∆−:
g(α+ β) = αi, g(α) = αj , and g(γ) = f(γ) for all other γ ∈ ∆+ ∩ w∆−.
αi ∈ suppα and αi ∈ suppβ, so the coefficient in front of g(α + β) = αi in the decomposition of

α+ β into a linear combination of simple roots is at least 2.
The claim follows from Lemma 6.1.

Lemma 6.3. Let w, n1, . . . , nr be a configuration of D-multiplicities.
If there exist two simple root distributions f, g : ∆+ ∩ w∆− → Π with D-multiplicities n1, . . . , nr of

simple roots such that there exist roots α, β ∈ ∆+ ∩ w∆−, α 6= β such that f is α-compatible, g is
β-compatible, and f(α) = g(β),

then Cw,n1,...,nr ≥ 2

Proof. Denote αi = g(α) = f(β). Denote by L the following list of simple roots (i. e. a function
{1, . . . , `(w)} → Π): αi, α1, . . . , α1, . . . , αi, . . . , αi, . . . , αr, . . . , αr, where, after (excluding) the first αi, [
each αj is written nj times, except for αi, which is written ni − 1 times ].

By Lemma 4.11, there exists a labeled sorting process for w that starts with α, the label at this α is
f(α), and the whole list of labels is L.

And there is another labeled sorting process for w that starts with β, the label at this β is g(β), and
the whole list of labels is L.

By Lemma 3.24, Cw,n1,...,nr ≥ 2.

Corollary 6.4. Let w, n1, . . . , nr be a configuration of D-multiplicities.
If there exists a simple root distribution f : ∆+∩w∆− → Π with D-multiplicities n1, . . . , nr of simple

roots such that there exist roots α, β ∈ ∆+ ∩ w∆−, α 6= β such that f is both α-compatible and β-
compatible and f(α) = f(β),

then Cw,n1,...,nr ≥ 2

Proof. This is the previous lemma with f = g.

Lemma 6.5. Let w, n1, . . . , nr be a configuration of D-multiplicities, let 0 ≤ k ≤ `(w).
Let β1, . . . , βk be a labeled sorting process prefix of w with D-multiplicities m1, . . . ,mr of labels.

Suppose that mi ≤ ni. Denote wk = σβk . . . σβ1w.
Then Cw,n1,...,nr ≥ Cwk,n1−m1,...,nr−mr .
In particular, if Cwk,n1−m1,...,nr−mr ≥ 2, then Cw,n1,...,nr ≥ 2.

Proof. Denote the list of labels of the labeled sorting process prefix β1, . . . , βk by L.
Fix a function {k+ 1, . . . , `(w)} → Π with D-multiplicities n1−m1, . . . , nr−mr of simple roots. For

example, fix the following list of simple roots: α1, . . . , α1, . . . , αr, . . . , αr, where αi is repeated ni −mi

times. Denote this list by L′.
For each labeled sorting process of wk with distribution of labels L, do the following. Denote this

sorting process by βk+1, . . . , β`(w). Write β1, . . . , βk in front of βk+1, . . . , β`(w), and assign the original
labels to these β1, . . . , βk. We get a labeled sotring process of w with list of labels L,L′. The D-
multiplicities of labels in L,L′ are n1, . . . , nr. And the X-multiplicity of this sorting process of w is
divisible by the X-multiplicity of the sorting process of wk.

Note that we will get different labeled sorting process of w for different labeled sorting processes of
wk.

By Lemma 3.24, Cwk,n1−m1,...,nr−mr is the numer of labeled sorting processes of wk with list of labels
L′, counting their X-multiplicities, and Cw,n1,...,nr is the number of labeled sorting processes of w with
list of labels L,L′, counting their X-multiplicities. So, Cw,n1,...,nr ≥ Cwk,n1−m1,...,nr−mr .
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Corollary 6.6. Let w, n1, . . . , nr be a configuration of D-multiplicities, let 0 ≤ k ≤ `(w).
Let f be a simple root distribution on ∆+ ∩ w∆− with D-multiplicities n1, . . . , nr of simple roots.
Let β1, . . . , βk be an antireduced labeled sorting process prefix with the label f(βi) at each βi (this is

well-defined by Lemma 3.11). Denote wk = σβk . . . σβ1
w.

Denote by g the restriction of f onto ∆+ ∩ wk∆−, and denote by p1, . . . , pr the D-multiplicities of
simple roots in g.

Then Cw,n1,...,nr ≥ Cwk,p1,...,pr .
In particular, if Cwk,p1,...,pr ≥ 2, then Cw,n1,...,nr ≥ 2.

Proof. Clearly, if we denote the D-multiplicities of simple roots of the distribution of labels on β1, . . . , bk
by m1, . . . ,mr, then pi = ni −mi.

The claim now follows from Lemma 6.5.

Lemma 6.7. Let w ∈W . Suppose that ∆+ ∩ w∆− contains exactly one root α such that w−1α ∈ −Π.
Then for every β ∈ ∆+ ∩ w∆−, suppβ ⊆ suppα.

Proof. Fix β ∈ ∆+ ∩ w∆−. Denote w−1α = −αi and w−1β = −
∑
j ajαj .

Clearly, suppw(aiαi) = suppα. Since α is the only root in ∆∩w∆− such that w−1α ∈ −Pi, for all
other roots αj with j 6= i we have w(−αj) /∈ ∆+ ∩ w∆−. Clearly, w(−αj) ∈ w∆−, so w(−αj) /∈ ∆+ if
i 6= j, and w(−αj) ∈ ∆− if i 6= j.

Therefore, all coefficients in the decomposition of w(−
∑
j 6=i ajαj) into a linear combination of simple

roots are nonpositive.
We also know that β ∈ ∆+, so all coefficients in its decomposition into a linear combination of simple

roots are nonnegative.
Since all coefficients in the decomposition of w(−

∑
j 6=i ajαj) into a linear combination of simple

roots are nonpositive, the (nonnegative) coefficients in the decomposition of β into a linear combination
of simple roots are smaller than or equal to the correspnding (also nonnegative) coefficients in the
decomposition of w(aiαi) into a linear combination of simple roots.

So, suppβ ⊆ suppw(aiαi) = suppα.

Lemma 6.8. Let w, n1, . . . , nr be a configuration of D-multiplicities. Suppose that ∆+ ∩w∆− contains
exactly one root α such that w−1α ∈ −Π.

Suppose that there exists a simple root distribution f : ∆+∩w∆− → Π with D-multiplicities n1, . . . , nr
of simple roots such that there exists β ∈ ∆+ ∩ w∆− such that (α, β) = 0 and f(α) = f(β).

Then at least one of the following statements is true:

1. Cw,n1,...,nr ≥ 2.

2. There exists a (possibly different) simple root distribution g : ∆+ ∩ w∆− → Π with (the same) D-
multiplicities n1, . . . , nr of simple roots such that there exist β′, β′′ ∈ ∆+ ∩w∆− such that α 6= β′,
α 6= β′′, (β′, β′′) = 0 and g(β′) = g(β′′) = f(α).

Proof. First, until the end of the proof, call a root γ ∈ ∆+ ∩ w∆− red if γ 6= α and there exists a
simple root distribution g : ∆+ ∩ w∆− → Π with D-multiplicities n1, . . . , nr of simple roots such that
g(α) = g(γ) = f(α).

Clearly, β is a red root.
Without loss of generality (after a possible change of f) we may assume that β is a [maximal in the

sense of ≺w] element of the set of {red roots γ such that (γ, α) = 0}.
Suppose first that there exists a red root γ such that (γ, α) = −1.
This means that there exists a simple root distribution g : ∆+ ∩ w∆− → Π with D-multiplicities

n1, . . . , nr of simple roots such that g(α) = g(γ) = f(α). By Lemma 6.2 (applied to the distribution g),
Cw,n1,...,nr ≥ 2.

Now we suppose until the end of the proof that if γ is a red root, then (γ, α) = 0 or (γ, α) = 1.
Similarly, note that if there exists a red root γ such that the coefficient in front of f(α) in the

decomposition of γ into a linear combination of simple roots is at least 2, then Cw,n1,...,nr ≥ 2 by lemma
6.1.
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So, we also suppose until the end of the proof that if γ is a red root, then the coefficient in front of
f(α) in the decomposition of γ into a linear combination of simple roots is 1.

Also, if the coefficient in front of f(α) in the decomposition of α into a linear combination of simple
roots is at least 2, then Cw,n1,...,nr ≥ 2 by lemma 6.1.

So, we also suppose until the end of the proof that the coefficient in front of f(α) in the decomposition
of α into a linear combination of simple roots is 1.

1. Consider the case when f is a β-compatible distribution.

By Lemma 4.10, f is also an α-compatible distribution. By Corollary 6.4, Cw,n1,...,nr ≥ 2.

END Consider the case when f is a β-compatible distribution.

2. Now consider the case that f is not a β-compatible distribution.

By Lemma 4.9, this means that there exists a root δ ∈ ∆+ ∩ w∆− such that β ≺w δ, (β, δ) = 1,
f(δ) ∈ suppβ, and f(β) ∈ supp δ.

(β, δ) = 1, so δ 6= α since (β, α) = 0.

Since f(β) ∈ supp δ, f(δ) ∈ suppβ, we can consider a new simple root distribution h on ∆+∩w∆−:
h(β) = f(δ), h(δ) = f(β), and h(ε) = ε for all ε ∈ ∆+ ∩ w∆−, ε 6= β, ε 6= δ. Clearly, h has D-
multiplicities n1, . . . , nr of simple roots as well as f . Note also that h(δ) = f(β) = f(α) = h(α).
Therefore, δ is a red root, and there are only two possibilities for (δ, α): (δ, α) = 0 and (δ, α) = 1.

In fact, (δ, α) = 0 is also impossible, because β ≺w δ, and β is a maximal with respect to ≺w
element of the set of red roots orthogonal to α.

So, (δ, α) = 1.

By Lemma 2.7, α − δ + β ∈ ∆. Denote β′ = α − δ + β. Lemma 2.7 also says that (β′, δ) = 0. It
also says that (β′, α) = 1, so α 6= β′.

We are now supposing that the coefficients in front of f(α) in the decompositions of α and of all
red roots into linear combinations of simple roots are all 1. By Lemma 2.8, β′ ∈ ∆+, and the
coefficient in front of f(α) in the decomposition of β′ into a linear combination of simple roots is
1. In particular, f(α) ∈ suppβ′.

β ≺w δ, so, by Lemma 2.15, β′ ∈ w∆−.

By Lemma 6.7, suppβ′ ⊆ suppα, so f(β′) ∈ suppα.

Set β′′ = δ and define a new simple root distribution g on ∆+ ∩ w∆− as follows:

g(α) = f(β′).

g(β′) = g(β′′) = f(α) = f(β).

g(β) = f(β′′).

Clearly, g has D-multiplicities n1, . . . , nr of simple roots as well as f .

END consider the case that f is not a β-compatible distribution.

Lemma 6.9. Let w, n1, . . . , nr be a configuration of D-multiplicities.
If there exists a simple root distribution f : ∆+∩w∆− → Π with D-multiplicities n1, . . . , nr of simple

roots such that there exist roots δ′, δ′′ ∈ ∆+ ∩ w∆− such that (δ′, δ′′) = 0 and f(δ′) = f(δ′′),
then Cw,n1,...,nr ≥ 2

Proof. We are going to construct two different labeled sorting processes with the same list of labels.
Both sorting processes will begin in the same way and proceed in the same way, while possible.
Set w0 = w.
We perform the following antisimple reflections while we don’t say we want to stop. We will denote

the current element of W after i reflections by wi.
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While we perform these reflections, we will sometimes need to modify the distribution f . In rigorous
terms, we will have several simple root distributions f0 = f, f1, . . . , fk (0 ≤ k < `(w)) such that when
we perform the ith reflection (and it will be the ith reflection in both of the sorting processes we will
construct), and this reflection is σγ for some γ ∈ ∆+ ∩ w∆− (recall that we are doing antisimple
reflections, see Lemma 3.11), we assign (in both processes) the label fi(γ) to it. And when we modify
our distribution later, i. e. when we define fj with j > i, we don’t change its value that was already
assigned to a step of the sorting process, i. e. fj(γ) will be the same as fi(γ).

Also, all distributions fi will have the same D-multiplicities of simple roots as f .
In the end, when we stop after k steps, it will be true that when we performed the ith reflection and

this reflection is σγ for some γ ∈ ∆+ ∩ w∆−, the label assigned to this reflection was fk(γ).
Also, while we perform this reflections, we will sometimes need to modify the values of δ′ and δ′′.

Again, in rigorous terms, we will have two sequences of roots, δ′0 = δ′, δ′1 . . . , δ
′
k and δ′′0 = δ′′, δ′1 . . . , δ

′′
k

such that (δ′i, δ
′′
i ) = 0, fi(δ

′
i) = fi(δ

′′
i ) = f(δ′), and δ′i, δ

′′
i ∈ ∆+ ∩ wi∆−. In particular, this means that

|∆+ ∩ wi∆−| = `(wi) ≥ 2, and this means that at a certain point we will have to stop explicitly, we
cannot exhaust the whole |∆+ ∩ w∆−|.

For each i ∈ N, starting from i = 1.

1. If there exists γ ∈ ∆+ ∩ wi−1∆− such that w−1
i−1γ ∈ −Π, γ 6= δ′i−1, γ 6= δ′′i−1,

then:

Set fi = fi−1, δ′i = δ′i−1, δ′′i = δ′′i−1

We are only performing antisimple reflections now, so by Lemma 3.11, ∆+∩wi−1∆− ⊆ ∆+∩w∆−,
and γ ∈ ∆+ ∩ w∆−, and f is defined on γ.

we say that the ith step of both sorting processes will be βi = γ with label fi(γ), we perform the
reflection σβi , we set wi = σβiwi−1.

βi 6= δ′i, βi 6= δ′′i , so δ′i, δ
′′
i ∈ ∆+ ∩ wi∆−.

And we CONTINUE with the next step of the sorting process (with the next value of i).

2. Otherwise, if (w−1
i−1δ

′
i−1 ∈ −Π and w−1

i−1δ
′′
i−1 ∈ −Π), then we say that we WANT TO STOP.

3. Otherwise, there is only one γ ∈ ∆+ ∩wi−1∆− such that w−1
i−1γ ∈ −Π, and this γ is either δ′i−1 or

δ′′i−1.

Without loss of generality, suppose that γ = δ′i−1.

Restrict fi−1 onto ∆+∩wi−1∆−, and denote the result by gi−1. Temporarily (until the end of this
step of the sorting process) denote the D-multiplicities of simple roots in gi−1 by m1, . . . ,mr.

Let us apply Lemma 6.8 to wi−1, to the distribution gi−1, and to δ′i−1 and δ′′i−1.

Lemma 6.8 may tell us Cwi−1,m1,...,mr ≥ 2. Then by Corollary 6.6, Cw,n1,...,nr ≥ 2. Stop everything,
we are done.

Otherwise, Lemma 6.8 gives us a new simple root distribution, which we denote by gi, on ∆+ ∩
wi−1∆− and a new pair of roots, which we denote by δ′i and δ′′i , such that:

the D-multiplicities of simple roots in gi are the same as the D-multiplicities of simple roots in
gi−1, they are m1, . . . ,mr.

δ′i, δ
′′
i ∈ ∆+ ∩ wi−1∆−,

(δ′i, δ
′′
i ) = 0,

gi(δ
′
i) = gi(δ

′′
i ) = gi−1(δ′i−1) = f(δ′)

δ′i 6= γ, δ′′i 6= γ.

Expand this new distribution gi to the whole ∆+ ∩w∆− using fi−1. In rigorous terms, define the
following new distribution fi on ∆+∩w∆−: fi(α) = gi(α) if α ∈ ∆+∩wi−1∆−, and fi(α) = fi−1(α)
otherwise.
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The D-multiplicities of simple roots in gi are the same as the D-multiplicities of simple roots
in gi−1, they are m1, . . . ,mr, so the D-multiplicities of simple roots in fi are the same as the
D-multiplicities of simple roots in fi−1, they are n1, . . . , nr.

Now we again say that the ith step of both sorting processes will be βi = γ with label fi(γ), we
perform the reflection σβi , we set wi = σβiwi−1.

Again, βi 6= δ′i, βi 6= δ′′i , so δ′i, δ
′′
i ∈ ∆+ ∩ wi∆−.

And we CONTINUE with the next step of the sorting process (with the next value of i).

END For each i ∈ N, starting from i = 1.
After a certain number (denote it by k) of steps, we will stop. At this point we will have a simple

root distribution fk on ∆+∩w∆− with D-multiplicities n1, . . . , nr of simple roots, a sequence β1, . . . , βk
of elements of ∆+ ∩ w∆−, a sequence w0 = w,w1, . . . , wk of elements of W such that

[σβi is an antisimple sorting reflection for wi−1, and wi = σβiwi],
and two roots δ′k, δ

′′
k ∈ ∆+ ∩ wk∆− such that (δ′k, δ

′′
k ) = 0, fk(δ′k) = fk(δ′′k ) = f(δ′), and

w−1δ′k, w
−1δ′′k ∈ −Π.

Again restrict fk onto ∆+∩wk∆−, and denote the result by gk. Denote the D-multiplicities of simple
roots in gk by m1, . . . ,mr.

By Corollary 4.10, gk is both δ′k-compatible and δ′′k -compatible. By Corollary 6.4, Cwk,m1,...,mr ≥ 2.
By Corollary 6.6, Cw,n1,...,nr ≥ 2.

6.2 Uniqueness and non-uniqueness of sortability in case of excessive con-
figuration

Definition 6.10. Let w, n1, . . . , nr be a configuration of D-multiplicities.
Denote by J the set of indices of involved roots, i. e. of indices i (1 ≤ i ≤ r) such that ni > 0.
We say that it is excessive if:
|RJ(w)| ≥

∑
i∈J ni

and
For each I ⊂ J , I 6= J , one has: |RI(w)| >

∑
i∈I ni.

Lemma 6.11. Let w, n1, . . . , nr be an excessive configuration of D-multiplicities. Then for each α ∈
∆+ ∩ w∆−, there exists an involved simple root αi ∈ suppα.

Proof. By Corollary 4.3, there exists a simple roots distribution f on ∆+ ∩ w∆− with D-multiplicities
n1, . . . , nr of simple roots.

αi is an involved root, so ni > 0, and there is a root α ∈ ∆+ ∩ w∆− such that f(α) = αi. Then
αi ∈ suppα.

Definition 6.12. Let w, n1, . . . , nr be a configuration of D-multiplicities.
We say that it is a free-first-choice configuration if for each α ∈ ∆+ ∩w∆− and for each αi ∈ suppα

such that ni > 0 there exists a simple root distribution f on ∆+ ∩w∆− with D-multiplicities n1, . . . , nr
of simple roots such that f(α) = αi

Lemma 6.13. Let w, n1, . . . , nr be a configuration of D-multiplicities. If it is excessive, then it is a
free-first-choice configuration.

Proof. Fix α ∈ ∆+ ∩ w∆− and an involved root αi ∈ suppα. Set A = (∆+ ∩ w∆−) \ α.
Denote by J the set of indices j (1 ≤ j ≤ r) such that nj > 0. Note that i ∈ J .
Set mj = nj for j 6= i and mi = ni − 1. Since ni > 0, mj ≥ 0 for all j (1 ≤ j ≤ r).
Let I ⊆ J . Clearly,

∑
j∈I nj ≥

∑
j∈I mj and |RI(A)| ≥ |RI(w)| − 1.

If I 6= J , then |RI(A)| ≥ |RI(w)| − 1 > (
∑
j∈I nj) − 1 ≥ (

∑
j∈I mj) − 1. Since all number here are

integers, |RI(A)| ≥
∑
j∈I mj .

If I = J , then
∑
j∈I mj = (

∑
j∈J nj)− 1, and |RI(A)| ≥ |RI(w)| − 1 ≥ (

∑
j∈I nj)− 1 =

∑
j∈I mj .

So, for all I ⊆ J we have |RI(A)| ≥
∑
j∈I mj .
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Denote by J ′ the set of indices j ∈ {1, . . . , r} such that mj > 0. Clearly, J ′ ⊆ J . So, for all I ⊆ J ′

we also have |RI(A)| ≥
∑
j∈I mj . By Lemma 4.2, there exists a simple root distribution g on A with

D-multiplicities m1, . . . ,mr.
Set f(α) = αi and f(β) = g(β) for β ∈ A. This is a distribution of simple roots on ∆+ ∩ w∆− with

D-multiplicities n1, . . . , nr.

Definition 6.14. Let w, n1, . . . , nr be a configuration of D-multiplicities.
We say that this configuration has large essential coordinates if there exists α ∈ ∆+ ∩ w∆− and

αi ∈ Π such that ni > 0 and the coefficient in front of αi in the decomposition of α into a linear
combination of simple roots is at least 2.

We say that this configuration has small essential coordinates if it does not have large essential
coordinates.

Lemma 6.15. Let w, n1, . . . , nr be a free-first-choice configuration of D-multiplicities. If it has large
essential coordinates,

then Cw,n1,...,nr ≥ 2.

Proof. Since the configuration has large essential coordinates, there exists α ∈ ∆+ ∩ w∆− and αi ∈ Π
such that ni > 0 and the coefficient in front of αi in the decomposition of α into a linear combination of
simple roots is at least 2.

By the definition of a free-first-choice configuration, there exists a simple root distribution f on
∆+ ∩w∆− with D-multiplicities n1, . . . , nr of simple roots such that f(α) = αi. The claim follows from
Lemma 6.1.

Lemma 6.16. Let w, n1, . . . , nr be a free-first-choice configuration of D-multiplicities.
If there exist roots α, β ∈ ∆+ ∩ w∆− such that (α, β) = −1 and an involved simple root αi ∈

suppα ∩ suppβ,
then Cw,n1,...,nr ≥ 2.

Proof. α, β ∈ ∆, (α, β) = −1, so α+ β ∈ ∆.
α, β ∈ ∆+, so α+ β ∈ ∆+.
α, β ∈ w∆−, so w−1α,w−1β ∈ ∆−, so w−1(α+ β) = w−1α+ w−1β ∈ ∆−, so α+ β ∈ w∆−.
Therefore, γ = α+ β ∈ ∆+ ∩ w∆−.
Since αi ∈ suppα and αi ∈ suppβ, the coefficient in front of αi in the decomposition of γ = α + β

into a linear combination of simple roots is at least 2.
αi is an involved root, so the configuration w, n1, . . . , nr has large essential coordiantes. The claim

follows from Lemma 6.16.

Definition 6.17. Let w ∈W . We call a simple root distribution f on ∆+ ∩w∆− flexible if there exist
roots α, β ∈ ∆+ ∩ w∆− such that (α, β) = 0, f(β) ∈ suppα, and f(α) ∈ suppβ.

Lemma 6.18. Let w, n1, . . . , nr be a configuration of D-multiplicities. If there exists a simple root
distribution f on ∆+ ∩w∆− with D-multiplicities n1, . . . , nr of simple roots and roots α, β ∈ ∆+ ∩w∆−

such that w−1α,w−1β ∈ −Π, f(α) ∈ suppβ, and f(β) ∈ suppα,
then Cw,n1,...,nr ≥ 2.

Proof. By Lemma 4.10, f is α-compatible.
Consider another simple roots distribution g on ∆+ ∩ w∆−: g(α) = f(β), g(β) = f(α), and g(γ) =

f(γ) for all other γ ∈ ∆+ ∩ w∆−. Since f(α) ∈ suppβ and f(β) ∈ suppα, this is really a simple root
distribution. Clearly, it also has D-multiplicities n1, . . . , nr of simple roots.

By Lemma 4.10, g is β-compatible.
By Lemma 6.3, Cw,n1,...,nr ≥ 2.

Lemma 6.19. Let w, n1, . . . , nr be a configuration of D-multiplicities that has small essential coor-
diantes. Suppose that ∆+ ∩ w∆− contains exactly one root α such that w−1α ∈ −Π.

Suppose that there exists a simple root distribution f : ∆+∩w∆− → Π with D-multiplicities n1, . . . , nr
of simple roots such that there exists β ∈ ∆+ ∩ w∆− such that (α, β) = 0 and f(α) ∈ suppβ.

Then at least one of the following statements is true:
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1. Cw,n1,...,nr ≥ 2.

2. There exists a simple root distribution g : ∆+ ∩ w∆− → Π whose restriction to ∆+ ∩ (σαw)∆− =
(∆+ ∩ w∆−) \ α is flexible.

Proof. The proof is very similar to the proof of Lemma 6.8.
First, until the end of the proof, call a root γ ∈ ∆+ ∩ w∆− red if γ 6= α and f(α) ∈ supp γ.
Clearly, β is a red root.
Without loss of generality we may assume that β is a [maximal in the sense of ≺w] element of the

set of {red roots γ such that (γ, α) = 0}.
Denote αi = f(α). Since f is a simple root distribution with D-multiplicities n1, . . . , nr of simple

roots and f(α) = αi, ni > 0.
Assume that there exists a red root γ such that (γ, α) = −1.
This means that f(γ) = f(α), in particluar, f(α) ∈ suppα, f(α) ∈ supp γ.
By Lemma 2.5, α+ γ ∈ ∆.
α, γ ∈ ∆+, so α+ γ ∈ ∆+.
α, γ ∈ w∆−, so α+ γ ∈ w∆−.
Therefore, α+ γ ∈ ∆+ ∩ w∆−.
f(α) ∈ suppα, f(α) ∈ supp γ, so, the coefficient in front of f(α) in the decomposition of α + γ into

the linear combination of simple roots is at least 2. We know that ni > 0, so w, n1, . . . , nr is actually a
configuration that has large essential coordinates. A contradiction.

Therefore, if γ is a red root, then (γ, α) = 0 or (γ, α) = 1.
By Lemma 6.7, suppβ ⊆ suppα, so f(β) ∈ suppα. We also know that f(α) ∈ suppβ.
Consider another simple roots distribution h on ∆+ ∩ w∆−: h(α) = f(β), h(β) = f(α), and h(γ) =

f(γ) for all other γ ∈ ∆+ ∩ w∆−. Since f(α) ∈ suppβ and f(β) ∈ suppα, this is really a simple root
distribution. Clearly, it also has D-multiplicities n1, . . . , nr of simple roots.

1. Consider the case when h is a β-compatible distribution.

By Lemma 4.10, f is an α-compatible distribution. By Lemma 6.3, Cw,n1,...,nr ≥ 2.

END Consider the case when h is a β-compatible distribution.

2. Now consider the case that h is not a β-compatible distribution.

By Lemma 4.9, this means that there exists a root γ ∈ ∆+ ∩ w∆− such that β ≺w γ, (β, γ) = 1,
h(γ) ∈ suppβ, and h(β) ∈ supp γ.

(β, γ) = 1, so γ 6= α since (β, α) = 0.

γ 6= α, γ 6= β, so f(γ) = h(γ) ∈ suppβ, and h(β) = f(α) ∈ supp γ.

f(α) ∈ supp γ, so γ is a red root, and (γ, α)ne− 1.

(γ, α) = 0 is also impossible since β ≺w γ, and we would have a contradiciton with the minimality
of β with respect to ≺w in the set of red roots orthogonal to α.

So, (γ, α) = 1. Recall that (α, β) = 0.

Set δ = α− γ + β. By Lemma 2.7, δ ∈ ∆ and (δ, γ) = 0.

By Lemma 2.7, α − δ + β ∈ ∆. Lemma 2.7 also says that (γ, δ) = 0. It also says that (β, δ) = 1,
(δ, α) = 1, so α 6= δ.

Since w, n1, . . . , nr has small essential coordinates, and ni > 0 that the coefficients in front of
f(α) = αi in the decompositions of α and of all red roots into linear combinations of simple roots
are all 1. By Lemma 2.8, δ ∈ ∆+, and the coefficient in front of αi in the decomposition of δ into
a linear combination of simple roots is 1. In particular, f(α) ∈ supp δ.

β ≺w γ, so, by Lemma 2.15, δ ∈ w∆−. Therefore, δ ∈ ∆+ ∩ w∆−.

Now let us check that f(γ) ∈ supp δ or f(δ) ∈ supp γ.

Assume the contrary: f(γ) /∈ supp δ and f(δ) /∈ supp γ. Recall that f(γ) ∈ suppβ. Recall also
that (δ, β) = 1. So, β − δ ∈ ∆, and either β − δ ∈ ∆−, or β − δ ∈ ∆+.
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But if β − δ ∈ ∆−, then β ≺ δ, so suppβ ⊆ supp δ, and it is impossible to have f(γ) ∈ suppβ and
f(γ) /∈ supp δ, a contradiciton.

So, β − δ ∈ ∆+. Then α ≺ γ = β − δ + α, so suppα ⊆ supp γ. By Lemma 6.7, suppβ ⊆ suppα,
so suppβ ⊆ supp γ.

Also, β − δ ∈ ∆+, so δ ≺ β, and supp δ ⊆ suppβ. We know that f(δ) ∈ supp δ, so f(δ) ∈ suppβ.
We know that suppβ ⊆ supp γ, so f(δ) ∈ supp γ, a contradiciton.

Therefore, f(γ) ∈ supp δ or f(δ) ∈ supp γ.

Let us consider 3 cases:

(a) f(γ) ∈ supp δ and f(δ) ∈ supp γ. Set g = f . Then g(δ) ∈ supp γ, g(γ) ∈ supp δ.

(b) f(γ) ∈ supp δ, but f(δ) /∈ supp γ. Recall that f(α) ∈ supp δ. By Lemma 6.7, supp δ ⊆ suppα,
so f(δ) ∈ suppα.

Set g(α) = f(δ), g(δ) = f(α), and g(ε) = f(ε) for all other ε ∈ ∆+ ∩ w∆−. This is a simple
root distribution on ∆+ ∩ w∆− with D-multiplicities n1, . . . , nr of simple roots.

Recall also that f(α) ∈ supp γ.

Summarizing, g(δ) = f(α) ∈ supp γ, g(γ) = f(γ) ∈ supp δ.

(c) f(δ) ∈ supp γ, but f(γ) /∈ supp δ. Similarly to the previous case:

Recall that f(α) ∈ supp γ. By Lemma 6.7, supp γ ⊆ suppα, so f(γ) ∈ suppα.

Set g(α) = f(γ), g(γ) = f(α), and g(ε) = f(ε) for all other ε ∈ ∆+ ∩ w∆−. This is a simple
root distribution on ∆+ ∩ w∆− with D-multiplicities n1, . . . , nr of simple roots.

Recall also that f(α) ∈ supp δ.

Summarizing, g(γ) = f(α) ∈ supp δ, g(δ) = f(δ) ∈ supp γ.

END consider 3 cases.

So, we have constructed a simple root distribution g on ∆+∩w∆− with D-multiplicities n1, . . . , nr
of simple roots such that g(δ) ∈ supp γ, g(γ) ∈ supp δ.

Recall that α 6= δ, α 6= γ, and (γ, δ) = 0 so the restriction of g to (∆+ ∩ w∆−) \ α is flexible.

END consider the case that h is not a β-compatible distribution.

Lemma 6.20. Let w, n1, . . . , nr be a configuration of D-multiplicities that has small essential coor-
diantes.

If there exists a flexible simple root distribution f : ∆+ ∩ w∆− → Π with D-multiplicities n1, . . . , nr
of simple roots,

then Cw,n1,...,nr ≥ 2

Proof. The proof is very similar to the proof of Lemma 6.9
Set w0 = w.
We perform the following antisimple reflections while we don’t say we want to stop. This way we

construct a labeled antisimple sorting process prefix. Again, we will denote the current element of W
after i reflections by wi.

Again, we will have several simple root distributions f0 = f, f1, . . . , fk (0 ≤ k < `(w)) such that
when we perform the ith reflection (and it will be the ith reflection in both of the sorting processes we
will construct), and this reflection is σγ for some γ ∈ ∆+ ∩ w∆− (recall that we are doing antisimple
reflections, see Lemma 3.11), we assign the label fi(γ) to it. And when we modify our distribution later,
i. e. when we define fj with j > i, we don’t change its value that was already assigned to a step of the
sorting process, i. e. fj(γ) will be the same as fi(γ).

Also, all distributions fi will have the same D-multiplicities of simple roots as f .
In the end, when we stop after k steps, it will be true that when we performed the ith reflection and

this reflection is σγ for some γ ∈ ∆+ ∩ w∆−, the label assigned to this reflection was fk(γ).
We will also maintain the following fact: the restriction of fi onto ∆+ ∩ wi∆− (i ≥ 0) is flexible.
For each i ∈ N, starting from i = 1.
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1. If there exist two roots γ, γ′ ∈ ∆+ ∩ wi−1∆− such that w−1
i−1γ,w

−1
i−1γ

′ ∈ −Π, fi−1(γ) ∈ supp γ′,
fi−1(γ′) ∈ supp γ, and (γ, γ′) = 0 then we say that we WANT TO STOP.

2. Otherwise, if there exist three different roots α, γ, γ′ ∈ ∆+ ∩ wi−1∆− such that w−1
i−1α ∈ −Pi,

fi−1(γ) ∈ supp γ′, fi−1(γ′) ∈ supp γ, and (γ, γ′) = 0, then:

Set fi = fi−1

we say that the ith step of the sorting process prefix will be βi = α with label fi(α), we perform
the reflection σβi , we set wi = σβiwi−1.

∆+ ∩ wi∆− still contains γ and γ′, so the restriction of fi to ∆+ ∩ wi∆− is flexible.

And we CONTINUE with the next step of the sorting process (with the next value of i).

3. Otherwise:

We know that (we are maintaining the fact that) the restriction of fi−1 to ∆+∩wi−1∆− is flexible.
So, there exist γ, γ′ ∈ ∆+∩wi−1∆− such that fi−1(γ) ∈ supp γ′, fi−1(γ′) ∈ supp γ, and (γ, γ′) = 0.

By Lemma 3.10, there exists α ∈ ∆+ ∩ wi−1∆− such that w−1
i−1α ∈ −Pi.

All three roots α, γ, γ′ cannot be different, this would be case 2. But γ 6= γ′ since (γ, γ′) = 0. So,
α = γ or α = γ′, without loss of generality let us suppose that α = γ.

Note that w−1
i−1γ

′ /∈ −Π, otherwise this would be case 1.

Also, we cannot have another root α′ ∈ ∆+∩wi−1∆−, different from α = γ, such that w−1
i−1α

′ ∈ −Π,
this would also be case 2. In other words, there exists exaclty one root α′ ∈ ∆+ ∩ wi−1∆− such
that w−1

i−1α
′ ∈ −Π, and this root is α.

Restrict fi−1 onto ∆+∩wi−1∆−, and denote the result by gi−1. Temporarily (until the end of this
step of the sorting process) denote the D-multiplicities of simple roots in gi−1 by m1, . . . ,mr.

We are going to apply Lemma 6.19 to wi−1. The only condition we have to check is that the
configuration wi−1,m1, . . . ,mr has small essential coordinates. But we are doing only antisimple
reflections, so ∆+ ∩ wi−1∆− ⊆ ∆+ ∩ w∆−. Also, nj ≥ mj by the definition of mj . So, if for
some δ ∈ ∆+ ∩wi−1∆−, the coefficient in front of some αj in the decomposition of δ into a linear
combination of simple roots is at least 2, and mj > 0, then nj > 0, and δ ∈ ∆+ ∩ w∆−. But this
is impossible since w, n1, . . . , nr is a configuration with small essential coordiantes.

So, the configuration wi−1,m1, . . . ,mr has small essential coordinates, and we can use Lemma
6.19.

Lemma 6.19 may tell us Cwi−1,m1,...,mr ≥ 2. Then by Corollary 6.6, Cw,n1,...,nr ≥ 2. Stop every-
thing, we are done.

Otherwise, Lemma 6.8 gives us a new simple root distribution, which we denote by gi, on ∆+ ∩
wi−1∆− such that:

the D-multiplicities of simple roots in gi are the same as the D-multiplicities of simple roots in
gi−1, they are m1, . . . ,mr,

and the restriction of gi to (∆+ ∩ wi−1∆−) \ α is flexible.

Expand this new distribution gi to the whole ∆+ ∩w∆− using fi−1. In rigorous terms, define the
following new distribution fi on ∆+∩w∆−: fi(δ) = gi(δ) if δ ∈ ∆+∩wi−1∆−, and fi(δ) = fi−1(δ)
otherwise.

The D-multiplicities of simple roots in gi are the same as the D-multiplicities of simple roots
in gi−1, they are m1, . . . ,mr, so the D-multiplicities of simple roots in fi are the same as the
D-multiplicities of simple roots in fi−1, they are n1, . . . , nr.

Now we again say that the ith step of both sorting processes will be βi = α with label fi(α), we
perform the reflection σβi , we set wi = σβiwi−1.

The restriction of fi to ∆+ ∩wi∆− is the same as the restriction of gi to (∆+ ∩wi−1∆−) \α, it is
flexible.

And we CONTINUE with the next step of the sorting process (with the next value of i).
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END For each i ∈ N, starting from i = 1.
After a certain number (denote it by k) of steps, we will stop. At this point we will have a simple

root distribution fk on ∆+∩w∆− with D-multiplicities n1, . . . , nr of simple roots, a sequence β1, . . . , βk
of elements of ∆+∩w∆−, a sequence w0 = w,w1, . . . , wk of elements of W such that σβi is an antisimple
sorting reflection for wi−1, and wi = σβiwi, and two roots γ, γ′ ∈ ∆+ ∩wk∆− such that w−1

k γ,w−1
k γ′ ∈

−Π, fk(γ) ∈ supp γ′, fk(γ′) ∈ supp γ, and (γ, γ′) = 0.
Again restrict fk onto ∆+ ∩wk∆−, and denote the result by gk. We know (we were maintaining the

fact that) gk is flexible. Denote the D-multiplicities of simple roots in gk by m1, . . . ,mr.
By Lemma 6.18, Cwk,m1,...,mr ≥ 2. By Corollary 6.6, Cw,n1,...,nr ≥ 2.

Lemma 6.21. Let w, n1, . . . , nr be an excessive configuration of D-multiplicities.
If there exist roots α, β ∈ ∆+ ∩ w∆− such that (α, β) = 0 and suppβ ⊆ suppα,
then Cw,n1,...,nr ≥ 2.

Proof. If the configuration has large essential coordinates, Cw,n1,...,nr ≥ 2 by lemma 6.15.
Suppose that the configuration has small essential coordinates. By Lemma 6.11, there exists a simple

root αi ∈ suppβ involved in w, n1, . . . , nr.
By Lemma 6.13, w, n1, . . . , nr is a free-first-choice configuration, so there exists a simple root distri-

bution f on ∆+ ∩ w∆− with D-multiplicities n1, . . . , nr of simple roots such that f(α) = αi.
So, f(α) ∈ suppβ. Also, f(β) ∈ suppα since suppβ ⊆ suppα. So, f is a flexible distribution.
By Lemma 6.20, Cw,n1,...,nr ≥ 2.
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