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1 C-�brations.

Notation. We will denote by S the (∞, 1)-category of spaces and by Cat∞ the (∞, 1)-category of
(∞, 1)-categories. Throughout this document we will frequently consider spaces as special kinds

of (∞, 1)-categories using the obvious inclusion S // Cat∞ . For an (∞, 1)-category C ∈ Cat∞
we will denote its core (obtained by throwing out all the noninvertible morphisms in C) by C' ∈ S.
We will denote by Sp the (∞, 1)-category of spectra.
From now on we will also frequently omit the symbol (∞, 1).

Let X ∈ S be a space. What is a vector bundle over X? At least for every point x ∈ X we
should have a vector space Vx ∈ Vect, where Vect is the category of vector spaces (considered as
topologically enriched category made into (∞, 1)-category). More then that, given a path from x1

to x2 in X we should have a morphism Vx1
// Vx2

corresponding to this path. The picture

should be similar for all the higher homotopies motivating the following

De�nition. A vector bundle E over a space X is a functor X
E // Vect .

Even more generally, we can consider the following

De�nition. For a space X ∈ S and a category C ∈ Cat∞ de�ne the category FibC(X) ∈ Cat∞ of
C-�brations over X simply as the category of functors

FibC(X) := Funct(X,C).

Examples.

1) We have
FibC(∗) = Funct(∗,C) ' C

2) Considering S1 ∈ S as a Kan simplicial set with only one point ∗ ∈ S1 we see that specifying
a vector bundle V ∈ FibVect(S

1) amounts to specifying a vector space V ∈ Vect together with an

endomorphism V
f // V .

3) For a group G the �bration (EG // BG) ∈ FibS(BG) is classi�ed by the functor

BG // S

which sends the unique point ? ∈ BG to G ∈ S and the arrows in BG are sent to the action of G
on itself.
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Remarks.

1) Notice that since X is an ∞-groupoid there is an equivalence Xop ' X so that we obtain an
equivalence

FibC(X) = Funct(X,C) ' Funct(Xop,C).

2) In the special case when C = S the category of spaces we have an equivalence

FibS(X) = Funct(X,S) ' S/X ,

where S/X is the category of spaces over X and the last equality holds since it holds in the special
case X ' ∗ and both of the functors

Sop
Funct(•,S), S/• // Cat∞

preserve limits.
In fact, the equivalence above holds not only for the category of spaces but also for arbitrary topos.

Sometimes it is also useful to control �bers of a C-�bration. In order to work with this com-
fortably, we introduce the following

Notation. For an object C ∈ C we will denote by FibCC (X) the full subcategory of FibC(X)
spanned by those C-�brations E ∈ FibC(X) whose �ber over any point is equivalent to C ∈ C.
More formally, for every point x ∈ X there should be an equivalence E(x) ' C in C.

Example. Suppose that the space X ∈ S is connected and let E ∈ FibC(X) be a C-�bration over
X. Then E actually lies in FibCC (X), where C is the �ber of E over any point x ∈ E. Indeed, since
X is connected, for two arbitrary points x, y ∈ X there exists a path x ∼

// y in X. Since such

a path gives an equivalence between x and y, the induced morphism E(x) // E(y) should be

an equivalence so that the �bers E(x) and E(y) are equivalent.

Now to investigate C-�brations we have the following

Proposition.

1) The C-�brations assigmnent is actually a functor

Sop
FibC(•) // Cat∞

2) For any X ∈ S there is an equivalence

π0 FibC(X) ' π0 HomS
(
X,

⊔
[C]∈C'

BAutC(C)
)
.

3) For any X ∈ S and C ∈ C there is an equivalence

π0 Fib
C
C (X) ' π0 HomS

(
X,BAutC(C)

)
.

Proof.

1) Given a morphism X
f // Y the induced functor FibC(Y )

f∗ // FibC(X) is given simply by

precomposition with f .

2) We have
π0 FibC(X) ' π0 Funct(X,C) ' π0 HomCat∞(X,C) '

' π0 HomS(X,C') ' π0 HomS
(
X,

⊔
[C]∈C'

BAutC(C)
)

as deisred.

3) Similar as (2) above.

2



Remarks.

1) Notice that despite from the equivalence above in most cases we have

FibC(X) 6' HomCat∞(X,C').

The easiest way to see this is to consider the special case X ' ∗: we then have FibC(∗) ' C while
HomCat∞(∗,C') ' C'.

2) Supppose that the category C is good enough. Then given a morphism

X
f // Y

in S there is a sequence of adjunctions f! a f∗ a f∗, where the functors f! and f∗ are de�ned as
the left and the right Kan extensions along f respectively (for an arbitrary C they may not exist).

Examples.

1) Through the equivalence above the nullhomotopic map X // ∗ IdC // BAutC(C) corre-

sponds to the constant C-�bration ConstC ∈ FibCC (X) ⊆ FibC(X).

2) Suppose we are interested in R-vector bundles over a space X of a �xed dimension n up

to an equivalence. Another words, we wish to understand the set π0 Fib
Rn

VectR(X). Then using the
proposition above we get

π0 Fib
Rn

C (X) ' π0 HomS
(
X,BAutVectR(Rn)

)
' π0 HomS

(
X,BGLn(R)

)
' π0 HomS

(
X,BOn(R)

)
,

where the last equivalence follows from the homotopy equivalence BGLn(R) ' BOn given by the
Gram�Schmidt process. Consequently, we see that �brations over X with the �ber Rn ∈ Vect are
classi�ed up to equivalence by the maps

X // BOn(R)

up to a homotopy.

3) A discussion as above leads to the proof that principle G-�brations over a space X ∈ S are

classi�ed up to equivalence by the maps X // BG up to homotopy.

4) Let X be a (connected) space and Xn+1
ϕn // Xn be the stage of its Postnikov's tower

where n > 1. Recall that ϕn is a �bration with the �ber over any point being K(πn+1(X), n+ 1).
By the discussion above such �brations are classi�ed up to equivalence by the space

π0 HomS
(
Xn,BAutS(K(πn+1X,n+ 1))

)
Notice also that threre is an equivalence of spaces

AutS(K(πn+1X,n+ 1)) ' AutAb(πn+1X) nK(πn+1X,n+ 1).

Indeed, recall that the (n+ 1)-times loopspace functor gives an equivalence

S≥n+1
∗

Ωn+1

∼
// AlggrouplikeEn+1

(S)

so that we have

HomS∗(K(πn+1X,n+ 1),K(πn+1X,n+ 1)) ' HomAlggrouplikeEn+1
(S)(πn+1X,πn+1X) ' EndAb(πn+1X)
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where the last equivalence holds since πn+1X is discrete. A more direct way to get an equivalence
above is to calculate homotopy groups of the space HomS∗(K(πn+1X,n + 1),K(πn+1X,n + 1))
using the fact that Eilenberg-Maclane spaces represent (reduced) cohomology. Consequently, we
can rewrite the �bration

HomS∗(K(πn+1X,n+ 1),K(πn+1X,n+ 1))

��

// HomS(K(πn+1X,n+ 1),K(πn+1X,n+ 1))

ev∗

��
∗ // K(πn+1X,n+ 1)

as
EndAb(πn+1X)

��

// HomS(K(πn+1X,n+ 1),K(πn+1X,n+ 1))

ev∗

��
∗ // K(πn+1X,n+ 1).

Now the section K(πn+1X,n+ 1) // HomS(K(πn+1X,n+ 1),K(πn+1X,n+ 1)) given by the

action of K(πn+1X,n+ 1) on itself by translations gives an equivalence

EndS(K(πn+1X,n+ 1)) ' EndAb(πn+1X) nK(πn+1X,n+ 1).

Consequently, we get

AutS(K(πn+1X,n+1)) ' gl1
(
EndAb(πn+1X)nK(πn+1X,n+1)

)
' AutAb(πn+1X)nK(πn+1X,n+1)

as desired.

2 Total objects, sections and orientations.

In the case when C is good enough (for example, presentable) given a C-�bration E ∈ FibC(X)
over X once can also consider its sections or its total space.

Convention. From now on we will assume that the category C ∈ Cat∞ is presentable.

De�nition. For a space X ∈ S de�ne a sections functor and a total object functor

FibC(X) ' Funct(X,C)
Γ, Tot // C

simply as the limit and colimit functors.

Examples.

1) Let C ∈ C. Consider the constant �bration with the �ber C:

X
ConstC // C.

Then the corresponding total object is simply Tot(ConstC) ' colimXC = X ⊗ C.

2) Consider the case C = S is the category of spaces. Then for any space X ∈ S under the
equivalence FibS(X) ' S/X we have

Γ(Y
p // X) ' sect(p)

and

Tot(Y
p // X) ' Y,

where sect(p) is the space of sections of p.
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Remark. Let X
p // ∗ be the projection map. Then by formal nonsense we see that for every

E ∈ FibC(X) we have equivalences Tot(E) ' p!E and Γ(E) ' p∗E. In particular, for any C ∈ C

we have

HomC(Tot(E), C) ' HomFibC(∗)(p!E,C) ' HomFibC(X)(E, p
∗C) ' HomFibC(X)(E,ConstC)

and similarly

HomC(C,Γ(E)) ' HomFibC(∗)(C, p∗E) ' HomFibC(E)(p
∗C,E) ' HomFibC(X)(ConstC , E).

Now for the sake of topology we introduce the following

De�nition. For E ∈ FibC(X) and C ∈ C we de�ne a space of C-orientations of E denoted by
OrientC(E) ∈ S as the pullback

OrientC(E)

��

// HomFibC(X)'(E,ConstC)

��
HomC(Tot(E), C) ∼

// HomFibC(X)(E,ConstC)

in S.

Remark. Directly by de�nition we see that E ∈ FibCC (X) is C-orientable (that is, the space

OrientC(E) is nonempty) i� the functor X
E // C is equivalent to a constant map to C ∈ C,

that is, i� the corresponding map of spaces X // BAutC(C) is nullhomotopic.

Now given an oriented �bration it is quite easy to describe its total space: namely, we have
the following

Proposition. A point t ∈ OrientC(E) determines an equivalence

Tot(E) ∼
t′ // X ⊗ C

in C.

Proof. Consider the projection map X
p // ∗ and let t′ ∈ HomFibC' (X)(E, p

∗C) be the point
which corresponds to t. We then obtain a point

p!(t
′) ∈ HomC'(p!E, p!ConstC) ' HomC'(Tot(E),Tot(ConstC)) ' HomC'(Tot(E), X ⊗ C)

as desired.

Example. In the special case C := Mod(R) the category of modules over some commutative ring
spectrum R ∈ CAlg(Sp) and C := R ∈ Mod(R) is the free module the proposition above states
that for an R-oriented E ∈ FibMod(R)(X) we obtain an equivalence or R-module spectra

Tot(E) = Σ∞X+ ⊗R

which is frequently called a Thom isomorphism theorem.

We end this section with the ring structure theorem. To get an intuition, recall that a lax
monoidal functor between two discrete (ordinary) monoidal categories C and D is a functor

C
F // D such that for any X,Y ∈ C we are given natural morphisms

F (X)⊗ F (Y ) // F (X ⊗ Y )
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and a morphism

ID // F (IC)

which are compatible with the associativity constraints in C andD. If the categoryD is cocomplete
and the monoidal structure on D preserves colimits by each variable separately, then the colimit
B := colim(F ) admist a structure of an associative algebra in D, where the multiplication is given
by

B ⊗B ' (colimX∈CF (X))⊗ (colimY ∈CF (Y )) '

' colimX,Y ∈CF (X)⊗ F (Y ) // colimX,Y ∈CF (X ⊗ Y ) // B.

Now the algebra B ∈ Alg(D) in fact admits a universal property. In order to see this, recall that
for every associative algebra A ∈ Alg(D) the category D/A also admits a monoidal structure given
by

(D1
f // A)⊗ (D2

g // A) := (D1 ⊗D2
f⊗g // A⊗A // A)

so that the natural projection functor D/A
π // D is monoidal.

Now a morphism B
f // A in Alg(D) of algebras gives a lax monoidal lift G

D/A

π

��
C

G

88

F
// D

given by

G(X) :=
(
F (X) // colimX∈CF (X) = B

f // A
)

for X ∈ C. Conversely, since the projection functor D/A
// D preserves colimits we see

that a lax monoidal lift G gives us a morphism B = colimX∈CF (X) ' colimX∈CG(X)
f // A of

algebras. One can check that this is a 1-to-1 correspondence.
The discussion above motivates the following

Proposition. Let C,D be (symmetric) monoidal (∞, 1)-categories such that D is presentable
and the monoidal structure on D preserves colimits by each variable separately. Then given a lax
(symmetric) monoidal functor

C
F // D

the colimit colim(F ) ∈ D admits a (commutative) algebra structure such that for any other

(commutative) algebra A in D the space of (commutative) algebra morphisms colim(F ) // A

in naturally equivalent to the space of lax (symmetric) monoidal lifts

D/A

π

��
C

G

88

F
// D.

Proof. Theorems 2.8 and 2.13 in [ACB].

Corollary. Let X ∈ CAlg(Sp) be a commutative monoid in spaces and C ∈ CAlg(PrL∞) be a
presentable symmetric monoidal (∞, 1)-category whose monoidal structure preserves colimits in
each variable separately. Then in the case when a �bration

X
E // C

6



is a symmetric monoidal functor (here we consider X as a symmetric monoidal category via the

inclusion CAlg(S) // CAlg(Cat∞) = Catsym∞ ) the total space Tot(E) ∈ C admits a structure of

a commutative algebra object in C, which is, moreover, universal in the sense of the discussion
above.

Remarks.

1) A similar statement holds, in fact, when we work with algebras over an arbitrary ∞-operad O.

2) We refer the reader to [ACB] for a discussion of how one can pursue the universal property
above further in the case when X is in addition grouplike.

3 Cobordisms.

In this section we use the theory of �brations developed above to de�ne the cobordism spectra
we will need further in our course. We start with the following

Notation. Let

CAlggrouplike(S) =: Ab∞
i // CMon∞ := CAlg(S)

be the natural inclusion of grouplike commutative monoids intro all commutative monoids. We
will denote its left adjoint called completion by K and its right adjoint by gl1 so that we get an
adjunction K a i a gl1.

Remark. Recall that grouplike En-algebras in S are in 1-to-1 correspondence with n-times
loopspaces. Consequently, we see that the functor

Sp≥0
Ω∞ // Ab∞

is an equivalence, where Sp≥0 is the full subcategory of spectra spanned by connected spectra.

Examples.

1) For a space X ∈ S let FreeE∞(X) '
⊔
n≥0X

×n/Σn be the free commutative monoid on X
(notice that we take the factor above in the ∞-categorical sense). Since the completion of the
free monoid on X should be the free abelian group on X, which is due to the remark above is
equivalent to the delooping of the suspension spectrum of X, we get an equivalence

K(
⊔
n≥0

X×n/Σn) ' Ω∞Σ∞X+.

In particular, in the special case when X = ∗ is the point we get

Ω∞S ' K(
⊔
n≥0

∗/Σn) ' K(
⊔
n≥0

BΣn) ' K(Fin'),

where S ∈ Sp≥0 is the sphere spectrum.

2) Consider the category VectR of vector spaces over R (considered as a topologically enriched
category made into (∞, 1)-category). The direct sum of vector spaces endows VectR with the struc-
ture of symmetric monoidal category, and hence we get a commutative monoid Vect'R ∈ CMon∞
in spaces. Notice that since

AutVectR(Rn) ' GLn(R) ' On

we get an equivalence Vect'R '
⊔
n≥0 BOn. Its completion K(

⊔
n≥0 BOn) ' Z × BO ∈ Ab∞ is

equivalent to the product of integers and the classifying space of the in�nite orthogonal group.
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3) Let Spheres∗ ⊂ S∗ be the full subcategory of S∗ spanned by spheres. Similar as above, smash
product of spheres endows Spheres∗ with the structure of symmetric monoidal category and hence
we get a commutative monoin Spheres'∗ ∈ CMon∞. Since

AutSpheres∗(S
n) ' AutS∗(S

n) ' ΩnSn ×Z {±1}

we get an equivalence Spheres'∗ '
⊔
n≥0 B(ΩnSn ×Z {±1}). Its completion K(

⊔
n≥0 B(ΩnSn ×Z

{±1})) ' BAutSp(S) × Z is the classifying space of the space of automorphisms of the sphere
spectrum.

The completion functor allows us to de�ne a very important morphism:

De�nition. Since one-point compacti�cation functor

VectinjR
// Spheres

is symmetric monoidal, taking underlying groupoids we get a morphism⊔
n≥0 BOn ' Vect'R

S• // Spheres' '
⊔
n≥0 B(ΩnSn ×Z {±1})

of commutative monoids. Applying the group completion functor CMon∞
K // Ab∞ we

obtain a map

BO× Z ' K(Vect'R )
J // K(Spheres') ' BAutSp(S)× Z.

in Ab∞ (or, equivalently, a map of connective spectra) called a J-homomorphism.

Remarks.

1) More directly the J-homomorphism can be constructed as follows: composing the obvious

map On // AutS(Rn) with the morphism AutS(Rn) // AutS∗(S
n) induced by one-point

compacti�cation we get a map

On // AutS∗(S
n) ' ΩnSn ×Z {±1} ⊂ HomS∗(S

n, Sn) ' ΩnSn.

Taking colimit as n → ∞ (notice that we use here that the maps above are compatible with the
obvious inclusions) we obtain a map

O // AutSp(S) ' Ω∞S×Z {±1} ⊂ HomSp(S,S) ' Ω∞S

which can be delooped to get a map

BO
J // BAutSp(S)

in S. Nevertheless, we prefer the de�nition given previously since it constructs J-homomorphism
as a morphism of in�nite loop spaces (that is, as a morphism in Ab∞).

2) A bit more interesting construction of the J-homomorphism can be obtained as a special case
of the cobordism hypothethis which gives a precise description of the free symmetric monoidal
(∞, n)-category with duals on a single object on which a group G ⊆ O acts.

One of the most important applications of the J-homomorphism is the following

De�nition. Given a vector bundle E ∈ FibVect(X) over a space X ∈ S de�ne its spherization
Sph(E) ∈ FibSSp(X) as the �bration which corresponds to the composition

X
E // ⊔

n≥0 BOn
// BO× Z J // BAutSp(S)× Z ⊂ Sp

where the inclusion BAutSp(S)×Z ⊂ Spmaps a pair (?, n) to Sn. The total space Tot(Sph(E)) ∈ Sp
is called a Thom spectrum and will be further denoted by Th(E).
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Remarks.

1) Since by the construction J-homomorphism is a map in Ab∞, we wee that if X is a commutative

monoid and the map X
E // BO is also lax symmetric monoidal, then the whole composition

Sph(E) is also lax monoidal so that by the discussion above the spectrum Th(E) ∈ Sp admits
the structure of a commutative ring spectrum (and, moreover, has a universal property discussed
above).

2) Let E ∈ FibVect(X) and R ∈ Sp be a spectrum. Then the composition

X
E // ⊔

n≥0 BOn
// BO× Z J // BAutSp(S)× Z ⊂ Sp

•⊗R // Mod(R)

gives a �bration of R-modules which we will denote by SphR(E) ∈ FibMod(R)(X). We instantly
see that SphR(E) is R-orientable i� the composition above is nullhomotopic (or, equivalently, is
equivalent to the constant functor).

Now one of the most important cases of the de�nition above is provided by the following

De�nition. Let G ⊆ O be a subgroup of the in�nite orthogonal group. We then introduce a
G-cobordisms spectrum denoted by MG ∈ Sp simply as

MG := Th(EG) = Tot(Sph(EG)) = Tot
(
BG // BO× Z J // BAutSp(S)× Z ⊂ Sp

)
.

Another words, we may write
MG := ShG,

where G acts on the sphere spectrum S via the J-homomorphism.

Examples.

1) In the case of the identity map O
IdO // O the corresponding spectrum MO is called a real

cobordisms spectrum. We instantly see that MO is a commutative ring spectrum. Moreover,
it is instant that there is an equivalence

H/2⊗MO ' H/2⊗BO.

Consequently, we see that

H/2∗(MO) ' H/2∗(BO) ' Z/2[w1, w2, ...]

generated by the Stiefel-Whitney classes.
In fact, a much stronger result holds: namely, there is an equivalence of spectra

MO '
⊕
MO∗

H/2,

where MO∗ = Z/2[w1, w2, ...] generated by Stiefel-Whitney classes.

2) In the case of the obvious map U // O the corresponding spectrum MU is called a com-

plex cobordisms spectrum. We instantly see that MU is a commutative ring spectrum.
Moreover, it is instant that there is an equivalence

H ⊗MU ' H ⊗BU.

Consequently, we see that
H∗(MU) ' H∗(BU) ' Z[c1, c2, ...]

generated by the Chern classes. Another important feature of the complex cobordism spectrum
is the Quillen theorem, which states that the Hopf algebroid (MU∗,MU∗MU) is the Hopf al-
gebroid which classi�es formal group laws and strict isomorphisms.
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4) Consider any H-map Ω2S3 // BO with nonzero �rst Stiefel-Whitney class. It is a the-
orem of Mahowald that in this case the Thom spectrum of the corresponding �bration of spectra
over Ω2S3 is precisely H/2. In fact, many di�erent spectra can be realized as the Thom spectrum
of some �bration.
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