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The main aim of this lecture is to define the Kervaire invariant. The main reference is W. Browder’s
paper [Bro69].

1 Secondary cohomological operations

Let 8 be the category of spaces or the category of spectra. Let Zy, Z1, Zs be objects of the category 8§
and ¢: Zg — Z1, ¢: Z1 — Z5 be two morphisms in the category 8. Define two functors from the
category 8 to the category of sets.

Definition 1. The functor Sz,: & — Sets is defined on objects by the formula:
Sz,(Y) ={f €Y. Zo]|po [~}
The functor Tz, : 8 — Ab is defined on objects by the formula:
Toz(Y) = [Y.Q25] /Y. 024].

Suppose that the composition Y op: Zy — Zs is homotopically trivial. Then the following diagram

is homotopically commutative:

ZO — X

]

W

Zl Ed Z2
Therefore, there exists the natural map x: Fib(¢) — Fib(x — Z3). Here Fib(f) is the homotopy fiber
of f. Since Fib(x — Z3) ~ QZ5, we construct the map x: Fib(y) — QZ,.

Definition 2. The secondary cohomological operation ® based on the relation i o ¢ ~ * is a natural
transformation ®: Sz, — Tz, which is defined on objects by the following rule. Let Y be an object
of the category 8 and let f belong to the set Sz, (Y'). Since the composition o f is trivial, there exists
a lifting f: Y — Fib(y) such that the following diagram is homotopy commutative:

Fib(y)
— /7[
P J
y L sz ¢ 7

Now define @y (f) = q(x o f) € Taz,(Y). Here ¢ is the quotient map from the abelian group [Y, 225]
to the group Taz,(Y)

Remark. The natural transformation ® is well-defined. Indeed, let f; and fo be two liftings of a map
f € Sz,(Y). Since Fib(Fib(¢) — Zy) ~ QZ;, the group [Y, 7] acts transitively on the set of liftings
of the map f. Therefore, the difference x o fi — x o f1 lies in the subset ¥, [V, QZ].

Recall that usual (or primary) cohomological operations can be used for detection of non-trivial
homotopy classes in 7, (S™). Secondary cohomological operation is good for this purpose too.



Definition 3. Let n > m be a pair of integers. We say that f € [S™,S™] is detected by a secondary
cohomological operation @ if the morphism ®cone(s): Sz,(Cone(f)) — Taz,(Cone(f)) is non-trivial.

Remark. This notion is due to the following observation. Assume that objects Zy, Z1, Z5 are Eilenberg-
MacLane objects of the category 8. Suppose that f is the trivial map, then Cone(f) ~ ™ v S+,
Since ® is an natural transformation, ®cone(r) is zero map. In this case, non-triviality of the map
D Cone(f) says that the map f is non-trivial. Le. the map f is “detected” by ®. In the case of arbitrary
Zi, non-triviality of the map ®¢ype(y) is only some kind of witness that the map f is non-trivial.

Example 1. The element 7% € 75(S°) is detected by the secondary cohomological operation ® based
on the relation

Sq®Sq' +SqSq? = 0.
Here Zy = HZ/2, Z, = SHZ/2V X*H7/2, Zo = X*H7/2, the map ¢ is equal to (Sq*,Sq?), and the
map 17 is equal to (Sq?’7 Sq2). The proof can be found in [Har02] on page 95.

Proposition 1. Let ® be a secondary cohomological operation based on the relation Zy RN Z4 i) Zs.

(i) Let f: A — B be a morphism in 8. Suppose that g € Sz,(B). Then go f € Sz,(A) and
Da(go f)=DPp(g) o fu. Here the equality takes place in Taz,(A).

(ii) Suppose that S is the category of spectra Sp. Then for any Y € 8 the set Sz,(Y) has the natural
structure of an abelian group. Moreover, the natural transformation ® is a natural transformation
of functors to the category of abelian groups. It means that for any Y € Sp the morphism
Oy : Sz,(Y) = Taz,(Y) is a homomorphism of abelian groups.

Proof. Obvious. O

Let ® be a secondary cohomological operation based on the relation Z, = Z; 2, Zs, and let
f: A — Z belong to the set Sz,(A). Denote by Cone(f) the cofiber of f. Then ®4(f) can be
obtained from the following diagram chase. Consider the diagram:

(A, 21] <L [Zy, 2)] « £ [Cone(f), Z1] +2— [SA, Z1]

P* P* J *
[Zo, Zs) X [Cone(f), Zo] +2— [SA, Zo] <[22y, Zo]

All rows in this diagram are exact sequence (of abelian groups or pointed sets). Now consider ¢ as an
element of [Zy, Z1]. Then f*(¢) ~ . So there exists @ € [Cone(f), Z2] such that d*(@) = ¢. Since the
element d*1. (@) = 1. (@) is trivial, we have that ¢.(@) € ker(d*) = Im(d). It means that there exists
g € [EA, Z5] such that §(g) = 1.(@). Such g € [¥A, Z] = [A, QZ,] is a unique up to Im ), + Im f*.

Proposition 2. In the situation as above, ®4(f) = g in Taz,(A)/Im f*.
Proof. Exercise. O

2 The Kervaire invariant

In order to define the Kervaire invariant of a framed manifold we should first construct a quadratic
refinement of the intersection form on the middle cohomology of the manifold.

Let X be a finite spectrum, M be a closed smooth manifold of dimension 2¢. Denote by v the
stable normal bundle of M and denote by T(v) the Thom spectrum of v.

Definition 4. A mock X-orientation of M is a morphism 7: T'(v) — X.

Ezample 2. (i) Denote by h: M — BO by the classifying map of v. We have the map h:v— 7,
where « is the universal bundle over BO. Notice that T'(y) = MO by definition, where MO is
the spectrum, which represents the non-oriented cobordism theory. So the classifying map gives

the mock M O-orientation T'(h): T'(v) — MO.



(ii) Similarly, any framing (i.e. trivialization of v) gives a mock S-orientation of M. Here S is the
sphere spectrum.

Recall that the category of finite spectra is a closed symmetric monoidal category with respect
to the smash product. It means that there exists the duality functor D: (Spfi")°P — Spfi™ such that
Hom(X AY, Z) = Hom (X, DY A Z). In the case of the category of finite spectra this functor is called
the Spanier-Whitehead duality functor.

Let us apply the functor D to a mock X-orientation n: T(v) — X. It gives the map

Dn: DX — DT (v).
By the Atiyah duality DT (v) = ¥ =2¢%°°M, . So we obtain the map
Dn: DX — 7298 M, .

Denote by K, the Eilenberg-Maclane space K (Z /2, q). Then any cohomology class x € H1(M,Z /2)
can be represented by the map x € [M4, K,]. Denote by £°(x) € [3°° (M), ¥*°(K,)] the map which
obtained as the result of applying of the infinity suspension functor ¥*°: § — Sp to the map x.

Denote by R: ¥79X*°K, — HZ/2 the map which represents the tautological cohomological
class 1, € HY(K,,Z/2). We also have the map Sq?™': HZ/2 — X9t HZ/2 which represents the
(¢ + 1)-th Steenrod square. All in all, we have the following sequence of maps:

o (x +1
DX 22 s2ayee g, 20 stayeo e Boyma gy e S vz,

Since Sq ™! (tq) = 0 the composition Sq?tt o R is trivial. So this relation defines the secondary cohomo-
logical operation ®. Also notice that the composition 3°°(x)oDn belongs to the group Sy -2k, (DX)
if and only if € H9(M,Z /2) belongs to the kernel of Dn*: H*(M,Z /2) - H*(DX,Z /2).

Definition 5. Define the map

H(DX,Z/2)
Sqt (H-1-1(DX,Z /2))

Yy (ker Dn*)? — Tz 2(DX) =
by the formula
x — D(X*°(x) o Dn).

This map should play a role of a quadratic refinement of the intersection form on HY(M,Z /2).
However, the target looks pretty big. Let us define a class of spectra for which the target of the map 1,
is the group Z /2.

Definition 6. A spectrum X is called a Wu-spectrum of level ¢ if X satisfies two conditions:
1) X is a connective spectrum such that H°(X,Z /2) = 7Z /2;
2) (¢ + 1)-th Steenrod square Sq?*" acts by zero on H= 9" (DX,Z /2).

The Steenrod algebra is a Hopf algebra, so there exists the conjugation map x: As — As. The last
condition is equivalent to the condition:

2) the operation x(Sq?™™") acts by zero on HO(X,7Z /2).
We need two main examples of Wu-spectra. The first one is the sphere spectrum S and the second
one is the Browder spectrum MO(vg41). The following subsection is devoted to define it.

2.1 The Browder spectrum

Let M be a smooth manifold of dimension 2¢q. Denote by v the stable normal bundle of M and denote
by h: M — BO the classifying map of v.



Definition 7. The i-th Wu class v;(M) of the manifold M is a cohomological class in H(X,Z /2)
such that for any x € H?77%(M,Z /2) the following equation is satisfied:

vi(MYUzx = X(Sqi)(x).

By the Poincare duality, Wu classes of M are well-defined. Moreover, the complete Wu class
V(M) =1+wv(M)+ ... can be defined by the equation:

Sa(V(M)) =Ww=(M),

where Sq = 14 Sq' + ... is the complete Steenrod square operation and W (M) = 1 4+ w (M) + ... is
the complete Stiefel-Whitney class of M. From this equation there exists the collection of universal
Wu classes v; € H(BO,Z /2) such that v;(M) = h*(v;) for any i € N.

Let BO(vg+1) be the homotopy fiber of the map vy41: BO — K 41. Denote by 7 the embedding
of the fiber BO(vg+1) in BO.

Definition 8. A v, ;-orientation of the stable normal bundle v is a lifting h of the map h along the
map T

BO(vg41)

M —"_ BoO.

Remark. By the Poincare duality, the (¢ + 1)-th Wu class vy41(M) is equal to zero for any 2¢-
dimensional manifold M. So any 2¢-dimensional manifold is v, 1-orientable.

Denote by = the universal vector bundle over BO. Then the spectrum MO is the Thom spec-
trum of .

Definition 9. The Browder spectrum MO(v,11) is the Thom spectrum of the vector bundle 7* ()
over BO(vg41).

Remark. Any v,yq-orientation of M gives a mock MO(vgy1)-orientation M. As a consequence, any
2¢-dimensional manifold has a mock MO(vg41)-orientation.

Proposition 3. The Browder spectrum MO(vqt1) is a Wu spectrum of level g.

Proof. Denote by U € H°(MO,Z /2) the Thom class and set U := 7*U € H*(MO(vy11),7Z /2).

1) Clearly, the spectrum MO{v, 1) is connective and H*(MO(vy41),7Z /2) = Z /2(U).

2) Let us prove that x(Sq?™") acts by zero on H*(MO(v,11),7 /2). Indeed, we have equalities
X(SATT = 1 ((SAT ) = 7 (041 UTT) = 7 (ugy1) UT.

But by definition 7*(vg41) = 0.

2.2 The Kervaire invariant

Let X be a Wu spectrum of level ¢ and n: T'(v) — X be a mock X-orientation. Above we constructed
the mapping v, : (ker Dn*)? = Tyz/2(DX) = Z/2 by the formula ¢, (z) = ®(X°(x) o Dn).

Proposition 4. The mapping 1, is a quadratic form on (ker Dn*)?, i.e. for any x,y € (ker Dn*)?:
Yy(@ +y) = y(x) + vy (y) + (Dn)"(z U y).
Proof. The sum x +y € [M4, K ] is taken with respect to the H-space structure on K,. Therefore,

E¥(x4y) =X7) + X7(y) + h(p)(x A y) A



Here
o A: XMy — XM, AX>®M, is the diagonal map,
e XAY: XML ANEPML = XK, N XK, is the smash product of maps,
o h(p): XK, NE®K, - £°K, is the map induced by the multiplication on K,.
Hence,
Uy(@ +y) = ©((E7(x) + E=(y) + h(n)(x ANy) A) o Dn) =
= ®(X%(x) o Dn) + ®(E=(y) o Dn) + ®(h(p)(x Ny) Ao Dn) =
= Yy(@) + Py(y) + @(h(p)(x Ay) Ao D).

Let us compute ®(h(u)(x Ay) A o Dn). Recall the secondary cohomological operation ® is based on
the relation Sq?*! o R ~ %, where

s-2ayxer, B os-imzie S w70,
Notice that the composition Roh(g) is trivial, because H1(K,AKy,Z /2) = 0. Hence, by Proposition 1:
(h(p)(x Ny) Ao Dn) = @(h(p) o (x Ay) Ao Dr.
So it is enough to compute ®(h(u)).
Lemma 1. ®(h(p)) =g Atqg € H*I(Kq AN Kq,Z [2) = Thz2(37298%° (K, A Ky)).
Proof. Let C be a homotopy cofiber of h(p): Z°(K, A K;) — £°(K,). Consider the diagram

HY(K, N, Z)2) < Ha(K,, 7 /2) «t— HY(C,Z/2)

J{Sqrﬁ—l lsqq+l

H2HY (K, 7, )2) «2— H>T(C,Z)2) «+2— H* (K, N K, 7Z)2)

Since h(u)*(¢q) = 0, there exists an element o € HY(C,Z /2) such that f(a) = ¢4. Since we have the
equality g(Sq?™ () = Sq?*(f(a)) = Sq?T!(1,) = 0, there exists an element § € H?I(K, A K,,7/2)
such that 6(8) = Sq?*(a).

By Proposition 2, 8 = ®(h(p)). So let us compute 8. Since H?4(K, A Ky, Z [2) =7 [2(14 A ), it
is enough to prove that § # 0.

Assume that 8 = 0, then Sq?** (a) = 0. Moreover, the cohomology group H9(C,Z /2) is generated
by only one element . So it is enough to check that the map

Sq?tt: HY(C,Z /2) — H?*T(C,Z /2)

is non-zero.

The map h(p) is induced by the map of spaces fi: X(K, A Ky) — (K, x Ky) 20N Y K,. Denote

by Cone(ft) the homotopy cofiber of fi. Then it is enough to prove that the map
Sq?tt: H9T Y (Cone(ft),Z /2) — H?1+2(Cone(j1),Z /2)
is non-zero. But we have the fiber sequence

i (e
S(K, A & s, 28 K

where X(14): ZQK 411 — Ky11 is the counit map of usual pair of adjoint functors. So we have the
map ¢: Cone(fi) — K,4+1 and this map induces an isomorphism on H"(—,Z /2) for any n < 2¢ + 2.
So it is enough to prove that the cohomological operation

Sq?tt: HUW YK y1, 7 /2) — H*T2(K 41,7 /2)

is a non-zero map. But this is obvious. O



Using the lemma we obtain that ¢, (z +y) = ¢¥n(x) + ¥, (y) + (tq A tg) © (x Ay) A o Dn. But the
last summand is equal to Dn*(z Uy). So the proposition is proved. O

Let (M,n) be a mock X-orientation such that Dn*(X724[M]V) = «, where [M]V € H?1(M,Z /2)
is the fundamental cohomological class, and o € H°(DX,Z /2) is the generator (recall that X is a
Wu spectrum, so H°(DX,Z /2) = Z /2). For instance, X =S or X = MO(v,41) and 1 comes from a
framing or from a vy q-orientation, respectively. Then Dn*(z Uy) = (x Uy)[M] and v, is a quadratic
form on (ker Dn*)? which associated bilinear form is the intersection form.

Let A C (ker Dn*)? be a Z /2-submodule such that the intersection form is a non-degenerate bilinear
form on A.

Definition 10. The Kervaire invariant ¢(M,n, A) of the triple (M,n, A) is the Arf invariant of the
quadratic form 1,|4 defined on the Z /2-vector space A.

Definition 11. An X-oriented manifold (M,n) is called an X-oriented boundary if there exists a
manifold W such that M = 0W and for the embedding i: M — W the following composition:

DX 22, y-2axeepy, 1y w-2aseoyy,
is trivial.
The following properties show that the Kervaire invariant is a bordism invariant.

Proposition 5. (i) Let (M1,m, A1) and (Ma, 12, As) be two triples for which the Kervaire invariant
is defined. When the Kervaire invariant of the triple (My U Ma,n1 V 12, A1 @ As) is defined and

c(My U My, my V2, Ay @ Ag) = c(My,m1, A1) + c(Mz, 02, Az).
(11) Let M = OW be a X -oriented boundary, then 1, (Im(i*)) = 0. Moreover, if the rank of ANIm(i*)
is one half of the rank of A, then ¢(M,n, A) = 0.

(iii) The quadratic form 1) is natural with respect to morphisms of orientations. It means the following.
Let f: X =Y be a map between Wu spectra and (M,n) be an X -orientated manifold. Then the
pair (M, f on) is a Y-orientated manifold and the following diagram is commutative:

(ker(Dn)*) —"— HY(DX,Z/2)

| [or
(ker(Dnyo Df)*)? 2% HO(DY, 7 /2).
Proof. Obvious. O

Remark. If X = S, then the kernel (ker Dn*)? is equal to HY(M,Z /2) for any mock S-orientation
n: T(v) — S. Therefore, for any framed manifold (M, n) we can always take all H4(M,Z /2) as A. So
the Kervaire invariant defines the homomorphism:

c: QZ —7Z)2,
(M,n) — c(M,n, HY(M,Z /2)).

2.3 Example of a v,;;-orientation on S x S? with the Kervaire invariant
one

Let (M, n) be a vgq1-oriented manifold of dimension 2q.

Proposition 6. If the stable normal bundle v of the manifold M is trivial, then

(ker Dn*)1 = HI(M,Z /2).



Proof. Denote by h: M — BO the classifying map of v and denote by h: M — BO(vg41) the lifting

of h such that the induced map T'(h): T'(v) = MO(vgy1) is the map 7.
Now the map 7, : Hy(BO{vg41),Z /2) — Hy(BO,Z /2) is a monomorphism (by the Serre spectral
sequence of the fiber sequence K, — BO(vg41) — BO). By assumption the map h is the trivial map,

so the map R
hy: Hy(M,Z /2) = Hy(BO(vg41),Z /2)

is the zero map (because 7 o h = h). By the Thom isomorphism we get that the map

e =T(h)w: Hy(T(v), Z [2) = Hy(MO(v441), 7 /2)
is the zero map. So by the Spanier-Whitehead duality the map
Dn*: HY(M,Z /2) - HY(DMO{vg41),Z /2)
is the zero map. So the proposition is proved. O

Let us consider M = S9 x S9 framed in S29*1, so that it is naturally cobordant to zero. Denote
by 7o this vgii-orientation. Then, of course, ¢(M,ny) = 0. Let g: M — K, be a map such that
9" (1) = 1®[S9Y +[S7Y @ 1. Recall that the group [M, K,] acts on the set of liftings of h : M — BO.
Denote by 7 the vq41-orientation which is obtained by the action of g on the v, -orientation 7g.

Proposition 7. The Kervaire invariant of (S x S9,n) is equal to one.

Proof. By Proposition 6 the domain of the quadratic form 1, is H1(S? x S%,7 /2). Denote by x the
cohomology class [S?]Y @ 1 € HI(S? x S9,7Z /2) and denote by y the cohomology class 1 @ [S9]V. Let
us prove that ¢,(x) = 1. The proof that ¢,(y) = 1 will be the same. So the Kervaire invariant

c(M,n) = Arf(¢y) = by (x)iby(y) = 1.

By definition ¢, (z) = ®(X*°(x) o Dn). The map x: S? x S — K, such that x*(¢q) = « factors
through the projection p: S x S9 — S9, p(a,b) = a. Hence the composition X°°(x) o D7 is equal to
the composition

DMO(vg41) 2 $7205%°(89 » §9), 272, w2500 g0 270, si-2ayi00 ¢

Here r: S9 — K, is such that 7*(s,) = [S?Y. Denote by R: S79 — X7 HZ/2 the composition
R o ¥°°r (it is just a shift of the unit map). Recall that the secondary cohomological operation ® is
based on the relation Sq?™ o R ~ %. Denote by ¥ the secondary cohomological operation based on
the relation Sq?*! o R ~ x. Then

®(X°(x) 0 Dn) = U (X*°po D).
Let us show that U(X*p o Dn) # 0. Denote by Cy the cofiber of the map
Y%°p o Dn: DMO(vg41) — S™%

Then, by Proposition 2, it is enough to prove that Sq?™" acts by non-zero on H~9(Cy,7Z /2). But the
map X®°p o Dn is dual to the map

7090 ST $°°(89 x S, — MO(vg41),

where i: S7 — S? x S§7 is the standard embedding i(a) = (a, by).

Denote by C; the cofiber of the map 1 o ¥*°¢. Then ¥ DCy ~ Cy. By duality we should check
that x(Sq?*") acts by non-zero on H%(Cy,7Z /2).

Now the composition

§9 275 539089 % §9), = MO(vgs1) = MO



is trivial. So there exists a map 7: C; — MO. W. Browder proved (see Theorem 5.2 in [Bro69], p.172)
that 7 can be chosen such that 7. induces a monomorphism on H9"1(—,Z /2). But the Steenrod square

x(Sq?th): HY(MO,Z /2) — HT" (MO, Z /2)
is a non-zero map, so the Steenrod square
x(Sq?™): H(CY,Z /2) — HT(Cy,Z /2)

is also a non-zero map.

It means that ¢, (z) =1 and ¢(M,n) = 1. O
Proposition 8. The vgi1-orientation n comes from a framing of S x S if and only if ¢ =1,3,7.

Proof. Proposition 5.3 in [Bro69]. O
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