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The main aim of this lecture is to define the Kervaire invariant. The main reference is W. Browder’s
paper [Bro69].

1 Secondary cohomological operations

Let S be the category of spaces or the category of spectra. Let Z0, Z1, Z2 be objects of the category S

and ϕ : Z0 → Z1, ψ : Z1 → Z2 be two morphisms in the category S. Define two functors from the
category S to the category of sets.

Definition 1. The functor SZ0 : S→ Sets is defined on objects by the formula:

SZ0
(Y ) = {f ∈ [Y,Z0] |ϕ ◦ f ∼ ∗}.

The functor TΩZ2
: S→ Ab is defined on objects by the formula:

TΩZ2(Y ) = [Y,ΩZ2]/ψ∗[Y,ΩZ1].

Suppose that the composition ψ ◦ϕ : Z0 → Z2 is homotopically trivial. Then the following diagram
is homotopically commutative:

Z0 ∗

Z1 Z2

ϕ

ψ

Therefore, there exists the natural map χ : Fib(ϕ)→ Fib(∗ → Z2). Here Fib(f) is the homotopy fiber
of f . Since Fib(∗ → Z2) ' ΩZ2, we construct the map χ : Fib(ϕ)→ ΩZ2.

Definition 2. The secondary cohomological operation Φ based on the relation ψ ◦ ϕ ∼ ∗ is a natural
transformation Φ: SZ0 → TΩZ2 which is defined on objects by the following rule. Let Y be an object
of the category S and let f belong to the set SZ0

(Y ). Since the composition ϕ◦f is trivial, there exists
a lifting f̄ : Y → Fib(ϕ) such that the following diagram is homotopy commutative:

Fib(ϕ)

Y Z0 Z1
f

f̄

ϕ

Now define ΦY (f) = q(χ ◦ f̄) ∈ TΩZ2
(Y ). Here q is the quotient map from the abelian group [Y,ΩZ2]

to the group TΩZ2
(Y )

Remark. The natural transformation Φ is well-defined. Indeed, let f̄1 and f̄2 be two liftings of a map
f ∈ SZ0

(Y ). Since Fib(Fib(ϕ)→ Z0) ' ΩZ1, the group [Y,ΩZ1] acts transitively on the set of liftings
of the map f . Therefore, the difference χ ◦ f̄1 − χ ◦ f̄1 lies in the subset ψ∗[Y,ΩZ1].

Recall that usual (or primary) cohomological operations can be used for detection of non-trivial
homotopy classes in πn(Sm). Secondary cohomological operation is good for this purpose too.
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Definition 3. Let n ≥ m be a pair of integers. We say that f ∈ [Sn, Sm] is detected by a secondary
cohomological operation Φ if the morphism ΦCone(f) : SZ0

(Cone(f))→ TΩZ2
(Cone(f)) is non-trivial.

Remark. This notion is due to the following observation. Assume that objects Z0, Z1, Z2 are Eilenberg-
MacLane objects of the category S. Suppose that f is the trivial map, then Cone(f) ' Sm ∨ Sn+1.
Since Φ is an natural transformation, ΦCone(f) is zero map. In this case, non-triviality of the map
ΦCone(f) says that the map f is non-trivial. I.e. the map f is “detected” by Φ. In the case of arbitrary
Zi, non-triviality of the map ΦCone(f) is only some kind of witness that the map f is non-trivial.

Example 1. The element η2 ∈ πs2(S0) is detected by the secondary cohomological operation Φ based
on the relation

Sq3Sq1 + Sq2Sq2 = 0.

Here Z0 = HZ/2, Z1 = ΣHZ/2∨Σ2HZ/2, Z2 = Σ4HZ/2, the map ϕ is equal to (Sq1,Sq2), and the
map ψ is equal to (Sq3,Sq2). The proof can be found in [Har02] on page 95.

Proposition 1. Let Φ be a secondary cohomological operation based on the relation Z0
ϕ−→ Z1

ψ−→ Z2.

(i) Let f : A → B be a morphism in S. Suppose that g ∈ SZ0
(B). Then g ◦ f ∈ SZ0

(A) and
ΦA(g ◦ f) = ΦB(g) ◦ f∗. Here the equality takes place in TΩZ2

(A).

(ii) Suppose that S is the category of spectra Sp. Then for any Y ∈ S the set SZ0(Y ) has the natural
structure of an abelian group. Moreover, the natural transformation Φ is a natural transformation
of functors to the category of abelian groups. It means that for any Y ∈ Sp the morphism
ΦY : SZ0

(Y )→ TΩZ2
(Y ) is a homomorphism of abelian groups.

Proof. Obvious.

Let Φ be a secondary cohomological operation based on the relation Z0
ϕ−→ Z1

ψ−→ Z2, and let
f : A → Z0 belong to the set SZ0

(A). Denote by Cone(f) the cofiber of f . Then ΦA(f) can be
obtained from the following diagram chase. Consider the diagram:

[A,Z1] [Z0, Z1] [Cone(f), Z1] [ΣA,Z1]

[Z0, Z2] [Cone(f), Z2] [ΣA,Z2] [ΣZ0, Z2]

f∗

ψ∗

d∗

ψ∗

δ

ψ∗

d∗ δ Σf∗

All rows in this diagram are exact sequence (of abelian groups or pointed sets). Now consider ϕ as an
element of [Z0, Z1]. Then f∗(φ) ∼ ∗. So there exists ϕ̄ ∈ [Cone(f), Z2] such that d∗(ϕ̄) = ϕ. Since the
element d∗ψ∗(ϕ̄) = ψ∗(ϕ) is trivial, we have that ψ∗(ϕ̄) ∈ ker(d∗) = Im(δ). It means that there exists
g ∈ [ΣA,Z2] such that δ(g) = ψ∗(ϕ̄). Such g ∈ [ΣA,Z2] ∼= [A,ΩZ2] is a unique up to Imψ∗ + Im f∗.

Proposition 2. In the situation as above, ΦA(f) = g in TΩZ2
(A)/ Im f∗.

Proof. Exercise.

2 The Kervaire invariant

In order to define the Kervaire invariant of a framed manifold we should first construct a quadratic
refinement of the intersection form on the middle cohomology of the manifold.

Let X be a finite spectrum, M be a closed smooth manifold of dimension 2q. Denote by ν the
stable normal bundle of M and denote by T (ν) the Thom spectrum of ν.

Definition 4. A mock X-orientation of M is a morphism η : T (ν)→ X.

Example 2. (i) Denote by h : M → BO by the classifying map of ν. We have the map h̃ : ν → γ,
where γ is the universal bundle over BO. Notice that T (γ) = MO by definition, where MO is
the spectrum, which represents the non-oriented cobordism theory. So the classifying map gives
the mock MO-orientation T (h̃) : T (ν)→MO.
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(ii) Similarly, any framing (i.e. trivialization of ν) gives a mock S-orientation of M . Here S is the
sphere spectrum.

Recall that the category of finite spectra is a closed symmetric monoidal category with respect
to the smash product. It means that there exists the duality functor D : (Spfin)op → Spfin such that
Hom(X ∧ Y, Z) ∼= Hom(X,DY ∧Z). In the case of the category of finite spectra this functor is called
the Spanier-Whitehead duality functor.

Let us apply the functor D to a mock X-orientation η : T (ν)→ X. It gives the map

Dη : DX → DT (ν).

By the Atiyah duality DT (ν) ∼= Σ−2qΣ∞M+. So we obtain the map

Dη : DX → Σ−2qΣ∞M+.

Denote byKq the Eilenberg-Maclane spaceK(Z /2, q). Then any cohomology class x ∈ Hq(M,Z /2)
can be represented by the map x ∈ [M+,Kq]. Denote by Σ∞(x) ∈ [Σ∞(M+),Σ∞(Kq)] the map which
obtained as the result of applying of the infinity suspension functor Σ∞ : S → Sp to the map x.

Denote by R : Σ−qΣ∞Kq → HZ/2 the map which represents the tautological cohomological
class ιq ∈ Hq(Kq,Z /2). We also have the map Sqq+1 : HZ/2 → Σq+1HZ/2 which represents the
(q + 1)-th Steenrod square. All in all, we have the following sequence of maps:

DX
Dη−−→ Σ−2qΣ∞M+

Σ∞(x)−−−−→ Σ−2qΣ∞Kq
R−→ Σ−q HZ/2

Sqq+1

−−−−→ Σ HZ/2 .

Since Sqq+1(ιq) = 0 the composition Sqq+1◦R is trivial. So this relation defines the secondary cohomo-
logical operation Φ. Also notice that the composition Σ∞(x)◦Dη belongs to the group SΣ−2qΣ∞Kq (DX)
if and only if x ∈ Hq(M,Z /2) belongs to the kernel of Dη∗ : H∗(M,Z /2)→ H∗(DX,Z /2).

Definition 5. Define the map

ψη : (kerDη∗)q → THZ/2(DX) =
H0(DX,Z /2)

Sqq+1(H−q−1(DX,Z /2))

by the formula
x 7→ Φ(Σ∞(x) ◦Dη).

This map should play a role of a quadratic refinement of the intersection form on Hq(M,Z /2).
However, the target looks pretty big. Let us define a class of spectra for which the target of the map ψη
is the group Z /2.

Definition 6. A spectrum X is called a Wu-spectrum of level q if X satisfies two conditions:

1) X is a connective spectrum such that H0(X,Z /2) = Z /2;

2) (q + 1)-th Steenrod square Sqq+1 acts by zero on H−q−1(DX,Z /2).

The Steenrod algebra is a Hopf algebra, so there exists the conjugation map χ : A2 → A2. The last
condition is equivalent to the condition:

2′) the operation χ(Sqq+1) acts by zero on H0(X,Z /2).

We need two main examples of Wu-spectra. The first one is the sphere spectrum S and the second
one is the Browder spectrum MO〈vq+1〉. The following subsection is devoted to define it.

2.1 The Browder spectrum

Let M be a smooth manifold of dimension 2q. Denote by ν the stable normal bundle of M and denote
by h : M → BO the classifying map of ν.
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Definition 7. The i-th Wu class vi(M) of the manifold M is a cohomological class in Hi(X,Z /2)
such that for any x ∈ H2q−i(M,Z /2) the following equation is satisfied:

vi(M) ∪ x = χ(Sqi)(x).

By the Poincare duality, Wu classes of M are well-defined. Moreover, the complete Wu class
V (M) = 1 + v1(M) + . . . can be defined by the equation:

Sq(V (M)) = W−1(M),

where Sq = 1 + Sq1 + . . . is the complete Steenrod square operation and W (M) = 1 + w1(M) + . . . is
the complete Stiefel-Whitney class of M . From this equation there exists the collection of universal
Wu classes vi ∈ Hi(BO,Z /2) such that vi(M) = h∗(vi) for any i ∈ N.

Let BO〈vq+1〉 be the homotopy fiber of the map vq+1 : BO → Kq+1. Denote by π the embedding
of the fiber BO〈vq+1〉 in BO.

Definition 8. A vq+1-orientation of the stable normal bundle ν is a lifting h̄ of the map h along the
map π:

BO〈vq+1〉

M BO.

π

h

h̄

Remark. By the Poincare duality, the (q + 1)-th Wu class vq+1(M) is equal to zero for any 2q-
dimensional manifold M . So any 2q-dimensional manifold is vq+1-orientable.

Denote by γ the universal vector bundle over BO. Then the spectrum MO is the Thom spec-
trum of γ.

Definition 9. The Browder spectrum MO〈vq+1〉 is the Thom spectrum of the vector bundle π∗(γ)
over BO〈vq+1〉.

Remark. Any vq+1-orientation of M gives a mock MO〈vq+1〉-orientation M . As a consequence, any
2q-dimensional manifold has a mock MO〈vq+1〉-orientation.

Proposition 3. The Browder spectrum MO〈vq+1〉 is a Wu spectrum of level q.

Proof. Denote by U ∈ H0(MO,Z /2) the Thom class and set Ū := π∗U ∈ H0(MO〈vq+1〉,Z /2).

1) Clearly, the spectrum MO〈vq+1〉 is connective and H0(MO〈vq+1〉,Z /2) = Z /2〈Ū〉.

2) Let us prove that χ(Sqq+1) acts by zero on H0(MO〈vq+1〉,Z /2). Indeed, we have equalities

χ(Sqq+1)Ū = π∗(χ(Sqq+1)U) = π∗(vq+1 ∪ U) = π∗(vq+1) ∪ Ū .

But by definition π∗(vq+1) = 0.

2.2 The Kervaire invariant

Let X be a Wu spectrum of level q and η : T (ν)→ X be a mock X-orientation. Above we constructed
the mapping ψη : (kerDη∗)q → THZ/2(DX) = Z/2 by the formula ψη(x) = Φ(Σ∞(x) ◦Dη).

Proposition 4. The mapping ψη is a quadratic form on (kerDη∗)q, i.e. for any x, y ∈ (kerDη∗)q:

ψη(x+ y) = ψη(x) + ψη(y) + (Dη)∗(x ∪ y).

Proof. The sum x + y ∈ [M+,Kq] is taken with respect to the H-space structure on Kq. Therefore,

Σ∞(x + y) = Σ∞(x) + Σ∞(y) + h(µ)(x ∧ y) ∆.
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Here

• ∆: Σ∞M+ → Σ∞M+ ∧ Σ∞M+ is the diagonal map,

• x ∧ y : Σ∞M+ ∧ Σ∞M+ → Σ∞Kq ∧ Σ∞Kq is the smash product of maps,

• h(µ) : Σ∞Kq ∧ Σ∞Kq → Σ∞Kq is the map induced by the multiplication on Kq.

Hence,

ψη(x+ y) = Φ((Σ∞(x) + Σ∞(y) + h(µ)(x ∧ y) ∆) ◦Dη) =

= Φ(Σ∞(x) ◦Dη) + Φ(Σ∞(y) ◦Dη) + Φ(h(µ)(x ∧ y) ∆ ◦Dη) =

= ψη(x) + ψη(y) + Φ(h(µ)(x ∧ y) ∆ ◦Dη).

Let us compute Φ(h(µ)(x ∧ y) ∆ ◦Dη). Recall the secondary cohomological operation Φ is based on
the relation Sqq+1 ◦R ∼ ∗, where

Σ−2qΣ∞Kq
R−→ Σ−q HZ/2

Sqq+1

−−−−→ Σ HZ/2 .

Notice that the composition R◦h(µ) is trivial, because Hq(Kq∧Kq,Z /2) = 0. Hence, by Proposition 1:

Φ(h(µ)(x ∧ y) ∆ ◦Dη) = Φ(h(µ)) ◦ (x ∧ y) ∆ ◦Dη.

So it is enough to compute Φ(h(µ)).

Lemma 1. Φ(h(µ)) = ιq ∧ ιq ∈ H2q(Kq ∧Kq,Z /2) = THZ/2(Σ−2qΣ∞(Kq ∧Kq)).

Proof. Let C be a homotopy cofiber of h(µ) : Σ∞(Kq ∧Kq)→ Σ∞(Kq). Consider the diagram

Hq(Kq ∧Kq,Z /2) Hq(Kq,Z /2) Hq(C,Z /2)

H2q+1(Kq,Z /2) H2q+1(C,Z /2) H2q(Kq ∧Kq,Z /2)

h(µ)∗

Sqq+1

f

Sqq+1

g δ

Since h(µ)∗(ιq) = 0, there exists an element α ∈ Hq(C,Z /2) such that f(α) = ιq. Since we have the
equality g(Sqq+1(α)) = Sqq+1(f(α)) = Sqq+1(ιq) = 0, there exists an element β ∈ H2q(Kq ∧Kq,Z /2)
such that δ(β) = Sqq+1(α).

By Proposition 2, β = Φ(h(µ)). So let us compute β. Since H2q(Kq ∧Kq,Z /2) = Z /2〈ιq ∧ ιq〉, it
is enough to prove that β 6= 0.

Assume that β = 0, then Sqq+1(α) = 0. Moreover, the cohomology group Hq(C,Z /2) is generated
by only one element α. So it is enough to check that the map

Sqq+1 : Hq(C,Z /2)→ H2q+1(C,Z /2)

is non-zero.

The map h(µ) is induced by the map of spaces µ̃ : Σ(Kq ∧Kq)→ Σ(Kq ×Kq)
Σ(µ)−−−→ ΣKq. Denote

by Cone(µ̃) the homotopy cofiber of µ̃. Then it is enough to prove that the map

Sqq+1 : Hq+1(Cone(µ̃),Z /2)→ H2q+2(Cone(µ̃),Z /2)

is non-zero. But we have the fiber sequence

Σ(Kq ∧Kq)
µ̃−→ ΣKq

Σ(ιq)−−−→ Kq+1,

where Σ(ιq) : ΣΩKq+1 → Kq+1 is the counit map of usual pair of adjoint functors. So we have the
map ε : Cone(µ̃) → Kq+1 and this map induces an isomorphism on Hn(−,Z /2) for any n ≤ 2q + 2.
So it is enough to prove that the cohomological operation

Sqq+1 : Hq+1(Kq+1,Z /2)→ H2q+2(Kq+1,Z /2)

is a non-zero map. But this is obvious.
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Using the lemma we obtain that ψη(x + y) = ψη(x) + ψη(y) + (ιq ∧ ιq) ◦ (x ∧ y) ∆ ◦Dη. But the
last summand is equal to Dη∗(x ∪ y). So the proposition is proved.

Let (M,η) be a mock X-orientation such that Dη∗(Σ−2q[M ]∨) = α, where [M ]∨ ∈ H2q(M,Z /2)
is the fundamental cohomological class, and α ∈ H0(DX,Z /2) is the generator (recall that X is a
Wu spectrum, so H0(DX,Z /2) = Z /2). For instance, X = S or X = MO〈vq+1〉 and η comes from a
framing or from a vq+1-orientation, respectively. Then Dη∗(x∪ y) = (x∪ y)[M ] and ψη is a quadratic
form on (kerDη∗)q which associated bilinear form is the intersection form.

Let A ⊂ (kerDη∗)q be a Z /2-submodule such that the intersection form is a non-degenerate bilinear
form on A.

Definition 10. The Kervaire invariant c(M,η,A) of the triple (M,η,A) is the Arf invariant of the
quadratic form ψη|A defined on the Z /2-vector space A.

Definition 11. An X-oriented manifold (M,η) is called an X-oriented boundary if there exists a
manifold W such that M = ∂W and for the embedding i : M →W the following composition:

DX
Dη−−→ Σ−2qΣ∞M+

i−→ Σ−2qΣ∞W+

is trivial.

The following properties show that the Kervaire invariant is a bordism invariant.

Proposition 5. (i) Let (M1, η1, A1) and (M2, η2, A2) be two triples for which the Kervaire invariant
is defined. When the Kervaire invariant of the triple (M1 tM2, η1 ∨ η2, A1 ⊕A2) is defined and

c(M1 tM2, η1 ∨ η2, A1 ⊕A2) = c(M1, η1, A1) + c(M2, η2, A2).

(ii) Let M = ∂W be a X-oriented boundary, then ψη(Im(i∗)) = 0. Moreover, if the rank of A∩Im(i∗)
is one half of the rank of A, then c(M,η,A) = 0.

(iii) The quadratic form ψ is natural with respect to morphisms of orientations. It means the following.
Let f : X → Y be a map between Wu spectra and (M,η) be an X-orientated manifold. Then the
pair (M,f ◦ η) is a Y -orientated manifold and the following diagram is commutative:

(ker(Dη)∗)q H0(DX,Z /2)

(ker(Dη ◦Df)∗)q H0(DY,Z /2).

ψη

Df∗

ψf◦η

Proof. Obvious.

Remark. If X = S, then the kernel (kerDη∗)q is equal to Hq(M,Z /2) for any mock S-orientation
η : T (ν)→ S. Therefore, for any framed manifold (M,η) we can always take all Hq(M,Z /2) as A. So
the Kervaire invariant defines the homomorphism:

c : Ωfr2q → Z /2,

(M,η) 7→ c(M,η,Hq(M,Z /2)).

2.3 Example of a vq+1-orientation on Sq × Sq with the Kervaire invariant
one

Let (M,η) be a vq+1-oriented manifold of dimension 2q.

Proposition 6. If the stable normal bundle ν of the manifold M is trivial, then

(kerDη∗)q = Hq(M,Z /2).
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Proof. Denote by h : M → BO the classifying map of ν and denote by h̃ : M → BO〈vq+1〉 the lifting

of h such that the induced map T (h̃) : T (ν)→MO〈vq+1〉 is the map η.
Now the map π∗ : Hq(BO〈vq+1〉,Z /2)→ Hq(BO,Z /2) is a monomorphism (by the Serre spectral

sequence of the fiber sequence Kq → BO〈vq+1〉 → BO). By assumption the map h is the trivial map,
so the map

h̃∗ : Hq(M,Z /2)→ Hq(BO〈vq+1〉,Z /2)

is the zero map (because π ◦ h̃ = h). By the Thom isomorphism we get that the map

η∗ = T (h̃)∗ : Hq(T (ν),Z /2)→ Hq(MO〈vq+1〉,Z /2)

is the zero map. So by the Spanier-Whitehead duality the map

Dη∗ : Hq(M,Z /2)→ Hq(DMO〈vq+1〉,Z /2)

is the zero map. So the proposition is proved.

Let us consider M = Sq × Sq framed in S2q+1, so that it is naturally cobordant to zero. Denote
by η0 this vq+1-orientation. Then, of course, c(M,η0) = 0. Let g : M → Kq be a map such that
g∗(ιq) = 1⊗ [Sq]∨+[Sq]∨⊗1. Recall that the group [M,Kq] acts on the set of liftings of h : M → BO.
Denote by η the vq+1-orientation which is obtained by the action of g on the vq+1-orientation η0.

Proposition 7. The Kervaire invariant of (Sq × Sq, η) is equal to one.

Proof. By Proposition 6 the domain of the quadratic form ψη is Hq(Sq × Sq,Z /2). Denote by x the
cohomology class [Sq]∨ ⊗ 1 ∈ Hq(Sq × Sq,Z /2) and denote by y the cohomology class 1⊗ [Sq]∨. Let
us prove that ψη(x) = 1. The proof that ψη(y) = 1 will be the same. So the Kervaire invariant
c(M,η) = Arf(ψη) = ψη(x)ψη(y) = 1.

By definition ψη(x) = Φ(Σ∞(x) ◦ Dη). The map x : Sq × Sq → Kq such that x∗(ιq) = x factors
through the projection p : Sq × Sq → Sq, p(a, b) = a. Hence the composition Σ∞(x) ◦Dη is equal to
the composition

DMO〈vq+1〉
Dη−−→ Σ−2qΣ∞(Sq × Sq)+

Σ∞p−−−→ Σ−2qΣ∞Sq
Σ∞r−−−→ Σ−2qΣ∞Kq.

Here r : Sq → Kq is such that r∗(ιq) = [Sq]∨. Denote by R̃ : S−q → Σ−q HZ/2 the composition
R ◦ Σ∞r (it is just a shift of the unit map). Recall that the secondary cohomological operation Φ is
based on the relation Sqq+1 ◦ R ∼ ∗. Denote by Ψ the secondary cohomological operation based on
the relation Sqq+1 ◦ R̃ ∼ ∗. Then

Φ(Σ∞(x) ◦Dη) = Ψ(Σ∞p ◦Dη).

Let us show that Ψ(Σ∞p ◦Dη) 6= 0. Denote by C0 the cofiber of the map

Σ∞p ◦Dη : DMO〈vq+1〉 → S−q.

Then, by Proposition 2, it is enough to prove that Sqq+1 acts by non-zero on H−q(C0,Z /2). But the
map Σ∞p ◦Dη is dual to the map

η ◦ Σ∞i : Sq → Σ∞(Sq × Sq)+ →MO〈vq+1〉,

where i : Sq → Sq × Sq is the standard embedding i(a) = (a, b0).
Denote by C1 the cofiber of the map η ◦ Σ∞i. Then ΣDC0 ' C1. By duality we should check

that χ(Sqq+1) acts by non-zero on H0(C1,Z /2).
Now the composition

Sq
Σ∞i−−−→ Σ∞(Sq × Sq)+ →MO〈vq+1〉

π−→MO
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is trivial. So there exists a map π̄ : C1 →MO. W. Browder proved (see Theorem 5.2 in [Bro69], p.172)
that π̄ can be chosen such that π̄∗ induces a monomorphism on Hq+1(−,Z /2). But the Steenrod square

χ(Sqq+1) : H0(MO,Z /2)→ Hq+1(MO,Z /2)

is a non-zero map, so the Steenrod square

χ(Sqq+1) : H0(C1,Z /2)→ Hq+1(C1,Z /2)

is also a non-zero map.
It means that ψη(x) = 1 and c(M,η) = 1.

Proposition 8. The vq+1-orientation η comes from a framing of Sq × Sq if and only if q = 1, 3, 7.

Proof. Proposition 5.3 in [Bro69].
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