The Kervaire Invariant One Problem, Talk 4 Independent University of Moscow, Fall semester 2016

Nikolai Konovalov

The main aim of this lecture is to define the Kervaire invariant. The main reference is W. Browder's paper [Bro69].

1 Secondary cohomological operations

Let S be the category of spaces or the category of spectra. Let Z_0, Z_1, Z_2 be objects of the category S and $\varphi: Z_0 \to Z_1, \psi: Z_1 \to Z_2$ be two morphisms in the category S. Define two functors from the category S to the category of sets.

Definition 1. The functor $S_{Z_0}: \mathfrak{S} \to Sets$ is defined on objects by the formula:

$$S_{Z_0}(Y) = \{ f \in [Y, Z_0] \, | \, \varphi \circ f \sim * \}.$$

The functor $T_{\Omega Z_2} \colon \mathbb{S} \to Ab$ is defined on objects by the formula:

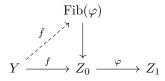
$$T_{\Omega Z_2}(Y) = [Y, \Omega Z_2]/\psi_*[Y, \Omega Z_1].$$

Suppose that the composition $\psi \circ \varphi \colon Z_0 \to Z_2$ is homotopically trivial. Then the following diagram is homotopically commutative:

$$\begin{array}{c} Z_0 \longrightarrow * \\ \downarrow^{\varphi} \qquad \qquad \downarrow \\ Z_1 \stackrel{\psi}{\longrightarrow} Z_2 \end{array}$$

Therefore, there exists the natural map χ : Fib $(\varphi) \to$ Fib $(* \to Z_2)$. Here Fib(f) is the homotopy fiber of f. Since Fib $(* \to Z_2) \simeq \Omega Z_2$, we construct the map χ : Fib $(\varphi) \to \Omega Z_2$.

Definition 2. The secondary cohomological operation Φ based on the relation $\psi \circ \varphi \sim *$ is a natural transformation $\Phi: S_{Z_0} \to T_{\Omega Z_2}$ which is defined on objects by the following rule. Let Y be an object of the category S and let f belong to the set $S_{Z_0}(Y)$. Since the composition $\varphi \circ f$ is trivial, there exists a lifting $\overline{f}: Y \to \operatorname{Fib}(\varphi)$ such that the following diagram is homotopy commutative:



Now define $\Phi_Y(f) = q(\chi \circ \overline{f}) \in T_{\Omega Z_2}(Y)$. Here q is the quotient map from the abelian group $[Y, \Omega Z_2]$ to the group $T_{\Omega Z_2}(Y)$

Remark. The natural transformation Φ is well-defined. Indeed, let \bar{f}_1 and \bar{f}_2 be two liftings of a map $f \in S_{Z_0}(Y)$. Since Fib(Fib(φ) $\to Z_0$) $\simeq \Omega Z_1$, the group $[Y, \Omega Z_1]$ acts transitively on the set of liftings of the map f. Therefore, the difference $\chi \circ \bar{f}_1 - \chi \circ \bar{f}_1$ lies in the subset $\psi_*[Y, \Omega Z_1]$.

Recall that usual (or primary) cohomological operations can be used for detection of non-trivial homotopy classes in $\pi_n(S^m)$. Secondary cohomological operation is good for this purpose too.

Definition 3. Let $n \ge m$ be a pair of integers. We say that $f \in [S^n, S^m]$ is detected by a secondary cohomological operation Φ if the morphism $\Phi_{\text{Cone}(f)} : S_{Z_0}(\text{Cone}(f)) \to T_{\Omega Z_2}(\text{Cone}(f))$ is non-trivial.

Remark. This notion is due to the following observation. Assume that objects Z_0, Z_1, Z_2 are Eilenberg-MacLane objects of the category S. Suppose that f is the trivial map, then $\text{Cone}(f) \simeq S^m \vee S^{n+1}$. Since Φ is an natural transformation, $\Phi_{\text{Cone}(f)}$ is zero map. In this case, non-triviality of the map $\Phi_{\text{Cone}(f)}$ says that the map f is non-trivial. I.e. the map f is "detected" by Φ . In the case of arbitrary Z_i , non-triviality of the map $\Phi_{\text{Cone}(f)}$ is only some kind of witness that the map f is non-trivial.

Example 1. The element $\eta^2 \in \pi_2^s(S^0)$ is detected by the secondary cohomological operation Φ based on the relation

$$\mathrm{Sq}^3\mathrm{Sq}^1 + \mathrm{Sq}^2\mathrm{Sq}^2 = 0.$$

Here $Z_0 = H\mathbb{Z}/2$, $Z_1 = \Sigma H\mathbb{Z}/2 \vee \Sigma^2 H\mathbb{Z}/2$, $Z_2 = \Sigma^4 H\mathbb{Z}/2$, the map φ is equal to $(\mathrm{Sq}^1, \mathrm{Sq}^2)$, and the map ψ is equal to $(\mathrm{Sq}^3, \mathrm{Sq}^2)$. The proof can be found in [Har02] on page 95.

Proposition 1. Let Φ be a secondary cohomological operation based on the relation $Z_0 \xrightarrow{\varphi} Z_1 \xrightarrow{\psi} Z_2$.

- (i) Let $f: A \to B$ be a morphism in S. Suppose that $g \in S_{Z_0}(B)$. Then $g \circ f \in S_{Z_0}(A)$ and $\Phi_A(g \circ f) = \Phi_B(g) \circ f_*$. Here the equality takes place in $T_{\Omega Z_2}(A)$.
- (ii) Suppose that S is the category of spectra Sp. Then for any $Y \in S$ the set $S_{Z_0}(Y)$ has the natural structure of an abelian group. Moreover, the natural transformation Φ is a natural transformation of functors to the category of abelian groups. It means that for any $Y \in Sp$ the morphism $\Phi_Y \colon S_{Z_0}(Y) \to T_{\Omega Z_2}(Y)$ is a homomorphism of abelian groups.

Proof. Obvious.

Let Φ be a secondary cohomological operation based on the relation $Z_0 \xrightarrow{\varphi} Z_1 \xrightarrow{\psi} Z_2$, and let $f: A \to Z_0$ belong to the set $S_{Z_0}(A)$. Denote by $\operatorname{Cone}(f)$ the cofiber of f. Then $\Phi_A(f)$ can be obtained from the following diagram chase. Consider the diagram:

All rows in this diagram are exact sequence (of abelian groups or pointed sets). Now consider φ as an element of $[Z_0, Z_1]$. Then $f^*(\phi) \sim *$. So there exists $\bar{\varphi} \in [\operatorname{Cone}(f), Z_2]$ such that $d^*(\bar{\varphi}) = \varphi$. Since the element $d^*\psi_*(\bar{\varphi}) = \psi_*(\varphi)$ is trivial, we have that $\psi_*(\bar{\varphi}) \in \ker(d^*) = \operatorname{Im}(\delta)$. It means that there exists $g \in [\Sigma A, Z_2]$ such that $\delta(g) = \psi_*(\bar{\varphi})$. Such $g \in [\Sigma A, Z_2] \cong [A, \Omega Z_2]$ is a unique up to $\operatorname{Im} \psi_* + \operatorname{Im} f^*$.

Proposition 2. In the situation as above, $\Phi_A(f) = g$ in $T_{\Omega Z_2}(A) / \operatorname{Im} f^*$.

Proof. Exercise.

2 The Kervaire invariant

In order to define the Kervaire invariant of a framed manifold we should first construct a quadratic refinement of the intersection form on the middle cohomology of the manifold.

Let X be a finite spectrum, M be a closed smooth manifold of dimension 2q. Denote by ν the stable normal bundle of M and denote by $T(\nu)$ the Thom spectrum of ν .

Definition 4. A mock X-orientation of M is a morphism $\eta: T(\nu) \to X$.

Example 2. (i) Denote by $h: M \to BO$ by the classifying map of ν . We have the map $\tilde{h}: \nu \to \gamma$, where γ is the universal bundle over BO. Notice that $T(\gamma) = MO$ by definition, where MO is the spectrum, which represents the non-oriented cobordism theory. So the classifying map gives the mock MO-orientation $T(\tilde{h}): T(\nu) \to MO$.

(ii) Similarly, any framing (i.e. trivialization of ν) gives a mock S-orientation of M. Here S is the sphere spectrum.

Recall that the category of finite spectra is a closed symmetric monoidal category with respect to the smash product. It means that there exists the duality functor $D: (Sp^{\text{fin}})^{op} \to Sp^{\text{fin}}$ such that $\operatorname{Hom}(X \wedge Y, Z) \cong \operatorname{Hom}(X, DY \wedge Z)$. In the case of the category of finite spectra this functor is called the Spanier-Whitehead duality functor.

Let us apply the functor D to a mock X-orientation $\eta: T(\nu) \to X$. It gives the map

$$D\eta: DX \to DT(\nu).$$

By the Atiyah duality $DT(\nu) \cong \Sigma^{-2q} \Sigma^{\infty} M_+$. So we obtain the map

$$D\eta: DX \to \Sigma^{-2q} \Sigma^{\infty} M_+.$$

Denote by K_q the Eilenberg-Maclane space $K(\mathbb{Z}/2, q)$. Then any cohomology class $x \in H^q(M, \mathbb{Z}/2)$ can be represented by the map $\mathbf{x} \in [M_+, K_q]$. Denote by $\Sigma^{\infty}(\mathbf{x}) \in [\Sigma^{\infty}(M_+), \Sigma^{\infty}(K_q)]$ the map which obtained as the result of applying of the infinity suspension functor $\Sigma^{\infty} \colon S \to Sp$ to the map \mathbf{x} .

Denote by $R: \Sigma^{-q} \Sigma^{\infty} K_q \to H\mathbb{Z}/2$ the map which represents the tautological cohomological class $\iota_q \in H^q(K_q, \mathbb{Z}/2)$. We also have the map $\operatorname{Sq}^{q+1}: H\mathbb{Z}/2 \to \Sigma^{q+1} H\mathbb{Z}/2$ which represents the (q+1)-th Steenrod square. All in all, we have the following sequence of maps:

$$DX \xrightarrow{D\eta} \Sigma^{-2q} \Sigma^{\infty} M_+ \xrightarrow{\Sigma^{\infty}(\mathbf{x})} \Sigma^{-2q} \Sigma^{\infty} K_q \xrightarrow{R} \Sigma^{-q} H\mathbb{Z}/2 \xrightarrow{\operatorname{Sq}^{q+1}} \Sigma H\mathbb{Z}/2.$$

Since $\operatorname{Sq}^{q+1}(\iota_q) = 0$ the composition $\operatorname{Sq}^{q+1} \circ R$ is trivial. So this relation defines the secondary cohomological operation Φ . Also notice that the composition $\Sigma^{\infty}(\mathbf{x}) \circ D\eta$ belongs to the group $S_{\Sigma^{-2q}\Sigma^{\infty}K_q}(DX)$ if and only if $x \in H^q(M, \mathbb{Z}/2)$ belongs to the kernel of $D\eta^* \colon H^*(M, \mathbb{Z}/2) \to H^*(DX, \mathbb{Z}/2)$.

Definition 5. Define the map

$$\psi_{\eta} \colon (\ker D\eta^{*})^{q} \to T_{H\mathbb{Z}/2}(DX) = \frac{H^{0}(DX, \mathbb{Z}/2)}{\operatorname{Sq}^{q+1}(H^{-q-1}(DX, \mathbb{Z}/2))}$$

by the formula

$$x \mapsto \Phi(\Sigma^{\infty}(\mathbf{x}) \circ D\eta).$$

This map should play a role of a quadratic refinement of the intersection form on $H^q(M, \mathbb{Z}/2)$. However, the target looks pretty big. Let us define a class of spectra for which the target of the map ψ_{η} is the group $\mathbb{Z}/2$.

Definition 6. A spectrum X is called a Wu-spectrum of level q if X satisfies two conditions:

1) X is a connective spectrum such that $H^0(X, \mathbb{Z}/2) = \mathbb{Z}/2;$

2) (q+1)-th Steenrod square Sq^{q+1} acts by zero on $H^{-q-1}(DX, \mathbb{Z}/2)$.

The Steenrod algebra is a Hopf algebra, so there exists the conjugation map $\chi: \mathcal{A}_2 \to \mathcal{A}_2$. The last condition is equivalent to the condition:

2') the operation $\chi(\operatorname{Sq}^{q+1})$ acts by zero on $H^0(X, \mathbb{Z}/2)$.

We need two main examples of Wu-spectra. The first one is the sphere spectrum S and the second one is the Browder spectrum $MO\langle v_{q+1}\rangle$. The following subsection is devoted to define it.

2.1 The Browder spectrum

Let M be a smooth manifold of dimension 2q. Denote by ν the stable normal bundle of M and denote by $h: M \to BO$ the classifying map of ν .

Definition 7. The *i*-th Wu class $v_i(M)$ of the manifold M is a cohomological class in $H^i(X, \mathbb{Z}/2)$ such that for any $x \in H^{2q-i}(M, \mathbb{Z}/2)$ the following equation is satisfied:

$$v_i(M) \cup x = \chi(\operatorname{Sq}^i)(x).$$

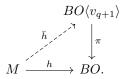
By the Poincare duality, Wu classes of M are well-defined. Moreover, the complete Wu class $V(M) = 1 + v_1(M) + \ldots$ can be defined by the equation:

$$\operatorname{Sq}(V(M)) = W^{-1}(M),$$

where $Sq = 1 + Sq^1 + ...$ is the complete Steenrod square operation and $W(M) = 1 + w_1(M) + ...$ is the complete Stiefel-Whitney class of M. From this equation there exists the collection of universal Wu classes $v_i \in H^i(BO, \mathbb{Z}/2)$ such that $v_i(M) = h^*(v_i)$ for any $i \in \mathbb{N}$.

Let $BO\langle v_{q+1}\rangle$ be the homotopy fiber of the map $v_{q+1}: BO \to K_{q+1}$. Denote by π the embedding of the fiber $BO\langle v_{q+1}\rangle$ in BO.

Definition 8. A v_{q+1} -orientation of the stable normal bundle ν is a lifting \bar{h} of the map h along the map π :



Remark. By the Poincare duality, the (q + 1)-th Wu class $v_{q+1}(M)$ is equal to zero for any 2q-dimensional manifold M. So any 2q-dimensional manifold is v_{q+1} -orientable.

Denote by γ the universal vector bundle over *BO*. Then the spectrum *MO* is the Thom spectrum of γ .

Definition 9. The Browder spectrum $MO\langle v_{q+1}\rangle$ is the Thom spectrum of the vector bundle $\pi^*(\gamma)$ over $BO\langle v_{q+1}\rangle$.

Remark. Any v_{q+1} -orientation of M gives a mock $MO\langle v_{q+1}\rangle$ -orientation M. As a consequence, any 2q-dimensional manifold has a mock $MO\langle v_{q+1}\rangle$ -orientation.

Proposition 3. The Browder spectrum $MO\langle v_{q+1} \rangle$ is a Wu spectrum of level q.

Proof. Denote by $U \in H^0(MO, \mathbb{Z}/2)$ the Thom class and set $\overline{U} := \pi^* U \in H^0(MO\langle v_{q+1} \rangle, \mathbb{Z}/2)$.

- 1) Clearly, the spectrum $MO\langle v_{q+1}\rangle$ is connective and $H^0(MO\langle v_{q+1}\rangle, \mathbb{Z}/2) = \mathbb{Z}/2\langle \overline{U}\rangle$.
- 2) Let us prove that $\chi(\operatorname{Sq}^{q+1})$ acts by zero on $H^0(MO\langle v_{q+1}\rangle, \mathbb{Z}/2)$. Indeed, we have equalities

$$\chi(\mathrm{Sq}^{q+1})\bar{U} = \pi^*(\chi(\mathrm{Sq}^{q+1})U) = \pi^*(v_{q+1} \cup U) = \pi^*(v_{q+1}) \cup \bar{U}$$

But by definition $\pi^*(v_{q+1}) = 0$.

2.2 The Kervaire invariant

Let X be a Wu spectrum of level q and $\eta: T(\nu) \to X$ be a mock X-orientation. Above we constructed the mapping $\psi_{\eta}: (\ker D\eta^*)^q \to T_{H\mathbb{Z}/2}(DX) = \mathbb{Z}/2$ by the formula $\psi_{\eta}(x) = \Phi(\Sigma^{\infty}(\mathbf{x}) \circ D\eta)$.

Proposition 4. The mapping ψ_{η} is a quadratic form on $(\ker D\eta^*)^q$, i.e. for any $x, y \in (\ker D\eta^*)^q$:

$$\psi_{\eta}(x+y) = \psi_{\eta}(x) + \psi_{\eta}(y) + (D\eta)^*(x \cup y).$$

Proof. The sum $\mathbf{x} + \mathbf{y} \in [M_+, K_q]$ is taken with respect to the *H*-space structure on K_q . Therefore,

$$\Sigma^{\infty}(\mathbf{x} + \mathbf{y}) = \Sigma^{\infty}(\mathbf{x}) + \Sigma^{\infty}(\mathbf{y}) + h(\mu)(\mathbf{x} \wedge \mathbf{y}) \Delta.$$

Here

- $\Delta \colon \Sigma^{\infty} M_+ \to \Sigma^{\infty} M_+ \wedge \Sigma^{\infty} M_+$ is the diagonal map,
- $\mathbf{x} \wedge \mathbf{y} \colon \Sigma^{\infty} M_{+} \wedge \Sigma^{\infty} M_{+} \to \Sigma^{\infty} K_{q} \wedge \Sigma^{\infty} K_{q}$ is the smash product of maps,
- $h(\mu): \Sigma^{\infty} K_q \wedge \Sigma^{\infty} K_q \to \Sigma^{\infty} K_q$ is the map induced by the multiplication on K_q .

Hence,

$$\begin{split} \psi_{\eta}(x+y) &= \Phi((\Sigma^{\infty}(\mathbf{x}) + \Sigma^{\infty}(\mathbf{y}) + h(\mu)(\mathbf{x} \wedge \mathbf{y}) \Delta) \circ D\eta) = \\ &= \Phi(\Sigma^{\infty}(\mathbf{x}) \circ D\eta) + \Phi(\Sigma^{\infty}(\mathbf{y}) \circ D\eta) + \Phi(h(\mu)(\mathbf{x} \wedge \mathbf{y}) \Delta \circ D\eta) = \\ &= \psi_{\eta}(x) + \psi_{\eta}(y) + \Phi(h(\mu)(\mathbf{x} \wedge \mathbf{y}) \Delta \circ D\eta). \end{split}$$

Let us compute $\Phi(h(\mu)(\mathbf{x} \wedge \mathbf{y}) \Delta \circ D\eta)$. Recall the secondary cohomological operation Φ is based on the relation $\operatorname{Sq}^{q+1} \circ R \sim *$, where

$$\Sigma^{-2q} \Sigma^{\infty} K_q \xrightarrow{R} \Sigma^{-q} H\mathbb{Z}/2 \xrightarrow{\operatorname{Sq}^{q+1}} \Sigma H\mathbb{Z}/2.$$

Notice that the composition $R \circ h(\mu)$ is trivial, because $H^q(K_q \wedge K_q, \mathbb{Z}/2) = 0$. Hence, by Proposition 1:

$$\Phi(h(\mu)(\mathbf{x} \wedge \mathbf{y}) \Delta \circ D\eta) = \Phi(h(\mu)) \circ (\mathbf{x} \wedge \mathbf{y}) \Delta \circ D\eta$$

So it is enough to compute $\Phi(h(\mu))$.

Lemma 1.
$$\Phi(h(\mu)) = \iota_q \wedge \iota_q \in H^{2q}(K_q \wedge K_q, \mathbb{Z}/2) = T_{H\mathbb{Z}/2}(\Sigma^{-2q}\Sigma^{\infty}(K_q \wedge K_q))$$

Proof. Let C be a homotopy cofiber of $h(\mu): \Sigma^{\infty}(K_q \wedge K_q) \to \Sigma^{\infty}(K_q)$. Consider the diagram

Since $h(\mu)^*(\iota_q) = 0$, there exists an element $\alpha \in H^q(C, \mathbb{Z}/2)$ such that $f(\alpha) = \iota_q$. Since we have the equality $g(\operatorname{Sq}^{q+1}(\alpha)) = \operatorname{Sq}^{q+1}(f(\alpha)) = \operatorname{Sq}^{q+1}(\iota_q) = 0$, there exists an element $\beta \in H^{2q}(K_q \wedge K_q, \mathbb{Z}/2)$ such that $\delta(\beta) = \operatorname{Sq}^{q+1}(\alpha)$.

By Proposition 2, $\beta = \Phi(h(\mu))$. So let us compute β . Since $H^{2q}(K_q \wedge K_q, \mathbb{Z}/2) = \mathbb{Z}/2\langle \iota_q \wedge \iota_q \rangle$, it is enough to prove that $\beta \neq 0$.

Assume that $\beta = 0$, then $\operatorname{Sq}^{q+1}(\alpha) = 0$. Moreover, the cohomology group $H^q(C, \mathbb{Z}/2)$ is generated by only one element α . So it is enough to check that the map

$$\operatorname{Sq}^{q+1}: H^q(C, \mathbb{Z}/2) \to H^{2q+1}(C, \mathbb{Z}/2)$$

is non-zero.

The map $h(\mu)$ is induced by the map of spaces $\tilde{\mu} \colon \Sigma(K_q \wedge K_q) \to \Sigma(K_q \times K_q) \xrightarrow{\Sigma(\mu)} \Sigma K_q$. Denote by $\operatorname{Cone}(\tilde{\mu})$ the homotopy cofiber of $\tilde{\mu}$. Then it is enough to prove that the map

$$\operatorname{Sq}^{q+1}: H^{q+1}(\operatorname{Cone}(\tilde{\mu}), \mathbb{Z}/2) \to H^{2q+2}(\operatorname{Cone}(\tilde{\mu}), \mathbb{Z}/2)$$

is non-zero. But we have the fiber sequence

$$\Sigma(K_q \wedge K_q) \xrightarrow{\tilde{\mu}} \Sigma K_q \xrightarrow{\Sigma(\iota_q)} K_{q+1}$$

where $\Sigma(\iota_q)$: $\Sigma\Omega K_{q+1} \to K_{q+1}$ is the counit map of usual pair of adjoint functors. So we have the map ε : Cone $(\tilde{\mu}) \to K_{q+1}$ and this map induces an isomorphism on $H^n(-, \mathbb{Z}/2)$ for any $n \leq 2q+2$. So it is enough to prove that the cohomological operation

$$\operatorname{Sq}^{q+1}: H^{q+1}(K_{q+1}, \mathbb{Z}/2) \to H^{2q+2}(K_{q+1}, \mathbb{Z}/2)$$

is a non-zero map. But this is obvious.

Using the lemma we obtain that $\psi_{\eta}(x+y) = \psi_{\eta}(x) + \psi_{\eta}(y) + (\iota_q \wedge \iota_q) \circ (\mathbf{x} \wedge \mathbf{y}) \Delta \circ D\eta$. But the last summand is equal to $D\eta^*(x \cup y)$. So the proposition is proved.

Let (M, η) be a mock X-orientation such that $D\eta^*(\Sigma^{-2q}[M]^{\vee}) = \alpha$, where $[M]^{\vee} \in H^{2q}(M, \mathbb{Z}/2)$ is the fundamental cohomological class, and $\alpha \in H^0(DX, \mathbb{Z}/2)$ is the generator (recall that X is a Wu spectrum, so $H^0(DX, \mathbb{Z}/2) = \mathbb{Z}/2$). For instance, X = S or $X = MO\langle v_{q+1} \rangle$ and η comes from a framing or from a v_{q+1} -orientation, respectively. Then $D\eta^*(x \cup y) = (x \cup y)[M]$ and ψ_{η} is a quadratic form on $(\ker D\eta^*)^q$ which associated bilinear form is the intersection form.

Let $A \subset (\ker D\eta^*)^q$ be a $\mathbb{Z}/2$ -submodule such that the intersection form is a non-degenerate bilinear form on A.

Definition 10. The Kervaire invariant $c(M, \eta, A)$ of the triple (M, η, A) is the Arf invariant of the quadratic form $\psi_{\eta}|_{A}$ defined on the $\mathbb{Z}/2$ -vector space A.

Definition 11. An X-oriented manifold (M, η) is called an X-oriented boundary if there exists a manifold W such that $M = \partial W$ and for the embedding $i: M \to W$ the following composition:

$$DX \xrightarrow{D\eta} \Sigma^{-2q} \Sigma^{\infty} M_+ \xrightarrow{i} \Sigma^{-2q} \Sigma^{\infty} W_+$$

is trivial.

The following properties show that the Kervaire invariant is a bordism invariant.

Proposition 5. (i) Let (M_1, η_1, A_1) and (M_2, η_2, A_2) be two triples for which the Kervaire invariant is defined. When the Kervaire invariant of the triple $(M_1 \sqcup M_2, \eta_1 \lor \eta_2, A_1 \oplus A_2)$ is defined and

 $c(M_1 \sqcup M_2, \eta_1 \lor \eta_2, A_1 \oplus A_2) = c(M_1, \eta_1, A_1) + c(M_2, \eta_2, A_2).$

- (ii) Let $M = \partial W$ be a X-oriented boundary, then $\psi_{\eta}(\operatorname{Im}(i^*)) = 0$. Moreover, if the rank of $A \cap \operatorname{Im}(i^*)$ is one half of the rank of A, then $c(M, \eta, A) = 0$.
- (iii) The quadratic form ψ is natural with respect to morphisms of orientations. It means the following. Let $f: X \to Y$ be a map between Wu spectra and (M, η) be an X-orientated manifold. Then the pair $(M, f \circ \eta)$ is a Y-orientated manifold and the following diagram is commutative:

$$(\ker(D\eta)^*)^q \xrightarrow{\psi_\eta} H^0(DX, \mathbb{Z}/2)$$
$$\downarrow Df^*$$
$$(\ker(D\eta \circ Df)^*)^q \xrightarrow{\psi_{f \circ \eta}} H^0(DY, \mathbb{Z}/2).$$

Proof. Obvious.

Remark. If X = S, then the kernel $(\ker D\eta^*)^q$ is equal to $H^q(M, \mathbb{Z}/2)$ for any mock S-orientation $\eta: T(\nu) \to S$. Therefore, for any framed manifold (M, η) we can always take all $H^q(M, \mathbb{Z}/2)$ as A. So the Kervaire invariant defines the homomorphism:

$$c \colon \Omega_{2q}^{fr} \to \mathbb{Z}/2,$$
$$(M,\eta) \mapsto c(M,\eta, H^q(M, \mathbb{Z}/2)).$$

2.3 Example of a v_{q+1} -orientation on $S^q \times S^q$ with the Kervaire invariant one

Let (M, η) be a v_{q+1} -oriented manifold of dimension 2q.

Proposition 6. If the stable normal bundle ν of the manifold M is trivial, then

$$(\ker D\eta^*)^q = H^q(M, \mathbb{Z}/2).$$

Proof. Denote by $h: M \to BO$ the classifying map of ν and denote by $\tilde{h}: M \to BO\langle v_{q+1} \rangle$ the lifting of h such that the induced map $T(\tilde{h}): T(\nu) \to MO\langle v_{q+1} \rangle$ is the map η .

Now the map $\pi_*: H_q(BO\langle v_{q+1}\rangle, \mathbb{Z}/2) \to H_q(BO, \mathbb{Z}/2)$ is a monomorphism (by the Serre spectral sequence of the fiber sequence $K_q \to BO\langle v_{q+1}\rangle \to BO$). By assumption the map h is the trivial map, so the map

$$\tilde{h}_*: H_q(M, \mathbb{Z}/2) \to H_q(BO\langle v_{q+1} \rangle, \mathbb{Z}/2)$$

is the zero map (because $\pi \circ \tilde{h} = h$). By the Thom isomorphism we get that the map

$$\eta_* = T(h)_* \colon H_q(T(\nu), \mathbb{Z}/2) \to H_q(MO\langle v_{q+1} \rangle, \mathbb{Z}/2)$$

is the zero map. So by the Spanier-Whitehead duality the map

$$D\eta^* \colon H^q(M, \mathbb{Z}/2) \to H^q(DMO\langle v_{q+1} \rangle, \mathbb{Z}/2)$$

is the zero map. So the proposition is proved.

Let us consider $M = S^q \times S^q$ framed in S^{2q+1} , so that it is naturally cobordant to zero. Denote by η_0 this v_{q+1} -orientation. Then, of course, $c(M, \eta_0) = 0$. Let $g: M \to K_q$ be a map such that $g^*(\iota_q) = 1 \otimes [S^q]^{\vee} + [S^q]^{\vee} \otimes 1$. Recall that the group $[M, K_q]$ acts on the set of liftings of $h: M \to BO$. Denote by η the v_{q+1} -orientation which is obtained by the action of g on the v_{q+1} -orientation η_0 .

Proposition 7. The Kervaire invariant of $(S^q \times S^q, \eta)$ is equal to one.

Proof. By Proposition 6 the domain of the quadratic form ψ_{η} is $H^q(S^q \times S^q, \mathbb{Z}/2)$. Denote by x the cohomology class $[S^q]^{\vee} \otimes 1 \in H^q(S^q \times S^q, \mathbb{Z}/2)$ and denote by y the cohomology class $1 \otimes [S^q]^{\vee}$. Let us prove that $\psi_{\eta}(x) = 1$. The proof that $\psi_{\eta}(y) = 1$ will be the same. So the Kervaire invariant $c(M, \eta) = Arf(\psi_{\eta}) = \psi_{\eta}(x)\psi_{\eta}(y) = 1$.

By definition $\psi_{\eta}(x) = \Phi(\Sigma^{\infty}(\mathbf{x}) \circ D\eta)$. The map $\mathbf{x} \colon S^q \times S^q \to K_q$ such that $\mathbf{x}^*(\iota_q) = x$ factors through the projection $p \colon S^q \times S^q \to S^q$, p(a, b) = a. Hence the composition $\Sigma^{\infty}(\mathbf{x}) \circ D\eta$ is equal to the composition

$$DMO\langle v_{q+1}\rangle \xrightarrow{D\eta} \Sigma^{-2q} \Sigma^{\infty} (S^q \times S^q)_+ \xrightarrow{\Sigma^{\infty} p} \Sigma^{-2q} \Sigma^{\infty} S^q \xrightarrow{\Sigma^{\infty} r} \Sigma^{-2q} \Sigma^{\infty} K_q.$$

Here $r: S^q \to K_q$ is such that $r^*(\iota_q) = [S^q]^{\vee}$. Denote by $\widetilde{R}: S^{-q} \to \Sigma^{-q} H\mathbb{Z}/2$ the composition $R \circ \Sigma^{\infty} r$ (it is just a shift of the unit map). Recall that the secondary cohomological operation Φ is based on the relation $\operatorname{Sq}^{q+1} \circ R \sim *$. Denote by Ψ the secondary cohomological operation based on the relation $\operatorname{Sq}^{q+1} \circ \widetilde{R} \sim *$. Then

$$\Phi(\Sigma^{\infty}(\mathbf{x}) \circ D\eta) = \Psi(\Sigma^{\infty}p \circ D\eta).$$

Let us show that $\Psi(\Sigma^{\infty} p \circ D\eta) \neq 0$. Denote by C_0 the cofiber of the map

$$\Sigma^{\infty} p \circ D\eta \colon DMO\langle v_{q+1} \rangle \to S^{-q}.$$

Then, by Proposition 2, it is enough to prove that Sq^{q+1} acts by non-zero on $H^{-q}(C_0, \mathbb{Z}/2)$. But the map $\Sigma^{\infty} p \circ D\eta$ is dual to the map

$$\eta \circ \Sigma^{\infty} i \colon S^q \to \Sigma^{\infty} (S^q \times S^q)_+ \to MO\langle v_{q+1} \rangle,$$

where $i: S^q \to S^q \times S^q$ is the standard embedding $i(a) = (a, b_0)$.

Denote by C_1 the cofiber of the map $\eta \circ \Sigma^{\infty} i$. Then $\Sigma DC_0 \simeq C_1$. By duality we should check that $\chi(\operatorname{Sq}^{q+1})$ acts by non-zero on $H^0(C_1, \mathbb{Z}/2)$.

Now the composition

$$S^q \xrightarrow{\Sigma^{\infty} i} \Sigma^{\infty} (S^q \times S^q)_+ \to MO\langle v_{q+1} \rangle \xrightarrow{\pi} MO$$

is trivial. So there exists a map $\bar{\pi}: C_1 \to MO$. W. Browder proved (see Theorem 5.2 in [Bro69], p.172) that $\bar{\pi}$ can be chosen such that $\bar{\pi}_*$ induces a monomorphism on $H^{q+1}(-, \mathbb{Z}/2)$. But the Steenrod square

$$\chi(\operatorname{Sq}^{q+1}) \colon H^0(MO, \mathbb{Z}/2) \to H^{q+1}(MO, \mathbb{Z}/2)$$

is a non-zero map, so the Steenrod square

$$\chi(\operatorname{Sq}^{q+1}): H^0(C_1, \mathbb{Z}/2) \to H^{q+1}(C_1, \mathbb{Z}/2)$$

is also a non-zero map.

It means that $\psi_{\eta}(x) = 1$ and $c(M, \eta) = 1$.

Proposition 8. The v_{q+1} -orientation η comes from a framing of $S^q \times S^q$ if and only if q = 1, 3, 7.

Proof. Proposition 5.3 in [Bro69].

References

- [Bro69] William Browder, The Kervaire Invariant of Framed Manifolds and its Generalization, Annals of Mathematics 90 (1969), no. 1, 157–186.
- [Har02] John R. Harper, Secondary Cohomology Operations, Graduate studies in mathematics, vol. 42, American Mathematical Society, 2002.