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1 G-spectra

A doubly naive approach to G-equivariant stable category would be to define

Definition 1.1. The category of doubly naive or weak G-spectra SphG is Fun(BG, Sp).

We’ve seen this doesn’t work even for G-spaces. Instead a naive approach to the stable G-category
would be

Definition 1.2. The category of naive G-spectra SpnG is the stabilization of SG, which is by Elmen-
dorf’s theorem is equivalent to Fun(OopG ,Sp).

The category SpnG remembers more about G, but for various reasons may be not satisfying for what
one would like too call ’the category of cohomology theories on G-spaces’. We will indicate two points
here

• We have
MapSpnG(Σ∞+ G/H,S) ' MapSp(Σ∞+ (G/H)/G,S) ' MapSp(S,S) ' S

because G-acts trivially on S. This shows that for H 6= G the stabilization of zero dimensional cell
Σ∞+ G/H can not be dualizable in SpnG. So we do not expect in general a good behavior (such as
Poincar duality or pushforwards in cohomology) from a cohomology theory represented by a naive
G-spectrum.

• In ordinary homotopy theory we have the Freudenthal suspension theorem, stating that the canonical
map, stating that the canonical map Y → ΩΣY is a 2n-equivalence, if Y is n-connected. In
equivariant homotopy theory we have the generalization of this not only for ordinary suspension,
but for any representation sphere SV

Proposition 1.3. Let Y be a G-space and n : OG → N a function, such that

1. n(H) ≤ 2 conn(Y H) + 1 for all subgroups H such that V H 6= 0.

2. n(H) ≤ conn(Y K) for all pairs of subgroups H,K such that V H 6= V K .

Then the canonical map Y → ΩV ΣV Y induces an isomorphism

πHk (Y )→ πHk (ΩV ΣV Y )

for k ≤ n(H). Therefore if dimXH < n(H) for all H ≤ G, then the canonical map

[X,Y ]→ [ΣVX,ΣV Y ]

is bijective.
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The second point is very suggestive. Namely, recall that the category of spectra is an universal (in
an appropriate sense) category with the functor Σ∞ : S+ → Sp with the property that the suspension
functor is invertible in Sp. Now the suspension is given by the smash product with S1 (which one may
consider as a representation sphere for one dimensional trivial representation), so in equivariant world we
may want to invert multiplication by representation spheres SV for nontrivial representations V as well.
Before proceed with the actual construction, we will explain the idea in a simple example.

Example 1.4. Let R be an ordinary commutative ring and x some element of R. Then the localization
R[x−1] is isomorphic to the direct limit

R[x−1] ' lim−→ (R
·x−→ R

·x−→ R . . .)

taken in the category of R-modules. One way to deduce R-algebra structure on R[x−1] is to not that

R[x−1]⊗R R[x−1] ' (R[x−1])[x−1] ' R[x−1]

induces multiplication map x⊗ y 7→ xy.
Now let R be an object in symmetric monoidal category C and x : R→ R some map. Assume we want

to define localization R[x−1]. Generally it is hard to write down explicit formulas in higher categorical
setting, so instead one may prefer to adopt the approach above, and it is a result of Lurie [Lur13, Section
4.8.2], that one can actually do it.

In particular we are interested in the case where C is the category of presentable stable categories
Prst,L. Recall this category has a monoidal structure ⊗̂ (just a completion of the usual Cartesian monoidal
structure), such that commutative algebras in (Prst,L, ⊗̂) are precisely presentably monoidal categories.
For a category D we will use the procedure indicated above to invert the family of objects Xi ∈ D.

One last note is that one sometimes wants to invert not all representation spheres, but just some
family of them, and it is equally easy to develop the theory in this generality, so we will do it.

Let U be a set of orthogonal finite-dimensional G-representations.

Construction 1.5. Let Z≥0 be the set of nonnegative integers with usual linear order. Let IU be the
subset of the set (Z≥0)U of all sequences {nV }V ∈U , such that only finitely many nV are nonzero. There
is an induced partial order on IU (lexicographical one), so we can consider IU as a category. It is easily
to see that IU is filtered.

There is a functor IU : IU → ModSpnG which sends every object of IU to the category SpnG and the
morphism {nV } → {mV } to the smashing functor

X 7→ X ∧
∧
V ∈U

S(mV −nV )V

Define U-indexed genuine stable G-category SpU to be the colimit

SpU := lim−→ IU

in the category of SpnG-module categories.

We will introduce some notations right away

Notation 1.6. • We will denote the canonical functor SpnG → SpU by Σ̃∞U and its right adjoint

(which exists by adjoint functor theorem) by Ω̃∞U . By composing Σ̃∞U and Ω̃∞U with Σ∞ : SG → SpnG

and SG ← SpnG : Ω∞ respectively we obtain the pair of adjoint functors

Σ∞U : SG � SpU : Ω∞U
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• We will also define the forgetful functor −u : SpU → SphG by the composition of Ω̃∞U and the
forgetful functor SpnG → SphG (which is the evaluation on G).

• We will denote the monoidal unit of SpU by SU of just by S when U is clear from the context.

• For a pointed G-space X an U-spectrum E we will abbreviate

X ∧ E := Σ∞U X ∧ E MapSpU (X,E) := MapSpU (Σ∞U X,E)

More generally we will sometimes abbreviate Σ∞U X just by X, when there is no risk of confusion.

Remark 1.7. By adjoint functor theorem the category of presentable stable categories and colimit pre-
serving functors Prst,L is canonically equivalent to the category Prst,R of presentable stable categories
and functor, preserving limits and filtered colimits for big enough cardinal. The equivalence is identity
on objects and send functor to its adjoint. It follows that

SpU ' lim←− I
R
U

where IRU defined similarly to IU but with ΩV (−) instead of ΣV−.
From this description we see that an object of SpU is given by the set {XW }W∈U of naive G-spectra

with the coherent set of equivalences ΩVXW⊕V ' XW . The disadvantage of this description is that it is
not obvious why this limit category admits a good monoidal structure, or why Σ̃∞U is a monoidal functor.

Remark 1.8. By what we’ve learned in the talk on presentable and stable categories, we know that for
X,Y ∈ SpnG we have

HomSpG(Σ̃∞U X, Σ̃
∞
U Y ) ' lim−→ HomSpnG(ΣVX,ΣV Y )

Remark 1.9. We could also start from the category of G-spaces SG to define SpU . In this case we
should’ve add the trivial representation R to U .

Directly from definition we can establish the following basic properties of SpU

Proposition 1.10. 1. For any V ∈ U the object Σ̃∞U SV is invertible in SpU .

2. SpU is symmetric presentably monoidal stable category and the functor Σ̃∞U is monoidal.

3. The unit Σ̃U ◦ Ω̃∞U → 1SpU and counit 1SpnG → Ω̃∞U ◦ Σ̃U of adjunction Σ̃U a Ω̃∞U are equivalences of
weak G-spectra.

Proof. 1. On the level of colimit diagram for SpU the smashing with Σ̃∞U SV corresponds to the inclusion
of cofinal subcategory {nW }W∈U , nV > 0 of IU .

2. By [Lur13, proposition 4.8.2.9.] it is enough to prove that the canonical map

SpU ' SpU ⊗SpnG → SpU ⊗SpU

is an equivalence. But

SpU ⊗SpU ' SpU ⊗ lim−→ SpnG ' lim−→ (SpU ⊗SpnG) ' lim−→ SpU ' SpU

where we have used that all functors in the diagram

SpU ⊗(SpnG)IU

are smashings with SV , hence equivalences by the previous.
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3. The composition Ω̃∞U ◦ Σ̃∞U sends a naive G-spectrum X to lim−→ ΩV ΣVX. The forgetful functor

commutes with (co)limits and for any representation V the following diagrams are commutative

SpnG
ΣV
//

−u

��

SpnG

−u

��
Sp

ΣdimV
// Sp

SpnG
ΩV
//

−u

��

SpnG

−u

��
Sp

ΩdimV
// Sp

where −u is the forgetful functor. It follows that

(Ω̃∞U Σ̃∞U X)u ' (lim−→ ΩV ΣVX)u ' lim−→ ΩdimV ΣdimVXu ' Xu

Analogues statement for co-unit of adjunction follows from definition of forgetful functor and trian-
gular identities.

Definition 1.11. The universe U consist of all finite-dimensional representations of G is called complete.
For the complete universe U we will call SpU the category of genuine G-spectra or just G-spectra and
will denote it by SpG.

The rest of this section is devoted to the proof of stable analogue of Elmendorf’s theorem. In what
follows we will need the following geometric fact

Theorem 1.12. Any smooth closed G-manifold admits a finite G-cell decomposition.

Corollary 1.13. Any closed smooth G-manifold is finite G-space.

Lemma 1.14. For any universe U stabilization of orbits Σ∞U+G/H are compact in SpU .

Proof. By corollary 1.13 representation spheres SV are compact objects of SpnG, hence loop spaces functors
MapSpnG(SV ,−) are continuous. From this observation and remark 1.7 we see that the category SpU is
equivalent to the limit in the category of presentable categories, hence the canonical projection functor
Ω̃∞U is continuous.

Now let Xα be a filtered diagram of U-spectra. Then

HomSpU (Σ∞U+G/H, lim−→ Xα) ' HomSG(G/H, lim−→ Ω∞U Xα) '

' lim−→ HomSG(G/H,Ω∞U Xα) ' lim−→ HomSpU (Σ∞U+G/H,Xα)

where we have used that G/H are compact in SG.

Proposition 1.15. The functor Ω̃∞U is conservative.

Proof. By remark 1.7 and appendix to the second talk it is enough to prove that the functor ΩV : SpnG →
SpnG is conservative. Let f : X → Y be a map of naive G-spectra. Then ΩV (f) is an equivalence if and
only if the cofiber ΩV (Y )/ΩV (X) vanishes. Hence it is enough to prove that ΩV Z 6= 0 for Z 6= 0 and any
representation V .

Let Z 6= 0 be a spectrum with G-action and V a representation of G. First assume that for some
proper subgroup iH : H ↪→ G the restriction i∗HZ is non-zero. Then by induction on dimension and the
number of connected components we have

i∗HΩV Z ' Ωi∗HV (i∗HZ) 6= 0
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hence ΩV Z 6= 0.
Now assume i∗HZ ' 0 for all proper subgroups H of G. Then ZH ' 0 for all H < G and ZG 6= 0 since

Z 6= 0. Hence Z is concentrated as a presheaf over G/G and

(ΩV Z)G = MapSpnG(SV , Z)G ' HomSp((SV )G, ZG) ' ΩV G
ZG 6= 0

hence ΩV Z 6= 0.

Corollary 1.16 (Stable G-Whitehead lemma). For any universe U the morphism X → Y in SpU is an
equivalence if and only if the induced morphism

πH∗ (X)→ πH∗ (Y )

is an isomorphism for any H.

Proof. Let f : X → Y be a morphism inducing isomorphism on all homotopy groups πH∗ . By the previous
proposition it is enough to prove that Ω̃∞U (f) is an equivalence. But

πHi (X) = πi HomSpU (Σ∞U G/H+, X) ' πi HomSpnG(Σ∞G/H+, Ω̃
∞
U X) = πHi (Ω̃∞U X)

and analogously for Y . Hence Ω̃∞U (f) is an equivalence by the usual Whitehead’s lemma.

Definition 1.17. The stable orbit category is the full subcategory of SpU on Σ∞U G/H+.

Theorem 1.18 (Stable Elmendorf’s theorem). For any universe U the restricted Yoneda functor

Y− : SpU → Fun(SOopU , Sp)

is an equivalence.

Proof. The Yoneda embedding Y− commutes with limits and (by lemma 1.14) with filtered colimits,
hence it admits a left adjoint | − |. By Yoneda lemma the counit of adjunction is an equivalence for
representable presheafs. By co-Yoneda lemma every presheaf is a colimit of representables, hence the
counit of adjunction Y|F| → F is equivalence for every presheaf F ∈ Fun(SOopU ,Sp).

It is only left to prove that Y− is essentially surjective. By the fully-faithful part it is enough to prove
that the smallest subcategory of SpU closed under colimits and finite limits and containing Σ∞U G/H+ is
SpU . Let X be an object of SpU . Consider the simplicial U-spectrum X• (the bar resolution of X)

. . . Σ̃∞U Ω̃∞U Σ̃∞U Ω̃∞U X ⇒ Σ̃∞U Ω̃∞U X

where edge and degeneration maps are induced by unit and co-unit of adjuncton Σ̃∞U a Ω̃∞U . I claim that
the canonical map p : |X•| → X is an equivalence. Indeed, the map

|Ω̃∞U X•| ' Ω̃∞U |X•|
Ω̃∞U (p)
−→ Ω̃∞U X

is an equivalence, because it admits a splitting. But Ω∞U is conservative by proposition 1.15, hence p is
also equivalence.

So every U-spectrum is a colimit of spectra of the form Σ̃∞U Y, Y ∈ SpnG. It is left to note that by
co-Yoneda’s lemma every Y is a colimit of Σ∞G/H+.

Remark 1.19. The presheaf category Fun(SOopU , Sp) is monoidal with pointwise monoidal structure.
The equivalence above is not monoidal in general. For example we will see later that YS(∗) = SG 6' S for
nontrivial G.

5



Remark 1.20. The second part of the above proof shows that SpG are monadic over SpnG. The corre-
sponding monad send a naive G-spectrum X to

lim−→ ΩV ΣVX

where V ranges over closure of U under direct sums.
It follows, that one can think about U-spectrum as of naive G-spectrum with some sort of additional

data. Moreover one can explicitly describe this additional data (at least when U is the complete universe).
It is encoded by the so called transfer maps. We will return to this point in the next talk.

2 Functoriality of equivariant spectra and fixed points functors

In this section we will introduce some functoriality of equivariant spectra and define various notions of
fixed points. The material is more or less trivial, but will be actively used later on. For simplicity we will
stick to complete universes everywhere.

Let ϕ : G1 → G2 be a homomorphism of Lie groups. By restriction of action ϕ induces the restriction
functor ϕ∗ : TopG1 ← TopG2 . It is easy to see that ϕ∗ preserves limits, colimits and weak equivariant
homotopy equivalences. It follows that ϕ induces the restriction functor ϕ∗ : SG1 ← SG2 which has both
left adjoint ϕ! and right adjoint ϕ∗. E.g. for i : H → G an inclusion we have

i!X ' G×H X i∗X ' MapH(G,X)

It is also easy to check that we have analogous adjunctionon on the level of naive spectra and that ϕ∗

is closed monoidal.
For a naive G2-spectrum X and G2-representation V we have that

ϕ∗(X ∧ SV ) ' ϕ∗(X) ∧ ϕ∗(SV ) ' ϕ∗(X) ∧ Sϕ
∗V

Hence we obtain the induces functor

ϕ∗ : SpG1 ← SpG2

We have the following basic properties

Proposition 2.1. 1. The functor ϕ∗ admits both left ϕ! and right ϕ∗ adjoints. We will call these
functors induction and co-induction respectively.

2. The following diagrams are commutative

SG1
∗

ϕ! //

Σ∞G1
��

SG2
∗

Σ∞G2
��

SpG1
ϕ! // SpG2

SG1
∗

ϕ∗ // SG2
∗

SpG1
ϕ∗ //

Ω∞G1

OO

SpG2

Ω∞G2

OO

3. For a G2-spectrum X we have the canonical equivalences

ϕ!ϕ
∗X ' Σ∞G2

G2/ϕ(G1)+ ∧X ϕ∗ϕ
∗X ' MapSpG2 (Σ∞G2

G2/ϕ(G1)+, X)

4. (Projection formulas). Let X be a G1-spectrum, Y be a G2-spectrum and Z be a dualiazble G2-
spectrum. Then there is a canonical equivalence

ϕ!(X ⊗ ϕ∗Y ) ' ϕ!(X)⊗ Y ϕ∗(X ⊗ ϕ∗Z) ' ϕ∗(X)⊗ Z
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5. Let X be a G1-spectrum, Y be a G2-spectrum. Then

MapSpG2 (ϕ!X,Y )
∼−→ϕ∗MapSpG1 (X,ϕ∗Y )

Remark 2.2. For an inclusion of a closed subgroup i : H ↪→ G the induction i! and co-induction i∗
functors are usually denoted as G ∧H − and MapH(G,−). It is natural choice of notation e.g. by the
description of corresponding functors on the level of G-spaces and by the second property above.

Fixed point functors. Recall, that in G-spaces we have two kind of fixed points: homotopical and
honest. In this section we will describe naturally defined fixed points functors for G-spectra. First we
have

Definition 2.3. Let X be a G-spectrum. For a closed subgroup H of G we define homotopy H-
(co)invariant as

XhH := Xu
hH XhH := (Xu)hH

It is easy to see that

XhH ' (EG+ ∧X)u/H XhH ' HomSpG(EG+, X)

This is the weakest notion of fixed points. On the opposite we have

Definition 2.4. Let X be a G-spectrum and H a normal closed subgroup of G. We define the honest
or categorical homotopy H-fixed points as XH := p∗(X), where p : G� G/H is the quotient map.

For H not necessarily normal, just restrict X to NG(H)-spectrum and then take fixed points in the
above sense. So XH is always a WGH-spectrum. It is easy to see that the underlying spectrum of XH is
HomSpG(G/H+, X).

Honest fixed points is usually what we are after, but they are hard to deal with. For example

(X ∧ Y )G 6' XG ∧ Y G (Σ∞G Z)G 6' Σ∞ZG

in general (where X,Y ∈ SpG, Z ∈ SG). We have the third type of fixed points in stable setting, which
fixes this problem

Construction 2.5. The smash products in SpnG are computed pointwise. In particular for a normal
close subgroup H of G and G-representation V the following diagram

SpnG
ΣV

//

(−)H

��

SpnG

(−)H

��
SpnG/H

ΣV H

// SpnG/H

is commutative. It follows that there is an induces functor ΦH : SpG → SpG/H .
For H not necessarily normal again first restrict spectrum to NGH and then apply the construction

above. We will call ΦH the geometric H-fixed points functor.

It enjoys the following properties

Proposition 2.6. 1. For a pointed G-space X we have the canonical equivalence

ΦH(Σ∞GX) ' Σ∞WGH
XH

2. Geometric fixed point functors ΦH are monoidal.
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3. Let P be a family consisting of all proper subgroups of G. There is a canonical equivalence

ΦG(X) '
(
ẼP ∧X

)G
Proof. 1. This is just the special case of the definition of ΦH .

2. The restriction to SpnNGH ← SpnG and H-fixed points −H : SpnG → Sp are monoidal functors
(because smash products of naive G-spectra are computed pointwise), hence ΦH is monoidal as a
filtered colimit of monoidal functors.

3. We want to prove that the natural transformation −G → ΦG(−) induces an equivalence

(ẼP ∧X)G → ΦG(ẼP ∧X) ' ΦG(ẼP) ∧ ΦG(X) ' ΦG(X)

All functors in the diagram above preserves colimits and finite limits, hence it is enough to prove
the statement for X = Σ∞GG/H+. In this case the right hand side is Σ∞(G/H)G+. By tom Dieck
splitting the left hand side is also equivalent to Σ∞(G/H)G+.

3 Duality theory for genuine G-spectra

We will use the following simple observation to establish duality results of this section: let U ↪→ X be an
open embedding of G-spaces. Then X/(X \U) is a model for one point compactification of U (where X is
one point compactification of X). Hence the one point compactification induces a contravariant functor
from the category of G-spaces and open embeddings to the category of pointed compact G-spaces.

Example 3.1. Let i : Z ↪→ X be an embedding of closed smooth G-manifolds. By the tubular neighbor-
hood theorem one can extend i to the open embedding j : Tot(νZ/X) ↪→ X of the total space of normal

bundle νZ/X of Z in X. Hence we obtain the map X → Tot(νZ/X) ' ZνZ/X (where we have used that

one point compactification of a total space of a bundle E is a model for a Thom space ZE for compact
Z). This is called Pontryagin-Thom collapse map.

One point compactification is not a functor from G-spaces, but for a proper map p : X → Y there is
an (obvious) map of one point compactifications X → Y .

Example 3.2. Let X be a closed manifold and E a vector bundle over X. Consider the vector bundle
0 � E over X × X. The diagonal map X → X × X induces a proper map of total spaces of bundles
Tot(E)→ Tot(0 � E), which induces the map XE → X+ ∧XE . This is called Thom diagonal.

It follows that for any roof X
j← Z

p→ Y where j is an open embedding and p is proper, we obtain a
map X → Y .

We will now establish analogs of classical duality theorems in equivariant setting.

Theorem 3.3 (Atiyah duality). For a closed smooth G-manifold M the suspension spectrum Σ∞GM+ and
the Thom spectrum of negative tangent bundle M−TM are dual to one another.

Idea of the proof. There is always an embedding of M into some representation V and by the tubular
neighborhood theorem we can extend it to the embedding of normal bundle ν ↪→ V . We will prove that

(Σ∞GM+)∨ ' Σ−VG Mν (1)

the result would follow from equivalence S−VG ∧Mν 'Mν−V 'M−TM .
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To prove (1) we will simply exhibit co-evaluation SG → Σ∞GM+ ∧ Σ−VG Mν and evaluation Σ∞GM+ ∧
Σ−VG Mν → SG maps. Let η : SV → M+ ∧Mν be a composite of the Pontryagin-Thom collapse map and

Thom diagonal and the map ε : SV → M+ ∧Mν is induces by the roof M × ν j← M × V p−→ V , where
j is an open embedding of (trivial) normal bundle of M in M × ν and p is the projection on the second
factor. It is an exercise to check that Σ∞−VG η and Σ∞−VG ε are desired co-evaluation and evaluation maps
respectively.

Remark 3.4. It follows that the Pontryagin-Thom collapse map SV → ΣV (Σ∞M+)∨ is just a V -
suspension of the morphism, dual to the canonical map Σ∞G+M → Σ∞G+∗.

Corollary 3.5. The suspension spectrum of orbit space G/H is dualizable in SpG with the dual equivalent

to G ∧H S−L(H)
H , where L(H) is the tangent H-representation at the identity coset of G/H.

Proof. By the Atiyah duality we know that Σ∞G/H+ is dualizable with dual (G/H)−TG/H , so it is enough
to identify the Thom spectrum.

Let N be an H-manifold with the virtual bundle E over it. Then

(G ∧H N)G∧HE ' G ∧H NE

because the induction functor commutes with cofibers and suspension spectrum functor.
The result now follows by taking N = ∗ and E = −L(H).

Corollary 3.6 (Equivariant Spainer-Whitehead duality). For genuine G-spectrum X the following con-
ditions are equivalent

1. X is a retract of finite G-spectrum.

2. X is dualizable.

3. X is compact.

Proof. 1⇒ 2. Follows from the previous corollary, because dualiable object in stable presentable category
are closed under finite (co)limits and retracts.

2⇒ 3. Let Yα be a filtered diagram of G-spectra. Then

HomSpG(X, lim−→ Yα) 'HomSpG(S, X∨ ∧ lim−→ Yα) ' HomSpG(S, lim−→ (X∨ ∧ Yα)) '

' lim−→ HomSpG(S, X∨ ∧ Yα) ' lim−→ HomSpG(X,Yα)

where we have used that S is compact in SpG.

3⇒ 1. By theorem 1.18 we can write X as a filtered colimit of finite G-spectra Xα. By compactness the
identity morphism

1X ∈ π0 HomSpG(X,X) ' π0 HomSpG(X, lim−→ Xα) ' lim−→ π0 HomSpG(X,Xα)

factors as
X → XA → lim−→ Xα ' X

for some A, hence X is a retract of finite G-spectrum XA.
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