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1 Unstable G-equivariant homotopy theory

Notation 1.1. For the rest of this section G will be a compact real Lie group.

Denote TopG for the topologically enriched category of G-topological spaces, i.e. topolog-
ical spaces with continuous action of G and continuous G-equivariant maps.

This category has all (co)limits and forgetfull functor to ordinary topological spaces pre-
serves it. For example the product X ×G Y is X × Y with diagonal action of G. Also TopG

has an inner hom G-space MapG(X,Y ) again with underlining topological space the usual
Map(X,Y ) (with compact open topology) and an action of G given by

(gf)(x) = gf(g−1x), g ∈ G, f ∈ Map(X,Y )

Usual adjunctions hold

MapG(X ×G Y, Z) ' MapG(X,MapG(Y, Z))

Definition 1.2. Let V be a finite dimensional real representation of G. We denote a one
point compactification of V by SVG and will call it a V-sphere. It is a a pointed G-equivariant
space with ∞ as a base point.

Having defined G-spheres we have a notion of a suspension and loop spaces functors for
every G-representation V . Namely for any pointed G-space X we set

ΣV
GX = X ∧G SVG ΩV

G = MapG(SVG, X)

Example 1.3. We always have the usual sphere Sn corresponding to the trivial n-dimensional
representation of G. Correspondingly we have a usual suspension functor Σn

G.

For any closed subgroup H 6 G we have a G-equivariant space G/H, an H-orbit space.
These play a role of 0-cells in equivariant setting as we will see below. We have G-spheres
Σn
G(G/H)+ and G-cells Dn ∧G (G/H)+. Define G-CW complex to be a G-space which can

be obtained by usual procedure of gluing of these generalized G-cells along G-spheres.

Definition 1.4. For a pointed G-space X we define

πHn (X) = MapG(Sn, X)H ' MapG(Σn
G(G/H)+, X) ' Map(Sn, XH) = πn(XH)
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Definition 1.5. A G-equivariant homotopy between two maps f, g : X → Y is a G-equivariant
map

h : X ×G I → Y

such that h|X×{0} = f and h|X×{1} = g (where I is an interval [0; 1] with the trivial G-action).

Definition 1.6. We say that f : X → Y is a weak G-homotopy equivalence if it induces an
(ordinary) weak homotopy equivalence

fH : XH → Y H

for any closed subgroup H 6 G (we denote XH , Y H for ordinary or honest fixed point spaces).

Example 1.7. Of cause any G-equivariant homotopy equivalence is a G-equivariant weak
homotopy equivalence, because G-equivariant homotopy equivalence restricts to homotopy
equivalence of H-fixed point spaces for any H.

Definition 1.8. We define TpG to be (simplicial) localization of TopG with respect to weak G-
equivariant homotopy equivalences and will call it the G-equivariant homotopy type category.

Here are some examples of objects in TpG.

Example 1.9. We have the fully-faithful embedding Tp ↪→ TpG as topological spaces with
trivial action of G.

Example 1.10. Let EG be a contractible topological space with free G-action. We have a
G-equivariant map p : EG→ ∗. For G nontrivial p is not a G-equivariant equivalence, because

pG : ∅ ' (EG)G → ∗G ' ∗

is not a weak homotopy equivalence.

We now want to prove some structural results about TpG. But first we need few definitions
and technical results.

Definition 1.11. Let OG, the orbit category of G, be the full subcategory of TpG on orbit
spaces G/H. We will sometime denote the object G/{1G} ∈ OG just by G.

Note that by definition we have

HomOG
(G/H1, G/H2) ' (G/H2)

H1 EndOG
(G/H) ' G/NG(H) =: WGH

where NG(H) is the normalizer of H in G.

We will use the following results

Theorem 1.12. Every G-space is G-weakly equivalent to a retract of G-CW complex.

Proposition 1.13 (Hovey, proposition 2.4.2). Every compact topological space is compact
object of Top with respect to the diagram of cellular inclusions of CW complexes.
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Lemma 1.14. The fixed point functor −H : TpG → Tp preserves colimits.

Proof. Every colimit is a filtered colimit of finite ones, so it is enough to threat these two
cases.

Note that −H ' HomG(G/H,−). Hence we need to prove that G/H are compact objects
of TpG. It is enough to prove that HomTopG(G/H,−) preserves filtered diagrams of G-CW-

complexes with cellular closed inclusions. The functor −{e} ' HomG(G,−) preserves all
colimits, because it admits right adjoint G×G−. For closed subgroup H we have that G/H is
the colimit of G×GH ⇒ G in TopG. Compact objects are closed under finite colimits, hence it
is enough to prove that G×GH is compact. Let Xα be a filtered diagram og G-CW-complexes
with cellular inclusions in TopG. Then

HomG(G×GH, lim−→Xα) ' HomTop(H, lim−→
Xα) ' lim

−→
HomTop(H,Xα) ' lim

−→
HomG(G×GH,Xα)

where we have used that H is a compact Lie group, hence compact as an object of Top.
For finite colimits it is enough to prove statement for initial object (which is obvious) and

pushouts. Let
X //

��

Y

��
Z //W

be a pushout diagram. Without loss of generality we can assume that X → Y and X → Z
are injective. We always have the canonical map

ϕ : Y H
∐
XH

ZH →WH

and we want to prove that in our case it is an equivalence. It is enough to prove that ψ is
bijection. But as G-set

Y
∐
X

Z ' X
∐

(Y \X)
∐

(Z \X)

and fixed points obviously commute with disjoint unions.

Remark 1.15. The same result doesn’t hold in TopG. For example the pushout of the
diagram ∗ ← G→ ∗ is ∗ and for nontrivial G the pushout of invariants ∗ ← ∅→ ∗ is ∗

∐
∗.

Let F− : TpG → Fun(OopG ,Tp) be the restricted Yoeneda functor, i.e. the composite

TpG
Y−→ Fun((TpG)op,Tp) −→ Fun(OopG ,Tp)

Note that for a G-space X by definition we have

FX(G/H) = HomTpG(G/H,X) ' XH
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Let us denote the canonical inclusion OG ↪→ TpG by i. We then can consider the left Kan
extension of i along the Yoneda embedding, which we will denote by | − |

OG� _
Y
��

� � i // TpG

Fun(OopG ,Tp)

|−|

88

Now we can prove the following result

Theorem 1.16 (Elmendorf). Functors

| − | : Fun(OopG ,Tp)� TpG : F−

are mutually inverse equivalences.

Proof. By definition we have the adjunction |−| a F−. By co-Yoneda’s lemma every preasheaf
X ∈ Fun(OopG ,Tp) is a colimit of G/Hα. By Yoneda’s lemma for 0-cells G/Hα the unit of
adjuntion is identity, hence the unit of adjunction

X → F|X |

is a weak homotopy equivalence, because both |−| and −H (by lemma 1.14) preserve colimits.
Hence, | − | is fully-faithful.

On the other hand by theorem 1.12 every object in TpG is equivalent to a colimits of G/H,
hence | − | is essentially surjective.

Example 1.17. By Elmendorf’s theorem G-space EG is equivalent to presheaf

FEG(G/H) '
{
∗, H = {e}
∅, H 6= {e}

Using Elmendorf’s theorem we can give a few interesting examples of G-spaces.

Example 1.18. Let U be a family of subgroups of G closed under subconjugations. Consider
presheaf

FU (G/H) =

{
∗, H ∈ U
∅, H 6∈ U

We will denote the corresponding space by EUG (EG is the special case with U consisting
only of trivial subgroup). The space EU has the following universal property: for any G-space
X there is a map from X to EU if and only if XH ' ∅ for any H 6∈ U .

Example 1.19. Let A be a presheaf of abelian group on OG. For any n ≥ 0 we then have a
G-space K(A, n) (or BnA) such that

πiK(A, n) '
{
A, i = n
0, i 6= n
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1.1 Aside: Sullivan’s conjecture

Construction 1.20. We have the inclusion BGop ↪→ OG, ∗ 7→ G/{1G} which induces a
restriction functor TpG → TpBG (it is the same as to consider G-space X just as a weak
G-representation in Tp). For a G-spaces X and a closed subgroup H 6 G we define

XhH := lim(BH → BG→ OopG
FX−→ Tp)

and call it an H-homotopy fixed points of X. Homotopy coinvariants XhH are defined as the
colimit of the diagram above.

Note that by definition

Map(XH , XhH) ' Map(XH , X)hH

The latter space has a point corresponding to XH → X. Hence the inclusion XH ↪→ X factors
canonically as

XH → XhH → X

and analogously for coinvariants.

Also the difference between homotopy −hG and honest −G fixed points in general is quite
big, in this section we will formulate one beautiful result, showing that in some special cases
this difference vanishes. The exposition here is generally follows Lurie’s lecture notes [Lur07].

The key step is the following theorem

Theorem 1.21. For any finite-dimensional Fp-vector space V there exists Lannes T -functor
TV : ModFp → ModFp such that

• TV is exact.

• For any space X there is a canonical equivalence of Fp-modules

TV C
∗(X,Fp) ' C∗(XhV ,Fp)

For the proof consult Lurie’s lectures or [May, Chapter VIII, 2].

Proposition 1.22. Let G be a finite p-group. Then the functor

−hG : TphGp → Tpp

preserves finite colimits.

Proof. Every finite p-group is solvable, hence there is a filtration {1G} = G0 ⊂ G1 ⊂ . . . ⊂
Gn = G such that Gi/Gi−1 ' Vi where Vi is a finite dimensional Fp-vector space. We will
prove the proposition by induction on i.
Abelian case. For a finite digram {Xk}k∈K of p-complete spaces the canonical map

ϕ : colim
K

XhVi
k → (colim

K
Xk)

hVi
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induces an equivalence

C∗(colim
K

XhVi
k ,Fp)

∼−→C∗((colim
K

Xk)
hVi ,Fp)

by exactness of TVi of theorem 1.21. By definition of Bousfield localization ϕ itself is an
equivalence.

Induction step. Let F
i−→ E

p−→ B be a fiber sequence of spaces such that functors

colim
B

: Fun(B,Tp)→ Tp colim
F

: Fun(B,Tp)→ Tp

preserve finite colimits. We will prove that functor colimE also preserves finite colimits. To
do it, note that

colim
E
' colim

B
◦p!

where p! is the left Kan extension of colimE along p. Hence by assumptions on B it is enough
to prove that p! preserves finite colimits. For a diagram Fα ∈ Fun(E,Tp) we always have the
canonical map

ϕ : colim
Fun(B,Tp)

p!(Fα)→ p!

(
colim

Fun(E,Tp)
Fα
)

For a finite diagram we want to prove that ϕ is an equivalence and one can check this
fiberwise. But p is a Grothendieck fibration, hence for any b ∈ B we have

p!(−)b ' colim
F

i∗−

By assumption on F the right hand side functor preserves finite colimits, hence ϕb is an
equivalence for all b ∈ B and therefore so is ϕ.

The induction step follows by taking F = Gi−1, E = Gi and B = Gi/Gi−1.

Theorem 1.23 (Sullivan conjecture). Let G be a finite p-group and X a finite G-space. Then
the canonical map

(XG)p → (XhG)p → XhG
p

is a homotopy equivalence.

Proof. The completion and honest fixed point functors always preserve colimits and homo-
topy fixed point functor preserves finite colimits by proposition 1.22. It follows that the full
subcategory of G-spaces for which the lemma is true is closed under finite colimits.

So it is enough to prove the theorem for X = G/H for all closed subgroups H of G. For
H = G both (XG)p and XhG

p are just points. For H 6= G both spaces XG and XhG
p ' XhG

are empty.
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