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1 Slice tower

As any presentable category the category of genuine spectra SpG admits the theory of Post-
nikov towers. Moreover we have seen that this towers always converge in SpG. In this section
for finite G we will introduce another (slice) filtration of the category of G-spectra more tightly
connected with representation theory of G. One advantage of slice tower is that it is better
suited for some important examples of equivariant spectra like K-theory or cobordisms.

Let us first give a variation of how one can define the Postnikov tower. For an integer
n consider the full subcategory SpG,≥n+1 of n + 1-connected G-spectra. This category is
presentable, hence by adjoint functor theorem the inclusion in+1 : SpG,≥n+1 ↪→ SpG admits
the right adjoint τ̃≥n+1. Denote the composite in+1 ◦ τ̃≥n+1 just by τ≥n+1. The counit of
adjunction induces the natural transformation τ≥n+1 → 1SpG and we define τ≤n to be the
cofiber of this map. It is easy to see that τ≤n coincide with the usual Postnikov truncation
functors.

Now note that the category SpG,≥n may be defined as a smallest subcategory of SpG closed
under colimits and extensions and containing cells G/H ∧ Sm of dimension m greater than n.
We obtain the slice filtration by replacing ordinary cells with

Definition 1.1. For m ∈ Z the slice sphere Ŝ(m,K) is G ∧K SmρK , where ρK is the regular
representation of K. The dimension of Ŝ(m,K) is defined to be m · |K| (it is the dimension
of the underlying manifold of Ŝ).

For an integer n let us define SpG>sn to be minimal full subcategory of SpG closed under

colimits and extensions and containing all slice spheres Ŝ of dimension grater then n.

Lemma 1.2. The category SpG>sn is generated under colimits by the small set of objects.

It follows that SpG>sn is presentable. So we can define τ>sn and τ≤sn as for Postnikov
towers. For a G-spectrum X we will sometime denote τ≤sX just by X≤sn and analogously for
τ>snX. We will say that a G-spectrum X is n-slice if X ∈ SpG≥sn ∩SpG≤sn.

We will also not the following proposition, which readily follows from definition

Proposition 1.3. The functor τ≤sn is the left adjoint to the inclusion of the full subcategory

of slice n-truncated spectra (i.e. such G-spectra X, that HomSpG(Ŝ, X) ' 0 for all slice spheres

Ŝ of dimension larger then n).
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The slice filtration behave well with respect to the restriction and induction functors.

Proposition 1.4. Let X be a G-spectrum and Y be an H-spectrum for some subgroup H
i
↪→ G.

Then

1. (a) If Y ∈ SpH>sn then G ∧H Y ∈ SpG>sn.

(b) If Y ∈ SpH≤sn then G ∧H Y ∈ SpG≤sn.

2. (a) If X ∈ SpG>sn then then i∗X ∈ SpH>sn.

(b) If X ∈ SpG≤sn then i∗X ∈ SpH≤sn.

Proof. 1. (a) The induction functor is exact and commutes with colimits, hence it is
enough to prove the statement for the slice spheres Y = G ∧K Smρk . But this
immediately follows from the functoriality of the induction functors with respect
to group homomorphisms.

(b) By the Wirtmuller isomorphism i∗ ' i!. Hence for a G-slice sphere Ŝ of dimension
grater then n we have

HomSpG(Ŝ, G ∧H Y ) ' HomSpH (i∗Ŝ, Y ) ' 0

where we have used that i∗Ŝ is a sum of H-slice spheres of the same dimension as
dimension of Ŝ.

2. (a) This is immediate from definitions, because the restriction of a slice sphere is a sum
of the slice spheres of the same dimension.

(b) For a slice H-sphere Ŝ of dimension grater then n we have

HomSpH (Ŝ, i∗X) ' HomSpG(G ∧H Ŝ, X) ' 0

where we have used that G ∧H Ŝ is in SpG>sn by the previous part.

The following proposition will tell us something about the relation between slice and
ordinary connectivity.

Proposition 1.5. For n ≥ 0 all spectra Σ∞+n
G G/H+ are in SpG≥sn.

Proof. By the previous proposition it is enough to treat the case H = G. We have the cofiber
sequence of G-spaces

S(nρG − n)→ S0 → SnρG−n

By smashing it with Sn we obtain the cofiber sequence of G-spectra

Σ∞+n
G S(nρG − n)→ Sn → SnρG

The right hand side term of this sequence is by definition in SpG≥sn and the spectrum on

the left consists of induced G-cells, hence is in SpG≥sn by inductive hypothesis.
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We can now give an example

Example 1.6. For n = 0 by the previous proposition Σ∞GG/H+ are in SpG≥s0, hence SpG≥0 ⊆
SpG≥s0. On the other hand, the only generators of SpG≥s0 are Σ∞G/H+ ∈ SpG≥0, hence SpG≥s0 ⊆
SpG≥0. It follows SpG≥s0 = SpG≥0 and τ≤s−1 ' τ≤−1.

The analogues statement holds for n = 1. Indeed, by the previous proposition all Σ∞+1
G G/H+

are in SpG≥s1. On the other hand by dimension reasons again, the only generator of SpG≥s1 is
G ∧ S1. The rest is the same as in the previous paragraph.

It follows that for a G-spectrum X the fiber Xs0 of the canonical map X≤s0 → X≤s−1 (the
zero slice of X) is equivalent to Hπ0(X).

Here is a useful criterion, which helps to describe slice tower in some cases

Proposition 1.7 (Slice recognition). Let X be a G-spectrum.

1. Let X ′>sn → X → X ′≤sn be a fiber sequence of G-spectra, such that X ′>sn ∈ SpG>sn

and X ′≤sn ∈ SpG≤sn. Then the canonical maps X ′>sn → X>sn and X≤sn → X ′≤sn are
equivalences.

2. Let τn : X → X ′≤sn be a tower. Then τ is a slice tower if and only if X ′≤sn ∈ SpG≤sn and

the fiber of X → X ′≤sn is in SpG>sn.

Proof. 1. Let Y ∈ SpG≤sn. Then we have the fiber sequence

HomSpG(X ′≤sn, Y )→ HomSpG(X,Y )→ HomSpG(X ′>sn, Y ) ' 0

hence by Yoneda lemma the canonical map X≤sn → X ′≤sn is an equivalence.

2. Follows immediately from the previous part.

Corollary 1.8. Let i : H ↪→ G be a subgroup of G.

1. For X an H-spectrum the induction of the slice tower X → X≤sn is the slice tower for
the induction G ∧H X.

2. For Y a G-spectrum the restriction of the slice tower Y → Y≤sn is the slice tower of the
restriction i∗Y .

Proof. Both statements immediately follow from proposition 1.4 and the proposition above.

Remark 1.9. In particular taking H = {1G} in the second part of the corollary above, we
see that the slice tower of a G-spectrum Y is an equivariant refinement of the Postnikov tower
of Y u.

In ordinary world smashing with S1 just shifts the Postnikov filtration by one. We have
an analogues statement for the slice filtration
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Proposition 1.10. For any integer n the smashing with SρG induces an equivalence SpG>sn →
SpG>sn+|G| with inverse induced by the smashing with S−ρG.

Proof. It is enough to prove that SρG ∧ SpG>sn ⊆ SpG>sn+|G| and S−ρG ∧ SpG>sn ⊆ SpG>sn−|G|.

We will do it by induction on |G|.
For K = G we have

Ŝ(m,G) ∧ S±ρG = SmρG ∧ S±ρG ' S(m±1)ρG ∈ SpG
dim Ŝ(m,G)±|G|

For K 6= G by projection formula

Ŝ(m,K) ∧ S±ρG = (G ∧K SmρK ) ∧ S±ρG ' G ∧K (SmρK ∧ i∗KS±ρG)

By the second part of the proposition 1.4 i∗KS±ρG is in SpK≥s±|G|. By induction SρK ∧ i∗KS±ρG

is in SpK≥sdim Ŝ(m,K)±|G|. Hence G ∧K (SmρK ∧ i∗KS±ρG) ∈ SpG
dim Ŝ(m,K)±|G| by the first part of

the proposition 1.4.
We conclude, because slice spheres of dimension grater or equal to n generate SpG≥sn under

colimits and extensions and the functor S±ρG ∧ − commutes with colimits and exact.

Corollary 1.11. Let X be a G-spectrum. If τ≤s• : X → X≤s• is the slice tower of X, then
SρG ∧ τ≤s• is the slice tower of SρG ∧X. In particular

SρG ∧X>sn ' (SρG ∧X)>sn SρG ∧X≤sn ' (SρG ∧X)≤sn SρG ∧Xsn ' (SρG ∧X)sn

1.1 Multiplicative properties of the slice towers

Definition 1.12. For an integer n ≥ 0 define SpG[0;n]s as the intersection SpG≥s0 ∩SpG≤sn.

Proposition 1.13. 1. The category SpG[0;n]s admit a (essentially) unique symmetric monoidal

structure, such that τ≤sn : SpG≥s0 → SpG[0;n]s promotes to a monoidal functor.

2. Let EkAlg[0;n]s(SpG) denote the full subcategory of EkAlg(SpG) consisting of algebras

A, such that the underlying spectrum of A is in SpG[0;n]s. Then there is a canonical

equivalence EkAlg(SpG[0;n]s) ' EkAlg[0;n]s(SpG).

Proof. 1. Everything is in Lurie (somewhere, you just need to look hard enough). In
particular this statement is [Lur13, Proposition 2.2.1.9], but to verify the assumptions
we need to prove the following fact: let f : X → Y be a map of connective G-spectra and
assume that the induced map X≤sn → Y≤sn is an equivalence, then for any connective
G-spectrum V the map (X ∧ V )≤sn → (Y ∧ V )≤sn is an equivalence. Equivalently,
the functor τ̃≤sn(V ∧ −) maps n-equivalences to equivalences. Every such functor is a
colimit of τ̃≤sn(G/H+ ∧ −), hence it is enough to prove the statement for V = G/H+.
For H = G the statement is tautological and for H 6= G it follows by induction using
projection formula G/H+ ∧X ' G ∧H (i∗HX) and corollary 1.8.
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2. We have the canonical functor

ϕ : EkAlg[0;n]s(SpG) ↪→ EkAlg(SpG)
τ≤sn−→ EkAlg(SpG[0;n]s)

The right adjoint i≤sn to the truncation is right lax-monoidal (as every right adjoint of
a monoidal functor), hence it induces a functor

ψ̃ : EkAlg(SpG[0;n]s)→ EkAlg(SpG)

which factors through EkAlg[0;n]s(SpG). We will denote the factorization by ψ.

Both composites ψ ◦ ϕ and ϕ ◦ ψ are equivalent to the identity functors on the level of
underlying spectra. We conclude, because the forgetful functor from algebras to spectra
is conservative.

Remark 1.14. It follows that there is a commutative diagram

EkAlg(SpG≥s0)

��

τ≤sn// EkAlg[0;n]s(SpG)

��
SpG≥s0

τ≤sn // SpG[0;n]s

In particular let A be a connective Ek-algebra in SpG. Then A≤sn admits a canonical
structure of Ek-algebra, such that the truncation map A → A≤sn is a morphism of Ek-
algebras.

2 Slice spectral sequence

Also we already studied some properties of the slice tower, we haven’t proved its convergence
yet. We will handle it in this section and establishing some important results interesting in
their own right along the way.

Lemma 2.1. For m ≥ 0 the slice sphere Ŝ(m,K) may be decomposed as a colimit of Σ∞+kG/H+

where m ≤ k ≤ m|K| and H ≤ K. For m ≤ 0 there is a similar decomposition with
m|K| ≤ k ≤ m.

Proof. If Ŝ is induced, it admits the induced cell decomposition with desired properties. For
m > 1 cell decomposition of SρG induces cell decomposition of SmρG = (SρG)m with cells
in desired range. The equivariant Spainer-Whithead duality gives desired decomposition of
S−mρG .

So it is enough to treat the case SρG . It is enough to prove that the space SρG−1 admits an
equivariant cell decomposition with cells of dimension 0, . . . , |G| − 1. Now note that SρG−1 '
ΣS(ρG − 1). Consider ρG − 1 as a real vector space. The boundary of the standard |G| −
1-dimensional simplex is equivariantly equivalent to S(ρG − 1). Barycentric subdivision of
standard cell decomposition of this simplex gives the desired decomposition of S(ρG− 1).
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Corollary 2.2. For n ≥ 0 we have that SpG≥sn ⊆ SpG≥d|G|/ne. If n ≤ 0 then SpG≥sn ⊆ SpG≥n.

Corollary 2.3. For a G-spectrum X the canonical map X → X≤sn induces an isomorphism
on πk for {

k < d|G|/ne n ≥ 0
k ≤ n n ≤ 0

Corollary 2.4. Slice towers converge, in the sense that for any G-spectrum X the canonical
maps X → lim

←−
X≤sn and lim

−→
X>sn → 0 are equivalences.

Corollary 2.5. If X is in n-slice then πk(X) ' 0 unless{
dn/|G|e ≤ k ≤ n n ≥ 0

n ≤ k < d(n+ 1)/|G|e n ≤ 0

Corollary 2.6. For the E2-page of the slice spectral sequence of a G-spectrum X (Es,t2 =
πt−sXst ⇒ πt−sX) the non-vanishing region is marked blue on the diagram below

t− s

s

s = |G|(t− s)
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2.1 Pure G-spectra and Gap Theorem

In this section we will introduce a family of G-spectra, for which one can guarantee the
vanishing of some homotopy groups (General Gap Theorem). Later we will prove, that our
spectrum Ω from the introduction is (almost) of this kind, which will allow us to deduce
π−2(Ω) ' 0, needed for the solution to the Kervaire Invariant Problem.

Proposition 2.7. For a slice sphere Ŝ of dimension d the spectrum Ŝ ∧HZ is a d-slice.

Proof. By projection formula (G∧KSmρK )∧HZ ' G∧K (SmρK∧HZ), hence by proposition 1.4
we may assume K = G.

We know HZ is a zero slice by example 1.6. It is left to note that the smash of a slice HZ
with SmρG is a slice of dimension dimSmρG by corollary 1.11.

Definition 2.8. The spectrum is called pure if all of its slice layers are sums of Ŝ∧HZ where
Ŝ is an isotrophic slice sphere.

I learned the following argument from Akhil Mathew’s talk [HR16, Talk 16]. For readers
convenience I will reproduce it here

Theorem 2.9 (General Gap theorem). Let X be a pure isotrophic G-spectrum for G a non-
trivial 2-group. Then πk(X) ' 0 for k = −2,−1.

Proof. It is enough to treat the case X = Ŝ∧HZ, result for general X follows by convergence
of the slice tower. Also by adjunction of restriction and co-induction and projection formula

πG∗ ((G ∧K SmρK ) ∧HZ) ' πG∗ (G ∧K (Smρk ∧HZ)) ' πK∗ (SmρK ∧HZ)

Hence we may assume K = G.
Let Ŝ(m,G) be a slice sphere SmρG . First assume m ≥ 0. Then π<0(SmρG ∧HZ) vanish,

because the spectrum SmρG ∧HZ is connective.
For m = −l < 0 we want to prove that

π−i(S−lρG ∧HZ) ' HomSpG(SlρG−i, HZ) ' H i(SlρG/G,Z)

vanish. For l ≥ 2 the space SlρG is equivalent to Σ2SlρG−2, hence it is at least 2-connected. Tak-
ing coinvariants Σ2SlρG−2/G ' Σ2(SlρG−2/G) preserves connectedness in this case (because
the factor SlρG−2/G of a connected space SlρG−2/G is connected), hence H1,2(SlρG/G,Z) ' 0.
The case l = 1, k = −1 can be treated similarly.

So it is left to prove that H2(SρG/G,Z) ' 0. Again SρG ' ΣSρG−1. For the latter space
we have the cofiber sequence

S(ρG − 1)+ → S0 → SρG−1

and hence
H2(SρG/G,Z) ' H̃0((S(ρG − 1)/G),Z) ' 0

(the last isomorphism follows from the fact, that S(ρG − 1)/G is connected).

Remark 2.10. In fact with more efforts one can prove that π−3 also vanishes for pure G-
spectra, but we don’t need this.
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