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This is an introductory lecture which should (very roughly) explain what we will study
during the semester.

1 Formulation

Recall that a nondegenerate quadratic form q : V → k over a field k of characteristic 2 can
always be decomposed into a sum of nondegenerate binary forms (quadratic form of rank 2)
q ' q1⊕ q2 . . .⊕ qn. As any other nondegenerate binary form, in some basis the form qi looks
like

qi(x, y) = aix
2 + xy + biy

2, ai, bi ∈ k

If we change the basis, the product aibi will differ by some element of the form ℘(x) :=
x2 + x, x ∈ k. Hence we define

Definition 1.1. The Arf invariant of the quadratic form q is

Arf(q) :=
∑
i

aibi ∈ k/℘(k)

Arf showed that this is indeed an invariant of q. Moreover, he proved the following

Theorem 1.2 (Arf). Over a perfect field of characteristic 2 the rank and the Arf invariant
determine q up to isomorphism.

Example 1.3. The Arf invariant of the quadratic form q over the field with two elements F2

is just 0 or 1. It is easy to see, that Arf(q) in this case is equal to the value which is assumed
most often by q.

Now recall that over the field of characteristic not equal to 2 theories of quadratic forms
and symmetric bilinear forms are equivalent by the pair of mutually inverse maps

b 7→ qb(x) :=
1

2
b(x, x) q 7→ bq(x, y) := q(x+ y)− q(x)− q(y)

Over the field of characteristic 2 it is not quite so, instead we define
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Definition 1.4. The quadratic refinement of a bilinear form b is a quadratic form q such that

b(x, y) = q(x+ y)− q(x)− q(y)

To see why we are interested in the definition above recall first the following

Definition 1.5. A framing of a smooth manifold M is a choice of trivialization of the stable
tangent bundle of M .

Now given a smooth manifold M of dimension 4n + 2 we have a nondegenerate bilinear
Poincare pairing

∩ : H2n+1(X,F2)⊗H2n+1(X,F2)→ F2.

The framing gives us a quadratic refinement of ∩ which we will denote by qM . This
motivates the following

Definition 1.6. The Kervaire invariant of a smooth framed manifold M of dimension 4n+2
is the Arf invariant of qM .

Example 1.7. The bilinear form above for the 2-dimensional torus T2 := S1 × S1 has the
form (

0 1
1 0

)
The framing induced by the standard embedding T2 ↪→ R3 gives the refinement qT2 = xy.

Hence the torus with the standard framing has zero Kervaire invariant.

From the manifold point of view the Kervaire invariant is interesting because of the fol-
lowing result of the surgery theory

Theorem 1.8. The manifold is framed cobordant to the homotopy sphere if and only if its
Kervaire invariant vanishes.

We now wish to explain how stable homotopy theory enters the picture. Let A :=
[HF2, HF2]∗ be the mod 2 Steenrod algebra, where HF2 is the mod 2 Eilenberg-Maclane
spectrum. Then there is an Adams spectral sequence with the second page

Ep,q2 = Extp,qA (F2,F2)

which converges to πq−p(S) modulo odd torsion.
To start a calculation it is convenient to use the resolution of F2 as an A-module which

begins as

. . .→
⊕
j

A〈Sq2j 〉 → A ε−→ F2 → 0

(the kernel of ε above is generated by Sq2j as they form a basis of A as an F2-algebra).

This defines a set of distinguished elements hj ∈ Ext1,2
j

A (F2,F2). Now there is a classical
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Theorem 1.9 (Browder). Manifolds with nonzero Kervaire invariant may exist only in di-
mensions 2j+1 − 2. Such a manifold exists in dimension 2j+1 − 2 if and only the class h2j is
a permanent cycle.

We will denote the classes in π2j+1−2(S) coming from h2j by θj and will call them the
Arf-Kervaire elements.

There are examples of manifolds with nonzero Kervaire invariant of dimensions 2, 6, 14,
30, 62. In the previous century there were many unsuccessful attempts to construct such a
manifolds in higher dimensions. The question remained open until recently, when in 2010 the
following was proved

Theorem 1.10 (Hill, Hopkins, Ravenel). For j ≥ 7 the Kervaire elements θj are all equal to
zero.

So now only the dimension 126 is left unknown.

2 Idea of the proof

Very schematically the proof of theorem 1.10 goes as follows. One constructs a ring spectrum
Ω with the following properties:

• Detection theorem. The map induced by the unit S→ Ω is injective on the Arf-Kervaire
elements θj .

• Periodicity theorem. The homotopy groups π∗Ω are 256-periodic.

• Gap theorem. We have πkΩ ' 0 for −4 ≤ k ≤ −1.

From this and the result of Browder we immediately get the proof of theorem 1.10. Below
we will spell out some of the details. But first we need a brief tour into the world of

Equivariant homotopy theory

LetG be a discreet group. Define then a category BG with only one object ∗ and HomBG(∗, ∗) :=
G. For a category C and an object X ∈ C one can define an action of G on X to be a functor
a : BG → C, which send ∗ to X. For example, if C is the category of sets, we have the
canonical equivalence

Fun(BG, Set) ' G− Set

where the category on the right is the category of sets with the action of G.
Analogously for a topological group G we can construct an (∞, 1)-category BG and for

any (∞, 1)-category C the category of G-object in C is defined to be

ChG := Fun(BG,C)

Note that the construction of the category ChG above depends only in the homotopy type
of G and in fact we may assume G to be any E1-space (an associative up to a coherent choice
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of homotopies monoid in the category of spaces). That is, we see, that the definition above
is not appropriate unless we are interested only on the homotopy type of G and do not care
about other structure (such as being smooth) G can have.

In order to avoid this problem, for a Lie group G we define instead the G-equivariant
homotopy category TpG as the localization of the (strict) category of G-topological spaces by
the collection of weak G-equivariant homotopy equivalences, which are defined to be the maps
f : X → Y such that the induced map fH between H-fixed subspaces

fH : XH → Y H

is an (ordinary) weak homotopy equivalence for any closed subgroup H of G. There is always
forgetful functor TpG → TphG, but for nontrivial G it is very far from being an equivalence.

One important classes of G-spaces is the class of spaces of the form ΣnG/H, where H is a
closed subgroup of G. The reason for this is that they play the role of cells in the equivariant
world. This remark allows us to move towards the stable setting: namely, recall that classically
one obtains the category of spectra by inverting the suspension functor on the category of
spaces. Since the suspension functor is given by the smash product with the sphere, in the
equivariant setting one could define the category of G-spectra as the universal category in
which the smash product with the orbit spheres Σ∞+n

+ G/H are equivalences. We will call the
resulting category SpnG, where n stand for “naive”.

The reason for the name “naive” is that in fact the category SpnG does not behave well
enough. One of the main reasons is that we do not have a reasonable duality theory in this
setting: for example, one would like at least all the orbit spheres to be dualizable. But in our
setting this is clearly false: if Σ∞+G/H ∈ SpnG would be dualizable, then its dual would have
to be MapSpnG(Σ∞+G/H,S). But as G acts trivially on the right, by the standard adjunction
we deduce

MapSpnG(Σ∞+G/H,S) ' MapSpnG((Σ∞+G/H)/G, S) ' S

which is nonsense. So we do not have a well-behaved duality even for zero dimensional cells.
In order to fix the problem, notice that for any orthogonal representation V of G we may

consider the one point compactification SV of V which inherits a G-action and will be called
a V -representation sphere. Now to obtain the category of genuine G-spectra SpG one needs
not only to invert all the G-spaces of the form Σn

+G/H but also all the representation spheres
SV , where V ranges over all the orthogonal representations of G, .

The category SpG has many good properties. In particular, there is a forgetful functor
h : SpG → SphG which allows to produce the following

Definition 2.1. For a genuine G-spectrum X ∈ SpG define a homotopy fixed points spectrum
XhG ∈ Sp to be the limit of the diagram BG→ Sp which corresponds to h(X).

In fact, we can do even better:

Definition 2.2. For a genuine G-spectrum X ∈ SpG define an honest or a categorical fixed
point spectrum functor X 7→ XG as the right adjoint to the obvious inclusion Sp→ SpG.
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In order to move further, notice that for a subgroup H ↪→ G we have a restriction functor

ResGH : SpG → SpH .

It admits both left and right adjoints, the induction G ∧H − and coinduction MapH(G,−).
Moreover, for a finite group G and a genuine G-spectrum X ∈ SpG one has a canonical
equivalence

G ∧H X
∼−→MapH(G,X)

which can be considered as an equivariant version of the statement that in spectra finite
coproducts are canonically equivalent to finite products.

Analogously, for a forgetful functor CRingG → CRingH one has the left adjoint norm
functor NmG

H with plenty of plausible properties. We will need it to construct Ω, to which we
turn now.

The spectrum Ω

We are now ready to define the spectrum Ω.
First take the complex cobordism spectrum MU ∈ Sp. The cyclic group C2 acts on it by

the “conjugation of complex structure” and one can refine this action to the structure of a
genuine C2-spectrum MUR ∈ SpC2 . We then take the norm NmC2n

C2
(MUR) and will call this

spectrum MU(2n) ∈ SpC2n . The C8-equivariant spectrum Ω̃ is defined to be the localization
MU(8)[D

−1] for an appropriate choice of D. Finally we define Ω to be the categorical fixed
points spectrum

Ω := Ω̃C8

The underlying spectrum of Ω̃ is just a localization of MU ∧MU ∧MU ∧MU , but the
structure of the C8-fixed points spectrum is not obvious. The main tool here is the concept
of the

The slice filtration. Recall that classically the Postnikov tower of a space X is the sequence
of spaces τ≤nX and maps X → τ≤nX such that

X
∼−→ lim
←−

τ≤nX

and

πi(τ≤nX) =

{
0, i > n

πi(X), i ≤ n

and the maps X → τ≤nX induce an equivalence on πi for i ≤ n.
By the general theory of higher categories, one has an analogue of the Postnikov tower

for any object in the category SpG. However, it turns out that it is not such a useful tool
for the analysis of the spectrum Ω̃ (for example, the associated graded factors are not the
Eilenberg-Mac Lane spectra but something much harder), so we have to invent something
new.
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In the category of non-equivariant spectra Sp one can define the n-th Postnikov trunca-
tion functor τ≤n as the Bousfield localization with respect to the subcategory generated under
colimits and extensions by the sphere spectra Sm,m > n. In a similar manner, the Postnikov
tower in the category SpG corresponds to the Bousfield localisation with respect to subcat-
egories generated by Σ∞+m

+ (G/H). But as we have discussed before we also have another
important kind of spheres, namely, the representation spheres. This motivates the following

Definition 2.3. Define the the n-th slice truncation functor τ≤n as the Bousfield localization
functor with respect to the subcategory generated by genuine G-spectra of the form

Σ∞(G/H+ ∧ SkρH−ε),

where ρH is the regular representation of H, k · |H| − ε ≥ n and ε = 0, 1.

The advantage of the slice filtration is that one can very explicitly compute the associated
graded factors of Ω̃:

Theorem 2.4 (Slice theorem). For any n ≥ 1 the associated graded spectrum of the slice
filtration on MU(2n) is equivalent to MU(2n) ∧HZ.

This gives just enough tools to make computations needed to prove Gap theorem doable.

The Periodicity and Detection theorems are proved for homotopy fixed points of Ω̃. Both
theorems heavily relies on the accurate choose of ∆. The proof of the Periodicity theorem is
mostly computations with the slice spectral sequence (which becomes accessible after inverting
∆). The proof of Detection theorem uses a bit of chromatic theory.

Periodicity theorem is very flexible and by choosing different ∆ one can get smaller period.
The period 256 coming from the proof of Detection theorem.

Finally to tie results about homotopy and honest fixed points together one uses the fol-
lowing comparison theorem

Theorem 2.5 (Homotopy fixed points theorem). The canonical map Ω̃C2n → Ω̃hC2n is an
equivalence.
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