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1 Motivation.

Notation 1.1. We will denote by S the∞-category of spaces and by S∗ the∞-category of pointed
spaces. We will denote by Sp the ∞-category of spectra which is de�ned as the limit

...
Ω // S∗

Ω // S∗
Ω // S∗

in the ∞-category Cat∞ of ∞-categories. Recall that Sp is presentable, stable and symmetric
monoidal. For two spectra E and X we will denote by Map(X,E) ∈ Sp the mapping spectrum
from X to E, by E∗X := π∗(X ⊗ E) the E-homology of X and by E∗X := π−∗Map(X,E) the
E-cohomology of X. All the (co)limits are assumed to be homotopy (co)limits. We will frequently
omit the symbol ∞ further.
In this lecture we will be interested in the homotopy type of various spectra and therefore will
be mostly working in the homotopy category of spectra h Sp which we will consider as a trian-
gluated category. By a homotopy commutative ring spectrum we will further mean an object
R ∈ CAlg(h Sp) (not an E∞-spectrum!). We also set Mod(R) := Modh Sp(R).

As a motivation, suppose we have an ordinary (discrete) ring A and we wish to understand
the category Mod(A) of its modules, or, in more geometric terms, the category QCoh(SpecA) of
quasi-coherent sheaves over the a�ne scheme SpecA. One of the strategies to attack the problem
is to cover the ring

SpecB
f // SpecA

and try to use descent methods. Namely, the diagram of a�ne schemes

... ////// SpecB ×SpecA SpecB //// SpecB

gives us a diagram of categories

... QCoh(SpecB ×SpecA SpecB)oooooo QCoh(SpecB)oooo

which in algebraic terms can be written as

... Mod(B ⊗A B)oo oooo Mod(B).oooo

If the morphism f was good enough (faithfully �at), the category QCoh(SpecA) ' Mod(A) can
be recovered as the limit (totalization) of the diagram above. Geometrically, this means that a
quasi-coherent sheaf on SpecA is precisely determined by its pullback to SpecB together with the
descent data. Notice that in this 1-categorical situation it is su�cient to consider only the �rst
three categories in the diagram (since the category of discrete categories is a 2-category).

Let now Y ∈ h Sp be an arbitrary spectrum we would like to understand. Notice that since
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the sphere spectrum S ∈ h Sp is the monoidal unit, the category of modules over it is the homo-
topy category of the spectra itself, that is, there is an equivalence Mod(S) ' h Sp of triangulated
categories. Consequently, we can canonically treat Y as an S-module. One of the things we may
do is to try to emulate the situation above: namely, �nd an appropriate homotopy commutative
ring spectrum R so that the unique unit morphism

S
f // R

of homotopy commutative ring spectra would serve us as a covering of the sphere spectrum. We
would be then able to understand the spectrum Y by working with its pullback Y ⊗R to the ring
spectrum R together with the descent data. To work with the problem more systematically, let
us introduce the following

De�nition 1.2. For a homotopy commutative ring spectrum R we de�ne a cosimplicial spectrum
Cobar•R(Y ) ∈ Funct(∆,Sp) simply as

Cobar•R(Y ) :=

(
Y ⊗R //// Y ⊗R⊗R ////// ...

)
.

Now the question is: when the natural map Y
ϕ // Tot(Cobar•R(Y )) is an equivalence?

2 Bous�eld Localization

To attack the question above, recall �rst the following

De�nition 2.1.
1) A spectrum A ∈ h Sp is called R-acyclic, if A⊗R ' 0. We will denote the full subcategory of
h Sp spanned by R-acyclic spectra by R− Acycl.
2) A spectrum X ∈ h Sp is called R-local, if Map(A,X) ' 0 for any R-acyclic spectrum A ∈
R− Acycl. We will denote the full subcategory of h Sp spanned by R-local spectra by R− Loc.

Examples 2.2.
1) Since A⊗0 ' 0 for any spectrum A ∈ h Sp we see that we have 0−Acycl ' h Sp and 0−Loc ' 0.

2) Since A⊗ S ' A for any spectrum A ∈ h Sp we see that S− Acycl ' 0 and S− Loc ' h Sp.

3) Notice that for any spectrum A ∈ h Sp we have A ⊗ HQ = 0 i� π∗(A) ⊗ Q ' 0, where
HQ is the rational Eilenberg-Maclane spectrum. Consequently, we see that HQ−Acycl is the cat-
egory of spectra with torsion homotopy groups and therefore HQ− Loc is the category of spectra
with rational homotopy groups.

4) Let R be a homotopy commutative ring spectrum. We then argue that any M ∈ Mod(R)
is R-local. Indeed, since for any spectrum A ∈ Sp we have an adjunction

Map(A,M) ' MapMod(R)(A⊗R,M)

we see that any morphism A // M factors as the composition

A // A⊗R // M ⊗R // M.

If the spectrum A was R-acyclic, then A⊗R ' 0 and the result follows.

Now notice that directly from the construction the category R − Loc is closed under limits.
Now since spectra of the form Y ⊗ R⊗n are R-modules spectra, due to the example above they
are all R-local. Consequently, the spectrum Tot(Cobar•R(Y )) is also R-local as the limit of R-local
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spectra. Therefore if the spectrum Y is not R-local in the beginning, it is hopeless that the

morphism Y
ϕ // Tot(Cobar•R(Y )) is an equivalence. We may, however, ask our question a bit

more carefully. Recall the following result due to Bous�eld

Theorem 2.3. ([Bou]) The natural inclusion functor

R− Loc // h Sp

admits a left adjoint functor LR which is called Bous�eld localization with respect to R.

Conventions. By abuse of notation for X ∈ h Sp whenever it is convenient we will further also de-
note by LR(X) the composition of the Bous�eld localization and the inclusion R− Loc // h Sp .

Remarks 2.4.
1) In particular, it follows that any spectrum X ∈ h Sp sits in a distinguished triangle

GR(X) // X
ψX // LRX,

where LR(X) ∈ R−Loc ⊆ h Sp and GR(X) ∈ R−Acycl ⊆ h Sp. This gives the following convenient

criterion: if a morphism X
f // Y in h Sp induces an equivalence on R-homology (such maps

are called R-equivalences) and Y is R-local, then f exhibits Y as the Bous�eld localization of X
with respect to R. Indeed, since Y is R-local, due to the universality of LR(X) the morphism f
factors as

X
ψX // LR(X)

g // Y.

Now since GR(X) ∈ R − Acycl, we have R∗(GR(X)) = 0 so that the morphism ψX induces an
isomorphism on R-homology. Since so does f , we see that the morphism g induces an isomorphism
on R-homology. Consequently, the �ber F of the sequence

F // LR(X)
g // Y.

is R-acyclic. Now it is left to use that the functor LR transforms distinguished triangles to
distinguished triangles so that after applying LR to the distinguished triangle above we get a
distinguished triangle

LR(F ) // LR(LR(X))
LR(g) // LR(Y )

which since LR(X) and Y are R-local can be rewritten as

LR(F ) // LR(X)
g // Y.

But since F is R-acyclic, we have LR(F ) ' 0 and hence g is an equivalence.
2) The Bous�eld localization de�ned above can be actually lifted to a similar localization in the
world of ∞-categories.

Examples 2.5.
1) Let X be an arbitrary spectrum. Then since S− Loc ' h Sp we have LS(X) ' X.

2) For an arbitrary spectrum X have LHQ(X) ' X ⊗ HQ. Indeed, since HQ ⊗ HQ ' HQ,
the morphism X // X ⊗HQ induces an equivalence on HQ-homology. Now since X ⊗HQ
is a module over HQ, it is HQ-local. The result now follows from the remark 2.4.

3) The Bous�eld localization at the Moore spectrum S(p) is given by LS(p)X = X ⊗ S(p), where
S(p) is de�ned as the colimit

S(p) := colim(S
p // S

p // S
p // ...)
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Indeed, since smash product commutes with colimits, it follows that S(p) ⊗ S(p) ' S(p) and there-

fore the natural map X ' X ⊗ S // X ⊗ S(p) is an S(p)-equivalence. Now since X ⊗ S(p) is a

module spectrum over S(p), it is S(p)-local. The result now follows from the remark 2.4.

4) The Bous�eld localization at the Moore spectrum S/p is given by the p-completion LS/pX ' X̂p,

where X̂p is de�ned as the limit

X̂p := lim(... // X/p3 // X/p2 // X/p).

Indeed, the diagram of distinguished triangles

...

��

...

��

...

��
X

p3
//

p

��

X //

IdX

��

X/p3

��
X

p2
//

p

��

X //

IdX

��

X/p2

��
X

p
// X // X/p

by taking limits vertically gives a distinguished triangle

Map(S(p), X) // X
ψ // X̂p

Now since the map S(p)
p

∼
// S(p) is an equivalence, the induced map Map(S(p), X)

p

∼
// Map(S(p), X)

is an equivalence so that

Map(S(p), X)⊗ S/p ' Map(S(p), X)/p ' 0

and therefore ψ is a S/p-equivalence. Now to see that X̂p is S/p-local, let A ∈ h Sp be such that

A ⊗ S/p ' 0. From the distinguished triangle A
p // A // A/p we see that the morphism

A
p

∼
// A is an equivalence, so that A⊗ S(p) ' A. Consequently, we get

Map(A,Map(S(p), X)) ' Map(A⊗ S(p), X) ' Map(A,X)

and so that the �rst morphism in the distinguished triangle

Map(A,Map(S(p), X)) // Map(A,X) // Map(A, X̂p)

is an equivalence showing that Map(A, X̂p) ' 0. It follows that X̂p is S/p-local and it is left to
use the remark 2.4.
It is also useful to calculate the homotopy groups of the spectrum X̂p. Recall that for any abelian
group G the free resolution ⊕

R Z //⊕
F Z // G

induces the sequence⊕
R S //⊕

F S // SG //⊕
R ΣS //⊕

F ΣS
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which in fact can be served as a concrete construction of the Moore spectrum SG ∈ h Sp. Conse-
quently, for any spectrum X we get a sequence

[
⊕

F ΣS, X] // [
⊕

R ΣS, X] // [SG,X] // [
⊕

F S, X] // [
⊕

R S, X]

which we can rewrite as

HomAb(
⊕

F Z, π1(X)) // HomAb(
⊕

R Z, π1(X)) // [SG,X] //

// HomAb(
⊕

F Z, π0(X)) // HomAb(
⊕

R Z, π0(X))

giving a short exact sequence

Ext1Ab(G, π1(X)) // [SG,X] // HomAb(G, π0(X))

and similar for higher homotopy groups. It is direct to show that this sequence non-canonically
splits. Now let Z/p∞ ∈ Ab be the cokernel of the morphism Z // Z(p) so that we get a

distinguished triangle

ΩS/p∞ // S // S(p).

Applying tha functor Map(•, X) we get a triangle

Map(S(p), X) // X // Map(ΩS/p∞, X)

which gives an equivalence X̂(p) ' Map(ΩS/p∞, X) ' Map(S/p∞,ΣX). Now applying the short
exact sequence above in the special case G := Z/p∞ for each n ∈ N we get a short exact sequence

Ext1Ab(Z/p∞, πn(X)) // πn(X̂p) // HomAb(Z/p∞, πn−1(X))

which non-canonically splits. In particular, we see that for those n for which πnX is �nitely gen-

erated we have πnX̂p ' π̂n(X)p.

5) Let X be connective spectrum. We argue that then LHFp
X ' LS/pX (for non-connective

spectrum this may be false). Indeed, notice that since X connective, it admits a Postnikov
tower which is bounded below. Since all of its slices are Eilenberg-Maclane spectra, they are
all H-local, and hence X is also H-local as a limit of H-local spectra. Consequently, we get
LHX ' X so that LS/p(X) ' LS/p(LHX). We now argue that for an arbitrary spectrum E we
have LS/p(LE(X)) ' LE/p(X) and the result will follows by setting E := H. In order to see this,
consider the composition

X
ϕ // LEX

ψ // LS/p(LE(X)).

Since
X ⊗ E/p ' (X ⊗ E)/p ' (LEX ⊗ E)/p ' LEX ⊗ E/p

we see that the morphism ϕ is a E/p-equivalence. Similarly, since

LEX ⊗ E/p ' LEX ⊗ S/p⊗ E ' LS/p(LE(X))⊗ S/p⊗ E ' LS/p(LE(X))⊗ E/p

we see that the morphism ψ is a E/p-equivalence. Consequently, the composition ψ ◦ ϕ is also
a E/p-equivalence. It is left to show that LS/p(LE(X)) is E/p-local. Just as in the example 4
above, using the triangle

HomSp(S(p), LE(X)) // LE(X) // LS/p(LE(X))
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it is su�cient to prove that for any E/p-acyclic A the induced map

Map(A(p), LE(X)) ' Map(A,HomSp(S(p), LE(X))) // Map(A,LE(X))

is an equivalence. But we haveMap(A(p), LE(X)) ' Map(LE(A(p)), LE(X)) andMap(A,LE(X)) '
Map(LE(A), LE(X)) so that it is su�cient to prove that the natural map A // A(p) in-

duces an equivalence LE(A) // LE(A(p)) . Since E/p ⊗ A ' 0, we see that the morphism

A⊗ E
p

∼
// A⊗ E is an equivalence, so that A⊗E ' A(p)⊗E showing that LE(A) ' LE(A(p))

as desired. The result now follows from the remark 2.4.

6) We have LKU ' LKO. Indeed, since KU ' KO ⊗ Σ∞CP2 we get a triangle

ΣKO
η // KO // KU,

where η ∈ π1S is the generator. Hence X ⊗ KO ' 0 implies X ⊗ KU ' 0. Conversely, if

X ⊗KU ' 0, then KO∗(X)
η∗

∼
// KO∗(X) is an isomorphism. But since η is nilpotent (in fact,

η4 = 0), it follows that KO∗X = 0. Consequently, we see that KO− Acycl = KU − Acycl so that
LKU ' LKO as desied.

We therefore see that the map

Y
ϕ // Tot(Cobar•R(Y ))

naturally factors as

Y // LRY
ψ // Tot(Cobar•R(Y )) .

If the spectra R and Y were good enough, the localization LRY is not that far from the initial
spectrum Y so that the natural question is when the morphism ψ is an equivalence. In order to
answer the question, we need the following

De�nition 2.6. For an ordinary (discrete) ring S de�ne its core cS as an equalizer

cS // S //// S ⊗ S.

We now have a result due to Bous�eld

Theorem 2.7. ([Bou]) Let R be a homotopy commutative ring spectrum such that the core π0R
is either Z/n, n ≥ 2, or localization of integers away from some nonempty set of primes I, that is,
cπ0R = Z[I−1].
Then if R and Y are both connective, the natural map

LRY
ψ // Tot(Cobar•R(Y ))

is an equivalence.

We instantly get the following

Corollary 2.8. Suppose we are in the situation as in the theorem above and let X be any
spectrum. Since the functor HomSp(X, •) commutes with limits, we get an equivalence

Hom•h Sp(X,LRY )
ψ∗

∼
// Hom•h Sp(X,Tot(Cobar

•
R(Y ))) ' Tot(Hom•h Sp(X,Cobar

•
R(Y ))) .

The Bous�eld-Kan spectral sequence of a cosimplicial space then gives us a spectral sequence

Es,t2 = πsπt Homh Sp(X,Cobar
•
R(Y )) ' πs[ΣtX,Cobar•R(Y )]⇒ [Σt−sX,LRY ].

with the di�erential |dr| = (r, r − 1).
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3 From homotopy theory to homological algebra.

Now the spectral sequence above is quite useful itself, but we would like to have a bit more
pleasant representation of the second page- currenly, our second page has some morphisms in the
homotopy category of spectra which are in many cases quite hard to calculate. Nevertheless, while
computations in homotopy theory are hard, computations in homological algebra are much easier.
Therefore it is a good idea to try to somehow �nd a representation of the second page in terms of
the homological algebra.

The �rst idea is as following: recall that if R is a homotopy commutative ring spectrum, then
R∗ := π∗R has a natural structure of a commutative graded ring. Moreover, for everyM ∈ Mod(R)
the graded abelian groupM∗ has a natural structure of a module over R∗: concretely, given r ∈ Rp
and m ∈Mq, the element rm ∈Mp+q can be de�ned as the smash product

Sp+q ' Sp ⊗ Sq r⊗m // R⊗M // M,

where the last morphism uses the R-module structure onM . In some cases this simple observation
indeed gives a way to transfer to homological algebra:

Proposition 3.1. Let R be a homotopy commutative ring spectrum and M,N ∈ Mod(R) be
R-modules. Then if M∗ is a projective R∗-module, then the natural morphism

Hom•Mod(R)(M,N) // Hom•Mod(R∗)(M∗, N∗)

is an isomorphism.

Proof. In the case when M∗ is a free R∗-module (and hence M is a free R-module), the statement
is true by the formal nonsense. Suppose now that M∗ is projective so that it is a retract of a free
R∗-module. Another words, we have a diagram

M∗
i // F∗

r // M∗

such that r ◦ i ' IdM∗ , where F∗ is free. Consequently, the graded module M∗ ∈ Mod(R∗) can be
obtained as the colimit

F∗
i◦r // F∗

i◦r // F∗
i◦r // ...

in Mod(R∗). But then M ∈ Mod(R) itself can be obtained as the colimit of the corresponding
diagram

F // F // F // ...

in Mod(R) so that M ∈ Mod(R) is a retract of a free R-module F ∈ Mod(R). Now the desired
statement follows from the commutativity of the diagram

Hom•Mod(R)(M,N)

��

// Hom•M∗
(M∗, N∗)

��
Hom•Mod(R)(F,N)

��

∼ // Hom•R∗
(F∗, N∗)

��
Hom•Mod(R)(M,N) // Hom•R∗

(M∗, N∗).

Recall now that our initial motivation was to understand the second page of the spectral
sequence

Es,t2 = πs[ΣtX,Cobar•R(Y )] ' πs Homt
Mod(R)(X ⊗R,Cobar

•
R(Y ))
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Though in the case when (X ⊗ R)∗ = R∗X is projective R∗-module the proposition above works
�ne, in our special case when M = X ⊗R is the free R-module on the spectrum X, there is even
a richer structure on R∗X. In order to formulate it, recall �rst the following

De�nition 3.2. A (graded) Hopf Algebroid is an internal cogropoud in the category of graded
rings.

Remark 3.3. In concrete terms, a Hopf algebroid (A,Γ) is a pair of graded algebras A and Γ
together with maps
Left unit/source

νL : A // Γ

Right unit/target

νR : A // Γ

Augmentation/identity

ε : Γ // A

Coproduct/composition

∆ : Γ // Γ⊗A Γ

Conjugation/inverse

c : Γ // Γ

which satisfy various equations so that the functors Hom(A, •) and Hom(Γ, •) together with
(νL, νR, ε,∆, c) determine a functor to (small) groupoids, where Hom(A, •) represents the set of
objects and Hom(Γ, •) represents the set of morphisms.

Example 3.4. If νR = νL then Γ is simply a graded commutative Hopf algebra over A.

To understand how the de�nition above is related to our problem, we �rst need the following

Proposition 3.5. Let Y,Q be two spectra such that R∗Q is �at as a module over R∗. Then the
natural map

R∗Y ⊗R∗ R∗Q // R∗(Y ⊗Q)

is an isomorphism.

Proof. In the case when Y ' S is the sphere spectrum, the statement is obviously true. Now it
is left to notice that since R∗Q is �at over R∗ both sides preserve exact sequences and �ltered
colimits by Y .

Corollary 3.6. Suppose that R is a homotopy commutative ring spectrum such that R∗R is
�at over R∗ (this is true in the cases R = HFp,MU,BP,KO,KU and false in the cases R =
HZ,MSU). Then the pair (R∗, R∗R) admits the structure of a Hopf algebroid. Left and right
units maps are induced by

S ⊗R ε⊗1 // R⊗R
and

R⊗ S 1⊗ε // R⊗R,
augmentation map is induced by the multiplication

R⊗R
µ // R,

coproduct map is induced by the map

R⊗R ' R⊗ S⊗R // R⊗R⊗R

and the conjugation map is induced by the twist

R⊗R T // R⊗R.
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Similar to modules over rings, for Hopf algebroids we can introduce the following

De�nition 3.7. Let (A,Γ) be a Hopf algebroud. A (left) (A,Γ)-comodule is a left A-module M
together with the coation map

M // Γ⊗AM
which is counital and coassociative. Given two (A,Γ)-comodules M and N we will frequently
denote by HomΓ(M,N) the abelian group of (A,Γ)-comodule maps between M and N .

Remarks 3.8.
1) Notice that the fogetful functor (A,Γ)-comodules to A-modules admits a right adjoint, which
sends an A-module M ∈ Mod(A) to the comodule Γ⊗AM .

2) It is quite pleasant to reformulate the homological algebra of Hopf algebroids in geometric
terms. Namely, just as any ring gives an a�ne scheme, any Hopf algebroid gives a prestack.
Moreover, the quasi-coherent sheaves over that prestack are precisely comodules over the initial
Hopf algebroid. In particular, the adjunction above can be then understood simply as the pull-
back/pushforward adjunction. From here one can then stacki�cate this prestack in an appropriate
topology (say, �at topology) to try to describe the category of its quasi-coherent sheaves using
geometric methods. A very interesting special case of the phenomena above is the case when
we consider the Hopf algebroid (MU∗,MU∗MU) built from the complex cobordisms spectrum:
the resulting stack happens to be closely related to the stack of formal groups which has a deep
connection to number theory.

Example 3.9. Given a commutative ring spectrum R with R∗R being �at over R∗ for any other
spectrum X ∈ Sp the R-homology R∗X of X admit the structure of a (R∗, R∗R)-comodule with
the coaction map induced by

R⊗ S⊗X // R⊗R⊗X.

In particular, because of the adjunction discussed in 3.8 we see that for X,Y ∈ h Sp there is an
equivalence

HomR∗R(R∗X,R∗(R⊗X)) ' HomR∗R(R∗X,R∗R⊗R∗ R∗X) ∼
// Hom•Mod(R∗)(R∗X,R∗Y ).

The language of Hopf Algebroids provides us with the appropriate language to shift from the
stable homotopy theory problem we had to homological algebra:

Proposition 3.10. Let R be a homotopy commutative ring spectrum such that R∗R is �at over
R∗ and X,Y be arbitrary spectra. Then the natural map

[X,Y ⊗R]• // Hom•R∗R(R∗X,R∗(Y ⊗R))

is an isomorphism if R∗X is projective over R∗R.

Proof. Observe that there is a commutative diagram

[X,Y ⊗R]•
(1) //

(2) ))

Hom•R∗R(R∗X,R∗(Y ⊗R))

(3)tt
Hom•Mod(R∗)(R∗X,R∗Y )

Now the morphism 2 is an isomorphism by the adjunction

[X,Y ⊗R]• ' Hom•Mod(R)(X ⊗R, Y ⊗R)

and Proposition 3.1 in the special case M := X ⊗ R, N := Y ⊗ R. Since the morphism (3) is an
isomorphism by the example 3.9, the morphism (1) is also an isomorphism as desired.
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The proposition above allows us to prove the main

Theorem 3.11. Let R be a commutative ring spectrum and X,Y be two arbitrary spectra.
Suppose also that
1) R and Y are connective.
2) The core π0R is either Z/n, n ≥ 2, or localization of integers away from the set of primes I,
that is, cπ0R = Z[I−1].
3) R∗R is �at over R∗ and R∗X is projective over R∗R.
Then there is there is a strongly convergent spectral sequence

Es,t2 = Exts,tR∗R
(R∗X,R∗Y )⇒ [Σt−sX,LRY ]

with |dr| = (r, r − 1).

Proof. We have

Es,t2 = πs[ΣtX,Cobar•R(Y )] = πs([ΣtX,Y ⊗R] // // [ΣtX,Y ⊗R⊗R] ////// ...) '

' πs(HomR∗R(R∗Σ
tX,R∗(Y ⊗R)) //// HomR∗R(R∗Σ

tX,R∗(Y ⊗R⊗R)) ////// ...) '

' πs(HomR∗R(ΣtR∗X,R∗Y ⊗R∗ R∗R) //// HomR∗R(ΣtR∗X,R∗Y ⊗R∗ R∗R⊗R∗ R∗R) ////// ...) '

' ExtsR∗R(ΣtR∗X,R∗Y ) = Exts,tR∗R
(R∗X,R∗Y )

as desired.

Remarks 3.12.
1) In fact, it is not hard to show that the spectral sequence above is multiplicative.

2) Similarly, there is a cohomology version of the spectral sequence with

Es,t2 = ExtR
∗R

s,t (R∗Y,R∗X)⇒ [Σt−sX,LRY ]

with |dr| = (r, r − 1). However, this tends to be less managable since in most of the cases there
are no simple �nite hypotheses.

3) From the geometric perspective, let M be the prestack which corresponds to the Hopf al-
gebroid (R∗, R∗R) and FX ,FY be the quasi-coherent sheaves which correspond to the (R∗, R∗R)-
comodules R∗X and R∗Y . Then the spectral sequence above can be rewritten as

Ext•,•QCoh(M)(FX ,FY )⇒ [Σ•X,LRY ].

In particular, in the special case when X := S is the sphere spectrum we have FX ' OM so that
we get a spectral sequence

H•(FY ;M)⇒ π•(LRY )

Example 3.13. Consider the special case R := HFp and X,Y := S. Then by the example 2.5 we

have LHFp
(S) ' Ŝp and therefore we get two spectral sequences

Es,t2 = Exts,tA∗
p
(Fp,Fp)⇒ πt−s(Ŝp)

and
Es,t2 = Ext

Ap

s,t (Fp,Fp)⇒ πt−s(Ŝp).
Notice that since π0(S) ' Z and πi(S) are �nite groups for all i 6= 0 by the explicit description of
the homotopy groups of p-completion we get

πt−s(Ŝp) =

{
the p primary part of πt−s(S), t− s 6= 0

Ẑp, t− s = 0.
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4 Steenrod algebra.

Now in the next lecture we will need some �rst values of ExtA2
s (F2,Σ

tF2) which is the second
page of the cohomological spectral sequence with R = HF2, X = Y = S. Recall that the mod 2
Steenrod algebra A2 is de�ned simply as HF∗2(HF2) and can be described explicitly as follows:
1) As an F2-module it is generated by the elements of the form

Sqi1,i2,...,in := Sqi1 Sqi2 ...Sqin ,

where ik ≥ 2ik+1 with the degree |Sqin | = in. Such elements are called admissible.
2) The ideal of relations in A2 is generated by the Adem relation

Sqa Sqb =

[a/2]∑
i=0

(
b− i− 1

a− 2i

)
Sqa+b−i Sqi

where a < 2b. Here we use the convention that
(
p
q

)
= 0 if p < q of if q < 0. If follows that as an

algebra A2 is generated by the elements of the form Sq2i

with i ≥ 0.

Example 4.1.
0) In degree 0 we have an only element Sq0 = 1.
1) In degree 1 we have an only element Sq1.
2) In degree 2 we have elements Sq2 and Sq1,1 = 0 due to the Adem relation.
3) In degree 3 we have elements Sq3, Sq2,1 and Sq1,2 = Sq3.
4) In degree 4 we have elements Sq4, Sq3,1, Sq1,3 = 0 and Sq2,2 = Sq3,1.
5) In degree 5 we have elements Sq5, Sq4,1,Sq1,4 = Sq5, Sq2,3 = Sq5 +Sq4,1 and Sq3,2 = 0.

Now to calculate the �rst values of the ext groups Exts,tA2
(Fp,Fp) let us write a free resolution

... // P3
d3 // P2

d2 // P1
d1 // P0

ε // F2

of F2 as an A2 module.
0) The easiest choice is to set P0 := A2〈g0,0〉 a free module on a generator called g0,0 which has
degree 0. The map ε is then simply the augmentation map.
1) The augmentation ideal of A2 as a module is generated by admissible elements Sqi1,i2,...,in with

i1 + ...+ in ≥ 1. As A2 is generated as an algebra by the elements of the form Sq2i

it follows that

we can set P1 :=
⊕

i≥0A〈g1,i〉 where g1,i sits in degree 2i with d1(g1,i) := Sq2i

g0,0.

2) The kernel of the map
⊕

i≥0A〈g1,i〉
d1 // A2〈g0,0〉 encodes relations in the Steenrod algebra.

In the range t ≤ 11 we can generate P2 by the elements g2,1,g2,2,g2,3,g2,4 and g2,5 with

d2(g2,1) = Sq3 g1,0 + Sq2 g1,1

d2(g2,2) = Sq4 g1,0 + Sq2 Sq1 g1,1 + Sq1 g1,2

d2(g2,3) = Sq7 g1,0 + Sq6 g1,1 + Sq4 g1,4

d2(g2,4) = Sq8 g1,0 + Sq7 g1,1 + Sq4 Sq1 g1,2 + Sq1 g1,3

d2(g2,5) = Sq7 Sq2 g1,0 + Sq8 g1,1 + Sq4 Sq2 g1,2 + Sq2 g1,3.

Remark 4.2. For every s we therefore set Ps :=
⊕

j A2〈gs,j〉. We then have HomA2
(
⊕

j A2〈gs,j〉,F2) '∏
j A2〈γs,j〉 with γs,j(gs,i) = δij . In fact, the product is �nite in each degree. Then since

γs,i ◦ ∂s+1 = 0 we see that ExtsA2
(F2,F2) ' HomA2(Ps,F2) ' F2〈γs,i〉.

Remark 4.3. One of the many important results in this are is the so-called Adams vanishing: we
have Exts,tA2

(F2,F2) = 0 for t − s < 0 or t − s < s and Exts,sA (F2,F2) = F2〈γs,0〉, where γs,0 is the
dual to gs,0.
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