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Abstract:
This talk deals with free discontinuity problems related to contour
enhancement in image segmentation, focussing on

the mathematical analysis of Blake & Zisserman functional,

precisely:

1 existence of strong solution
under Dirichlet boundary condition is shown,

2 several extremal conditions on optimal segmentation are stated,
3 well-posedness of the problem is discussed,
4 non trivial local minimizers are analyzed.

The segmentation we look for provides
a cartoon of the given image satisfying some requirements:
the decomposition of the image is performed by choosing a pattern of
lines of steepest discontinuity for light intensity,
and this pattern will be called segmentation of the image.
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A classic variational model for image segmentation has been
proposed by Mumford & Shah , who introduced the functional∫

Ω\K

(
|Du(x)|2 + |u(x)− g(x)|2

)
dx + γ Hn−1(K ∩ Ω) (1)

where

Ω ⊂ Rn (n ≥ 1) is an open set,

K ⊂ Rn is a closed set,

u is a scalar function,

Du denotes the distributional gradient of u,

g ∈ L2(Ω) is the datum (grey intensity levels of the given image),

γ > 0 is a parameter related to the selected contrast threshold,

Hn−1 denotes n − 1 dimensional Hausdorff measure.

According to this model
the segmentation of the given image is achieved by
minimizing (1) among admissible pairs ( K , u ),

say closed K ⊂ Rn and u ∈ C1(Ω \ K ).
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This model led in a natural way to the study of
a new type of functional in Calculus of Variations:

free discontinuity problem.

Existence of minimizers of (1) was proven by

De Giorgi, Carriero & Leaci (1989)

in the framework of bounded variation functions without Cantor part
(space SBV ) introduced in

De Giorgi & Ambrosio.

Further regularity properties of optimal segmentation
in Mumford & Shah model were shown by

[Dal Maso, Morel & Solimini, (1992), n = 2, ]

[Ambrosio, Fusco & Pallara (2000)],

[Lops, Maddalena, Solimini, (2001), n = 2, ],

[Bonnet & David (2003), n = 2 ].
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To overcome the problems and aiming to better description of
stereoscopic images they proposed a different functional including
second derivatives.

Blake & Zisserman variational principle faces segmentation as a
minimum problem:

input is given by intensity levels of a monochromatic image,

output is given by

meaningful boundaries whose length is penalized
(correspond to discontinuity set of the given intensity and of its
first derivatives)

a piece-wise smooth intensity function
(smoothed on each region in which the domain is splitted by
such boundaries).
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another problem with free discontinuity:
Blake & Zisserman functional

F (K0,K1, v) =

=

∫
Ω\(K0∪K1)

(∣∣D2v(x)
∣∣2

+ |v(x)− g(x)|2
)

dx +

+ α Hn−1(K0) + β Hn−1(K1 \ K0)

(2)

to be minimized among admissible triplets ( K0, K1, v ) :

K0 , K1 closed subsets of Rn,

u ∈ C2(Ω \ (K0 ∪ K1)) and continuous on Ω \ K0.

with data :

Ω ⊂ Rn open set, n ≥ 1,

g ∈ L2(Ω) grey level intensity of the given image,

α, β positive parameters
(chosen accordingly to scale and contrast threshold),

Hn−1 denotes the (n − 1) dimensional Hausdorff measure.
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Existence of minimizers for (2) has been proven by

Coscia n = 1
(strong and weak form. coincide iff n = 1 !), and by

[Carriero, Leaci & T.] n = 2,

via direct method in calculus of variations:
solution of a weak formulation of minimum problem
(performed for any dimension n ≥ 2)
and subsequently proving additional regularity
of weak minimizers under Neumann bdry condition (n = 2)

[C-L-T, Ann.S.N.S., Pisa (1997)]

Since we looked for a weak formulation
of a free discontinuity problem,
we wrote a suitable relaxed form relaxed version of BZ functional;
this form depends only on u (not on triplets!):
optimal segmentation (K0 ∪ K1) has to be recovered through
jumps (u discontinuity set) and creases (Du discontinuity set)

[C-L-T, in PNLDE, 25 (1996)]
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We proved also several density estimates
for minimizers energy and optimal segmentation:

[C-L-T, Nonconvex Optim. Appl.55 (2001)],

[C-L-T, C.R.Acad.Sci.(2002)],

[C-L-T J. Physiol.(2003)];

by exploiting this estimates, via Gamma-convergence techniques,

[Ambrosio, Faina & March, SIAM J.Math.An. (2002)]
obtained an approximation of Blake & Zisserman functional
with elliptic functionals,

and numerical implementation was performed by

[R.March ]

[M.Carriero, A.Farina, I.Sgura ].
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No uniqueness due to nonconvexity,

nevertheless generic uniqueness olds true in 1-D.

About uniqueness and well-posedness:

[T.Boccellari, F.T., Ist.Lombardo Rend.Sci 2008, 142
237-266] (n ≥ 1),

[T.Boccellari, F.T.] QDD Dip.Mat.Polit.MI 2010] (n = 1),
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Stime a priori e continuità del valore di minimo

Theorem - Minimizing triplets (K0,K1,u) of
Blake & Zisserman F g

α,β functional fulfil (in any dimension n):

‖u‖L2 ≤ 2 ‖g‖L2 ,

0 ≤ mg(α, β) ≤ ‖g‖2
L2 ,∣∣mg(α, β)−mh(a,b)
∣∣ ≤ 5(‖g‖L2 + ‖h‖L2) ‖g − h‖L2 +

min
{
‖g‖2

L2 , ‖h‖2
L2

}
min{α,a}

|α− a|+
min

{
‖g‖2

L2 , ‖h‖2
L2

}
min{β,b}

|β − b| ,

 Hn−1(K0) ≤
2
α

(
‖g‖2 + η2

)
, Hn−1(K1 \ K0) ≤

2
β

(
‖g‖2 + η2

)
per ogni terna (u,K0,K1) minimizzante F h

α,β con ‖h − g‖L2 < η .
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notice that 1-dimensional case fits very well to a short presentation,
since (only in 1-d) strong and weak functional coincide.

1-d Blake & Zisserman 1-d functional

Given g ∈ L2(0,1), α, β ∈ R we set F g
α,β :

F g
α,β(u) =

∫ 1

0
|ü(x)|2 dx+

∫ 1

0
|u(x)− g(x)|2 dx+α ] (Su)+β ] (Su̇\Su)

(3)
to be minimized among u ∈ L2(0,1) t.c. ] (Su ∪ Su̇)<+∞ t.c.
u′,u′′ ∈ L2(I) for every interval I ⊆ (0,1)\(Su ∪ Su̇)

Notation :
u̇ denotes the absolutely continuous part of u′,
ü the absolutely continuous part of (u̇)′ = u′′,
Su ⊆ (0,1) the set of jump points of u,
Su̇ ⊆ (0,1) the set of jump points of u̇,
] the counting measure.
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n = 1

Summary of analytic results:

Euler equations for local minimizers,

compliance identity for local minimizers,

a priori estimates on minimum value and minimizers,

continuous dependence of minimum value mg(α, β) with respect
to g, α, β.

Theorem

F g
α,β achieves its minimum provided

the following conditions are fulfilled:

0 < β ≤ α ≤ 2β < +∞ (4)

g ∈ L2. (5)

Uniqueness fails
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There are many kinds of uniqueness failure:

precisely, even considering the simple 1-d case:

if g has a jump,
then there ∃ α > 0 s.t . F g

α,α has exactly two minimizers;

there are α > 0 and g ∈ L2(0,1) s.t. uniqueness fail for every β in
a non empty interval (α− ε, α];

for every α and β fulfilling 0 < β ≤ α < 2β there is g ∈ L2(0,1)
s.t.

] (argmin F g
α,β) ≥ 2.

Eventually we can show an example of a set
N ⊆ L2(0,1) with non empty interior part in L2(0,1)
s.t. for every g ∈ N there are α and β satisfying (4) and

] (argmin F g
α,β) ≥ 2.
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Generic uniqueness

Euler eqs are an over-determined system
(singular set is an unknown)

Nevertheless we can prove

Theorem ([T.Boccellari & F.T ])

For any α, β s.t.

0 < β ≤ α ≤ 2β , α/β 6∈ Q ,

there is a Gδ (countable intersection of dense open sets)
set Eα,β ⊂ L2(0,1) such that

] (argminF g
α,β) = 1 .
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Idea of the proof:

we show analytic dependence of
(absolutely continuous part of) energy
with respect to variations of open cells of
CW-complex structure of partitions of (0,1)
induced by singular set of piecewise affine data g

the set of all piece-wise affine data
(related to suitably refined partitions of (0,1))
and exhibiting non uniqueness of minimizer with
different quality” (ordering of jump and creases)
and same prescribed cardinality of singular set has null m
dimensional Lebesgue measure
(here m is the dimension of the space of continuous piece-wise
functions in (0,1) affine with at most m creases)

technical density argument
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The whole picture is coherent with the presence of instable patterns,
each of them corresponding to a bifurcation of optimal segmentation
under variation of parameters α e β , related to:

contrast threshold (
√
α ),

“luminance sensitivity”,

resistance to noise,

crease detection (
√
β ),

double edge detection.
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Dirichlet problem for BZ functional, n = 2

Image InPainting refers to the filling in of missing or partially occluded
regions of an image.

Minimizing Blake & Zisserman functional is useful
to achieve contour continuation in the whole image region Ω̃

when occlusion or local damage occur in Ω̃ \ Ω
e.g. blotches in a fresco or a movie film.

Dirichlet problem:
minimize the energy F (K0,K1, v) in Ω̃ ⊂ R2:

F (K0,K1, v) =

=

∫
eΩ\(K0∪K1)

(∣∣D2v(x)
∣∣2

+ µ |v(x)− g(x)|2
)

dx +

+ α H1(K0) + β H1(K1 \ K0)

(6)

among triplets which assume prescribed data w on Ω̃ \ Ω:
say v = w a.e. Ω̃ \ Ω
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Weak formulation of Dirichlet pb for BZ functional

Minimize F : X → [0,+∞] defined by

F(v) =

∫
eΩ

(|∇2v |2 + µ|v − g|2) dx + αH1(Sv ) + βH1(S∇v \ Sv ) (7)

where Ω ⊂⊂ Ω̃ ⊂ R2 are open sets, x = (x , y) ∈
Omegaand

X = GSBV 2(Ω̃) ∩ L2(Ω̃) ∩
{

v = w a.e.Ω̃ \ Ω
}

.

Theorem

If g ∈ L2(Ω̃), w ∈ X and β ≤ α ≤ 2β
then F has at least one minimizer in X .

The main part F is denoted by E :

E(v) =

∫
eΩ

|∇2v |2 dx + αH1(Sv ) + βH1(S∇v \ Sv ) (8)
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the example with cut and tilted disks tells that

1 sublevels of functional E are not compact on{
v ∈ SBV (Ω) : ∇v ∈ SBV (Ω)2

}
2 by letting untilted some of the big disks

we find functions with unbounded gradient
with arbitrarily small energy E
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We recall the definitions of some function spaces related to first
derivatives which are special measures in the sense of De Giorgi

SBV (Ω) denotes the class of functions v ∈ BV (Ω) s.t.∫
Ω

|Dv | =
∫

Ω

|∇v |dy +

∫
Sv

|v+ − v−|dH1.

SBVloc(Ω) = {v ∈ SBV (Ω′) : ∀Ω′ ⊂⊂ Ω} ,

GSBV (Ω) =
{

v : Ω → R Borel ; −k ∨ v ∧ k ∈ SBVloc(Ω) ∀k
}

GSBV 2(Ω) =
{

v ∈ GSBV (Ω), ∇v ∈
(
GSBV (Ω)

)2}
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We emphasize that

GSBV (Ω), GSBV 2(Ω) are neither vector spaces
nor subsets of distributions in Ω.

Nevertheless
smooth variations of a function in GSBV 2(Ω)
still belong to the same class.

Notice that,

if v ∈ GSBV (Ω), then Sv is countably (H1,1) rectifiable and ∇v
exists a.e. in Ω.

Dv 6= ∇v in GSBV 2(Ω)

S∇v =
⋃2

i=1 S∇i v

Franco Tomarelli



Blake & Zisserman functional
Euler equations

Remark

1 v ∈ BV ∩ L∞ , P(E) < +∞ ⇒ v χE ∈ BV

2 v ∈ BV , P(E) < +∞ 6⇒ ∗ v χE ∈ BV

3 v ∈ BV , P(E) < +∞ ⇒ v χE ∈ GBV

∗ the trace of v could be not integrable, e.g.:

n = 2 Ω = B1 v = %−1/2 ∈ W 1,1(B1)

E =

{
x = {x , y} 1

k2 + 1
< % <

1
k2 , k ∈ N

}
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Theorem [CLT, Adv.Math.Sci.Appl., 2010]
existence of strong minimizer

Assume

0 < β ≤ α ≤ 2β, µ > 0, g ∈ L2(Ω̃) ∩ L4
loc(Ω̃) , w ∈ L2(Ω̃) ,

Ω is a bounded open set with C2 boundary ∂Ω ,

w ∈ C2
(
Ω̃

)
, D2w ∈ L∞(Ω̃ ) .

Then there is at least one triplet (C0,C1,u) minimizing functional

F (K0,K1, v) =

∫
Ω\(K0∪K1)

(∣∣D2v(x)
∣∣2

+ |v(x)− g(x)|2
)

dx +

+ α H1(K0) + β H1(K1 \ K0)
with finite energy, among admissible triplets (K0,K1, v): K0 , K1 Borel subsets of R2, K0 ∪ K1 closed,

v ∈ C2 (Ωε \ (K0 ∪ K1)) , v approximately continuous in (Ωε \ K0) ,
v = w a.e. in Ωε \ Ω .
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Moreover, any minimizing triplet (K0,K1, v) fulfils:

K0 ∩ Ω̃ and K1 ∩ Ω̃ are (H1,1) rectifiable sets,

H1(K0 ∩ Ω̃) = H1(Sv ) , H1(K1 ∩ Ω̃) = H1(S∇v \ Sv ) ,

{
v ∈ GSBV 2(Ω̃), hence

v ∇v have well defined two-sided traces, H1 a.e. finite on K0 ∪ K1,

the function v is also a minimizer of the weak functional F

F(z) =

∫
Ω

(|∇2z|2 + µ|z − g|2) dx + αH1(Sz) + βH1(S∇z \ Sz)

over z ∈ L2(Ω) ∩GSBV (Ω) : ∇z∈(GSBV (Ω))2, z = w a.e. Ω̃ \ Ω.

Eventually, the third element v of any minimizing triplet (K0,K1, v)
fulfils

F(v) = F (K0,K1, v) . �
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Steps of the proof

Existence of minimizing triplets is achieved by showing partial
regularity of the weak solution with penalized Dirichlet datum. The
novelty consists in the regularization at the boundary for a free
gradient discontinuity problem;

regularity is proven at points with 2-dimensional energy density by:

1 blow-up technique
2 suitable joining along lunulae filling half-disk
3 a decay estimate for weak minimizers

In the blow-up procedure, two refinements of relevant tools are

hessian decay of a function which is bi-harmonic in
half-disk and vanishes together with normal derivative
on the diameter

a Poincaré-Wirtinger inequality for
GSBV functions vanishing in a sector
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Theorem (Biharmonic extension and L2 decay of Hessian)

Set B+
R = BR(0) ∩ {y > 0} ⊂ R2 , R > 0 .

Assume z ∈ H2(B+
R ) , ∆2z ≡ 0 B+

R , z = zy ≡ 0 on {y = 0}.)

Then there exists an (obviously unique) extension Z of z in whole BR

such that ∆2Z ≡ 0 BR .

This extension may increase a lot L2 hessian norm of D2Z
nevertheless it implies nice decay on half-ball:

‖D2Z‖2
L2(B+

ηR)
≤ η2‖D2z‖2

L2(B+
R )
.

Such extimate is not a straightforward consequence of classical
Schwarz reflection principle for harmonic functions vanishing on the
diameter, since the Almansi decomposition on the half-disk B+

R may
neither respect the vanishing value on the diameter:
e.g. %3

(
cosϑ− cos(3ϑ)

)
= %2ϕ+ ψ where ϕ = x , ψ = 3x2y − x3

are both harmonic but do not vanish on the diameter {y = 0},
nor preserves orthogonality in L2 or H2:
cancelation of big norms
may take place in one half-disk and not in the other: see Fig. (39)
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Duffin extension formula

Assume
z ∈ H2(B+

1 ),
z is bi-harmonic in B+

1
z = ∂z/∂y = 0 on B1(0) ∩ {y = 0}.

Then
z has a bi-harmonic extension Z in B1 defined by

{
Z (x , y) = z(x , y) ∀ (x , y) ∈ B+

1 ,
Z (x ,−y) = −z(x , y) + 2yzy (x , y)− y2∆z(x , y) ∀ (x ,−y) ∈ B−1 .
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Almansi-type decomposition (revisited)

Let u ∈ H2(BR \ Γ).

Then
∆x

2u = 0 BR \ Γ (9)

iff

∃ ϕ,ψ : u(x) = ψ(x) + ‖x‖2 ϕ(x), ∆x ϕ(x) = ∆x ψ(x) ≡ 0, BR \ Γ.
(10)

Moreover decomposition (10) is unique
up to possible linear terms in ψ:

say A% cosϑ = Ax and B% sinϑ = By
that can switch independently to
respectively A%−1 cosϑ and B%−1 sinϑ in ϕ.

Back to hessian decay estimate (36)
Franco Tomarelli
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We use a new Poincaré-Wirtinger type inequality in the class GSBV
which allows surgical truncations of non integrable functions of
several variables with the aim of taming blow-up at boundary points in
case of functions vanishing in a full sector.

Notice that v ∈ GSBV 2(Ω) does not even entail that either v or ∇v
belongs to L1

loc(Ω).
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DECAY

Theorem - Decay of functional F at boundary points
There are constants C1, C2 (dep. on α, g, w ) s.t.,{

∀k > 2, ∀η, σ ∈ (0,1) with η < C2

∃ε0 > 0, ϑ0 > 0 : ∀ε ∈ (0, ε0],

∀ x ∈ ∂Ω and any local minimizer u of F in Ω ∩ B%(x) , s.t.

0 < % ≤
(
εk ∧ C1

)
,

∫
B%(x)

|g|4 ≤ εk and

αH1
(

Su ∩ Ω ∩ B%(x)
)

+ βH1
(
(S∇u \ Su) ∩ Ω ∩ B%(x)

)
< ε% ,

we have

FBη%(x)(u) ≤

≤ η2−σ max
{
FB%(x)(u) , %2 ϑ0

((
Lip(γ∂Ω

′)
)2

+
(
Lip(Dw)

)2
)}

.
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Admissible triplets and localization
Admissible triplets: (K0,K1, v) is an admissible triplet if

K0 , K1 Borel subsets of R2, K0 ∪ K1 closed,

v ∈ C2
(
Ω̃ \ (K0 ∪ K1)

)
, v approximately continuous in Ω̃ \K0,

v = w a.e. in Ω̃ \ Ω .

(Localization)

We will use the symbols FA, FA to denote respectively functionals F ,
F when Ω̃ is substituted by a Borel set A ⊂ Ω̃, (resp. EA,FA for E ,F)

(Locally minimizing triplet of F (6))

Admissible triplet (K0,K1,u), is a locally minimizing triplet of F if

FA(K0,K1,u) < +∞

FA(K0,K1,u) ≤ FA(T0,T1, v)

∀ smooth open A ⊂⊂ Ω and any admissible triplet (T0,T1, v) s.t.

spt(v − u) and (T0 ∪ T1)4(K0 ∪ K1) are subsets of A.
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(Essential locally minimizing triplet of F , resp. E)

Given a locally minimizing triplet (T0,T1, v) of the functional F
(resp. E),
there is another triplet (K0,K1,u) , called

essential locally minimizing triplet , which is uniquely defined by

u = ṽ

K0 = T0 ∩ K \ (T1 \ T0)

K1 = T1 ∩ K \ T0

where ṽ is the approximate limit of v , a.e. defined by

g(ṽ(x)) = lim
%↓0

∫
Bρ(0)

g(v(x + y))dy ∀g ∈ C0(R)

and K is
the smallest closed subset of T0 ∪ T1 such that ṽ ∈ C2(Ω \ K ).
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Some Euler equations in 2 dimensional case
[C.L.T] Calc.Var.Part.Diff.Eq, 2008
[C.L.T] Prepr.24 Dip.Mat.Univ.Salento, 2008

∆2u + µu = µg Ω \ (K0 ∪ K1)

Neumann boundary operators (plate-type bending moments)
vanishing in K0 ∪ K1[[
|D2u|2 + µ|u − g|2

]]
= α K(K0)

[[
|D2u|2

]]
= β K(K1 \ K0)

Integral and geometric conditions
at the “boundary” of singular set: crack-tip and crease-tip.
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Euler equations

From now on, for sake of simplicity,
we examine only the main part E of functional F :

E(K0,K1, v) =

=

∫
Ω\(K0∪K1)

∣∣D2v(x)
∣∣2

dx + α H1(K0) + β H1(K1 \ K0)
(11)

and the structural assumption β ≤ α ≤ 2β will be always understood.
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Euler equations I : smooth variations

Theorem

Any essential locally minimizing triplet (K0,K1,u) for functional F
fulfils

∆2u + µ (u − g) = 0 in Ω \ (K0 ∪ K1) .

Any essential locally minimizing triplet (K0,K1,u) for the functional E
fulfils

∆2u = 0 in Ω \ (K0 ∪ K1) .
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Euler equations II :
boundary-type conditions on singular set

Necessary conditions on jump discontinuity set K0

for natural boundary operators

Assume (K0,K1,u) is an essential locally minimizing triplet for the
functional E , B ⊂⊂ Ω is an open disk such that K0 ∩B is a diameter of
the disk and (K1 \ K0) ∩ B = ∅. Then(

∂2u
∂N2

)±
= 0 on K0 ∩ B ,

(
∂3u
∂N3 + 2

∂

∂N

(
∂2u
∂τ2

))±
= 0 on K0 ∩ B

where B+,B− are the connected components of B \ K0, N is the unit
normal to K0 pointing toward B+, v+, v− the traces of any v on K0

respectively from B+ and B−,τ = (τ1, τ2) = (−N2,N1) the choice of
the unit tangent vector to K0 .
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Euler equations III : singular set variations

Next we evaluate the first variation of the energy
around a local minimizer u,
under compactly supported smooth deformation of K0 and K1

Integral Euler equation

If (K0,K1,u) is a locally minimizing triplet of E . Then ∀η ∈ C2
0(Ω,R2)∫

Ω\(K0∪K1)

(
|D2u|2 div η − 2

(
DηD2u + (Dη)t D2u + Du D2η

)
: D2u

)
dx

+ α

∫
K0

divτ
K0
η dH1 + β

∫
K1\K0

divτ
K1\K0

η dH1 = 0 ,

where divτ
S denotes the tangential (to set S) divergence and(

DηD2u + (Dη)tD2u + DuD2η
)

ij =

=
∑

k

(
DkηiD2

kju + Diηk D2
kju + Dk uD2

ij ηk

)
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Curvature of jump set K0 and squared hessian jump

If (K0,K1,u) is an essential locally minimizing triplet for functional E ,
B ⊂⊂ U ⊂ Ω̃ two open disks, s.t. K0 ∩ U is the graph of a C4 function,
B+ (resp. B−) the open connected epigraph (resp. subgraph) of such
function in B,.
K1 ∩ U = ∅, and u in W 4,r (B+) ∩W 4,r (B−), r > 1 .

Then [[
|D2u|2

]]
= α K(K0) on K0 ∩ B .

where we denote
by K the curvature and by

[[
w

]]
the jump of a function w on K0

Analogous results holds true for crease set K1 \ K0

Both results follows by plugging
(normal to singular set) vector fields in Integral Euler equation
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Crack-tip
Now we perform a qualitative analysis of the “boundary” of the
singular set, by assuming it is manifold as smooth as required by the
computation of boundary operators.
The strategy is a new choice of the test functions in Euler equation: a
vector field η tangential to K0 (or K1).

Crack-tip Theorem

Assume (K0,K1,u) is an essential locally minimizing triplet of E ,
B = B(x0) ⊂ Ω an open disk with center at x0 s.t. (K1 \ K0) ∩ B = ∅ ,
K0 ∩ B = Su ∩ B is a is a smooth curve from center to bdry of B and

∃ r > 1 : u ∈ W 4,r(U \ (K0 ∪ Bε(x0)
)

∀ ε > 0

Then u fulfils, for every η ∈ C3
0(B,R2) s.t. η = ζτ

( ζ ∈ C∞
0 (B), τ ∈ C3(B,S1) and

η vector field tangent to K0 pointing toward K0 at x0)

lim
ε→0+

∫
∂Bε(x0)\K0

Lη(u) dH1 = α ζ(x0)
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Summarizing:

By performing suitable smooth variations
we found Euler equation in Ω \ K0 ∪ K1) and jump conditions for
u and for Du in K0 ∪ K1;

by performing smooth variations of jump and crease sets
K0, K1 \ K0 around a minimizer we found integral and geometric
conditions on optimal segmentation sets.

In addition we proved:
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1 Caccioppoli inequality: as a consequence
any locally minimizing triplet of E in R2 with finite energy and
compact segmentation set K0 ∪ K1

actually must have empty segmentation;
2 Liouville property:

(∅, ∅,u) with bi-harmonic u is locally minimizing triplet of E in Rn

iff u is affine;
3 neither a straight infinite wedge

nor a straight 1–dimensional uniform jump
are locally minimizing triplets of E in R2;

4 3/2 homogeneity: .
any locally minimizing triplet (K0,K1,u) is transformed in another
locally minimizing triplet by all
natural re-scaling centered at x0 ∈ Ω, which maps

u(x) to %−3/2u(x0 + %x) ,

Kj to %−1(Kj − x0), % > 0, j = 0,1 .
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Mode 1 (JUMP) :

%3/2 ω(θ) = %3/2
(

sin
θ

2
− 5

3
sin

(
3
2
θ

))
− π < θ < π

Mode 2 (CREASE) :

%3/2 w(θ) = %3/2
(

cos
θ

2
− 7

3
cos

(
3
2
θ

))
− π < θ < π

CANDIDATE:

W = ±
√

α

193π
%3/2

(√
21ω(θ) ± w(θ)

)
− π < θ < π

W fulfils all Euler equations,
all constraints on jump and curvature of singular set and

Energy equipartition:
∫

B%(0)

|∇2u|2 dx = α%
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Candidate conjecture

Assume 0 < β ≤ α ≤ 2β < +∞.

Then triplet

( K0 = negative real axis , K1 = ∅ , function W ) )

is a locally minimizing triplet for E in R2 .

Moreover we conjecture that
there are no other nontrivial locally minimizing triplets
with non empty jump set and different from triplets

(K0 = closed negative real axis, K1 = ∅, Φ)

Φ = (Aω(ϑ) + B w(ϑ)) r3/2, 35 A2 + 37 B2 =
4α
π
, A 6= 0

possibly swayed by rigid motions of R2 co-ordinates
and/or addition of affine functions.

(69)
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Proving the minimality of a given candidate for a free discontinuity
problem is a difficult task in general.

As far as we know,
neither the calibration techniques [Alberti, Bouchitte,
DalMaso], nor the method used by [Bonnet, David] (both
successfully applied to Mumford & Shah functional to test non trivial
minimizers) seem to apply to the present context of second order
functionals.

Even the excess identity approach of [Percivale & T.],
which succeeds with second order functionals related to
elasto-plastic plates,
does not apply to the present context since Blake & Zisserman
functional do not control

∫
SDv
|[Dv ]|dH1.
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Mumford-Shah functional

Theorem [M.Carriero, A.Leaci, D.Pallara, E.Pascali]

If (R−,u) is a local minimizer of∫
B1

|∇v |2 + αH1(Sv )

then
u(ρ, θ) = a0 ± uS(ρ, θ) + uR(ρ, θ))

where

uS(ρ, θ) =

√
2α
π
ρ1/2 sin

θ

2
, uR(ρ, θ) = o(ρ1−ε)
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CONJECTURE ( E.De Giorgi )

ψ(ρ, θ) =

√
2α
π
ρ1/2 sin

θ

2

is a local minimizer of Mumford-Shah functional in R2.
ψ is the only non trivial local minimizer in R2

(up to the sign and/or a rigid motion and constant addition)

where local minimizer of M–S functional refers to
compactly-supported variation
(without topological restrictions)

With a slightly different definition
competitor for (u,K ): any pair (w ,H) s.t. ....... ...... and
if x , y ∈ R2 \ (K ∪ BR) are separated by K ,
then also H separates them,

A.Bonnet & G.David proved the conjecture in a weak form.
(the difference does not play any role for candidate ψ.)
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Theorem - Uniform density estimates up to the bdry
[C-L-T, Pure Math.Appl., 2009]

(Density upper bound for the functional F )
Let (K0,K1,u) be an essential locally minimizing triplet for the
functional F under structural assumptions, g ∈ L4

loc(Ω), and

∃%̄ > 0 : H1(∂Ω ∩ B%(x)
)
< C% ∀x ∈ ∂Ω , ∀% ≤ %̄ .

Then for every 0 < % ≤ (%̄ ∧ 1) and for every x ∈ Ω such that
B%(x) ⊂ Ω̃ we have

F B%(x)∩Ω (K0,K1,u) ≤ c0%

where c0 = C2π + 2π
1
2µ

(
‖w‖2

L4(B%(x)) + ‖g‖2
L4(B%(x))

)
+ (2π + C)α.
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Theorem - Uniform density estimates up to the bdry
[C-L-T, Comm.Pure Appl.Anal. 2010]

Let (K0,K1,u) be an essential locally minimizing triplet for the
functional F under structural assumptions, g ∈ L4

loc(Ω), and

∃%̄ > 0 : H1(∂Ω ∩ B%(x)
)
< C% ∀x ∈ ∂Ω , ∀% ≤ %̄ .

(Density lower bound for the functional F )
Then there exist ε0 > 0, %0 > 0 such that, for every 0 < % ≤ (%̄ ∧ 1)

and for every x ∈ Ω such that B%(x) ⊂ Ω̃ we have

FB%(x)(K0,K1,u) ≥ ε0% ∀x ∈ (K0 ∪ K1) ∩ Ω, ∀% ≤ %0

(Density lower bound for the segmentation length )
and there exist ε1 > 0, %1 > 0 such that

H1 ((K0 ∪ K1) ∩ B%(x)) ≥ ε1% ∀x ∈ (K0 ∪ K1) ∩ Ω, ∀% ≤ %1.
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Theorem - Uniform density estimates up to the bdry
[C-L-T, Comm.Pure Appl.Anal. 2010]

(Elimination property ) Let (K0,K1,u) be an essential locally
minimizing triplet for the functional F under structural assumptions,
g ∈ L4

loc(Ω), and

∃%̄ > 0 : H1(∂Ω ∩ B%(x)
)
< C% ∀x ∈ ∂Ω , ∀% ≤ %̄ .

Then and let ε1 > 0, %1 > 0 as above. If x ∈ Ω and

H1 ((K0 ∪ K1) ∩ B%(x)) <
ε1

2
%

then
(K0 ∪ K1) ∩ B%/2(x) = ∅ .
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Theorem - Uniform density estimates up to the bdry
[C-L-T, Comm.Pure Appl.Anal. 2010]

(Minkowski content of the segmentation )
Let (K0,K1,u) be an essential locally minimizing triplet for the
functional F under structural assumptions and g ∈ L4(Ω̃).

Then K0 ∪ K1 is (H1,1) rectifiable and

lim
%↓0

|{x ∈ Ωε ; dist(x, (K0 ∪ K1) ∩ Ω) < % }|
2%

= H1 (K0 ∪ K1) .
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Numerical experiments

[F.Doveri] proved the Γ convergence and implemented the GNC
algorithm proposed by Blake & Zisserman.
[G.Bellettini, A.Coscia] (n=1) approximation by elliptic functionals.
[L.Ambrosio, L.Faina, R.March] (n=2) variational approximation
of B& Z fctl:

Fε(u, s, σ) =

∫
Ω

(
(σ2 + κε)|∇2u|2) + µ|u − g|2d x +

+(α− β)Gε(s) + β Gε(σ) + ξε

∫
Ω

(s2 + ξε)|∇u|γdx

with κε, ξε, ζε suitable infinitesimal weights and

Gε(s) =

∫
Ω

(
ε |∇s|2 +

(s − 1)2

4ε

)
dx

[M.Carriero, I.Farina, A.Sgura] implemented a finite difference
approach via Euler-Lagrange equations.
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Theorem - Asymptotic expansion of loc.min. triplets with crack-tip

Assume (Γ, ∅,u) is a locally minimizing triplet of E in R2 ,
where Γ = denotes the closed negative real axis.
Then there are constants A, B with (A,B) 6= (0,0) and Ah,Bh s.t.

u(r , θ) =

= r3/2
(

A
(

sin
(

θ
2

)
− 5

3 sin
(

3
2θ

))
+ B

(
cos

(
θ
2

)
− 7

3 cos
(

3
2θ

)))
+

+
+∞∑
h=1

rh+ 3
2

(
Ah cos

((
h + 3

2

)
θ
)

+ Bh sin
((

h + 3
2

)
θ
)

+

− 2h+3
2h+7 Ah cos

((
h − 1

2

)
θ
)
− 2h+3

2h−5 Bh sin
((

h − 1
2

)
θ
))

where u is expressed by polar coordinates in R2

with θ ∈ (−π, π) and r ∈ (0,+∞) .

This expansion is strongly convergent in H2(B% \ Γ), moreover ...
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... the lower order term (h = 0) in the expansion
must have the following form



W0 = (Aω(ϑ) + B w(ϑ)) r3/2 in B% \ Γ , referring to modes :

Mode 1 (Jump) ω(ϑ) =

(
sin

(
ϑ

2

)
− 5

3
sin

(
3
2
ϑ

))

Mode 2 (Crease) w(ϑ) =

(
cos

(
ϑ

2

)
− 7

3
cos

(
3
2
ϑ

))
where ϑ ∈ (−π, π) and constants A, B verify

35 A2 + 37 B2 =
4α
π
, A 6= 0 .
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