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Some notations

Ω ⊂ RN compact and convex

P(Ω) = Borel probability measures over Ω

M(Ω; RN) = RN−valued Radon measures over Ω

wp = p−Wasserstein distance

wp(ρ0, ρ1) = min

{(∫
Ω×Ω |x − y |p dγ(x , y)

)1/p
: γ ∈ Π(ρ0, ρ1)

}
Wp(Ω) = p−Wasserstein space over Ω, i.e. P(Ω) equipped
with wp

|µ′t |wp = limh→0
wp(µt+h, µt)

|h|
metric derivative

α = exponent between 0 and 1
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Branched transport: what’s this?

Transport problems where the cost has a subadditive dependence
on the mass, i.e. moving a mass m for a distance ` costs

ϕ(m) `,

with ϕ(m1 + m2) < ϕ(m1) + ϕ(m2) =⇒ total cost =
∑
ϕ(m) `

typical choice ϕ(t) = tα, α ∈ [0, 1]

Due to concavity, grouping the mass during the transport could
lower the total cost =⇒ typical optimal structures are tree-shaped
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Remark

Many natural and artificial transportation systems satisfy this cost
saving requirement (root systems in a tree, blood vessels...)

 This PDF was produced by PStill, licensing the software will remove this mark
 See http://www.pstill.com or for the MacOS X version http://www.stone.com!
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Example: a power supply station

ρ0 = δx0 power supply station

ρ1 =
∑k

i=1 miδxk
houses (

∑k
i=1 mi = 1)

Monge−Kantorovich solution Branched transport solution

Comment

it is better to construct an optimal network of wires (right) to save
cost; this is not possible by looking at Monge-Kantorovich (left)
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Some models: Gilbert’s weighted oriented graphs

This is only suitable for discrete measures

ρ0 =
∑k

i=1 ai δxi ∈ P(Ω) and ρ1 =
∑m

j=1 bj δyj ∈ P(Ω)

Transport path between ρ0 and ρ1

g weigthed oriented graph consisting of:

{vs}s∈V vertices (comprising xi sources and yj sinks)

{eh}h∈H edges

{−→τh}h∈H orientations of the edges

{mh}h∈H weigths (i.e. transiting mass on the edge eh)

+ Kirchhoff’s Law for circuits
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Interior vertices
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Total cost

Mα(g) =
∑

h∈H mα
h H1(eh) (Gilbert-Steiner energy)
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Some models: Xia’s transport path model I

Idea: for the discrete case...

g φg vector measure 〈φg,
−→ϕ 〉 =

∑
h∈H mh

∫
eh

−→ϕ · −→τh dH1

Kirchhoff’s Law  divφg = ρ0 − ρ1

...for the general case

φ transport path between ρ0 and ρ1 if ∃{gn, ρ
n
0, ρ

n
1}n∈N s.t.

φgn ⇀ φ, ρn
i ⇀ ρi , i = 0, 1

Total cost

M∗α := relaxation of Mα

M∗α(φ) =

{ ∫
Σ m(x)α dH1(x), if φ = m−→τ H1xΣ,

+∞, otherwise
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Some models: Xia’s transport path model II

Theorem (Xia, Morel-Santambrogio)

Let α ∈ (1− 1/N, 1] and ρ0, ρ1 ∈ P(Ω), then

dα(ρ0, ρ1) := min{M∗α(φ) : div φ = ρ0 − ρ1} < +∞

Moreover dα defines a distance on P(Ω), equivalent to w1 (and
thus to any wp, with 1 ≤ p <∞)

w1(ρ0, ρ1) ≤ dα(ρ0, ρ1) ≤ C w1(ρ0, ρ1)N(α−1)+1

Remark

the exponent N(α− 1) + 1 can not be improved

the lower bound is not optimal, actually we have w1/α ≤ dα
(Devillanova-Solimini)
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Some models: a Lagrangian approach I

Transportation is described through Q probability measures on
Lipschitz paths (parametrized on [0, 1], let us say)

Constraints

(e0)]Q = ρ0, (e1)]Q = ρ1

(where et(σ) = σ(t) evaluation at t)

Multiplicity (i.e.“transiting mass”)

[x ]Q = Q({σ̃ : x ∈ σ̃([0, 1])}) ≤ 1
x

Energy (Bernot-Caselles-Morel)

Eα(Q) =

∫
Lip([0,1];Ω)

∫ 1

0
[σ(t)]α−1

Q |σ′(t)| dt dQ(σ)
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Some models: a Lagrangian approach II

If Eα(Q) < +∞ and Q gives full mass to injective curves...

Gilbert-Steiner energy, again!

Eα(Q) =
∫

Ω[x ]αQ dH1(x)

Theorem (Bernot-Caselles-Morel)

For every ρ0, ρ1, this Lagrangian model is equivalent to Xia’s one
(i.e. same optimal structures, different description of the same
energy)

There exist other Lagrangian models (Maddalena-Morel-Soliminia,
Bernot-Figalli) that we are neglecting, differing for the definition of
the multiplicity: the one chosen here is not local in time

aThis was actually the first!
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Aim of the talk

We want to present a model for branched transport of the type

Energy

G(µ, v) =

∫ 1

0
Gα(µt , vt) dt with

t 7→ µt curve in P(Ω)
t 7→ vt velocity field

Constraints: the continuity equation{
∂tµt + divx(vtµt) = 0 in Ω,
µ0 = ρ0, µ1 = ρ1

Remark

This is Eulerian and dynamical, i.e. an optimal µ provides the
evolution in time of the branched transport with its velocity field
v , not just the optimal ramified structure
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The Benamou-Brenier formula I

First of all, recall the dynamical formulation for wp (p > 1)

Benamou-Brenier [Numer. Math. 84 (2000)]

wp(ρ0, ρ1) = min

{∫ 1

0

∫
Ω
|vt(x)|pdµt(x) dt :

∂tµt + divx(vt µt) = 0
µ0 = ρ0, µ1 = ρ1

}

Important

It can be reformulated as a convex optimization + linear
constraints, introducing

φt := vt · µt (momentum) =⇒ |vt |pµt = |φt |p µ1−p
t convex

Thanks to the Disintegration Theorem...

(µ, φ) can be thought as measures on [0, 1]× Ω disintegrating as

µ =
∫
µt dt and φ =

∫
φt dt
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The Benamou-Brenier formula II

fp(x , y) =


|y |p x1−p, if x > 0, y ∈ RN ,

0, if x = 0, y = 0,
+∞, otherwise

is jointly convex and 1−homogeneous

The functional can be rewritten as follows

Benamou-Brenier functional

Fp(µ, φ) =

∫
[0,1]×Ω

fp

(
dµ

dm
,

dφ

dm

)
dm

Comment

Fp l.s.c. and does not
depend on the choice of
m

wp(ρ0, ρ1) = min
{
Fp(µ, φ) : ∂tµ+ divxφ = δ0 ⊗ ρ0 − δ1 ⊗ ρ1

}
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The Benamou-Brenier formula III

Remark

By its very definition

Fp(µ, φ) < +∞ =⇒ φ� µ

and in this case

Fp(µ, φ) =

∫
[0,1]×Ω

∣∣∣∣dφdµ

∣∣∣∣p dµ

If moreover µ =
∫
µt dt, then φ =

∫
φt dt with φt = vt · µt and

Fp(µ, φ) =

∫ 1

0

∫
Ω

∣∣∣∣dφt

dµt

∣∣∣∣p dµt dt =

∫ 1

0

∫
Ω
|vt |pdµt dt
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A possible variant for branched transport: heuristics

We consider the local and l.s.c. functional on measures

gα(λ) =

{ ∫
Ω |λ({x})|α d#(x), if λ is atomic

+∞, otherwise

Energy?

For µ =
∫
µt dt and φ =

∫
φt dt with φt � µt

Gα(µ, φ) =

∫ 1

0
gα

(∣∣∣∣dφt

dµt

∣∣∣∣1/αµt

)
dt =

∫ 1

0
gα(|vt |1/αµt) dt

This is a Gilbert-Steiner energy!

Gα(µ, φ) =

∫ 1

0

∑
k∈N
|vt(xk,t)|µt({xk,t})α dt
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A possible variant for branched transport: setting

D = admissible pairs (µ, φ)

µ ∈ C ([0, 1];P(Ω)) ∂tµt + divxφt = 0 in Ω
φ ∈ L1([0, 1];M(Ω; RN))

Dynamical branched energy

Gα(µt , φt) =

{ ∫
Ω |vt(x)|µt({x})α d#(x) if φt = vt · µt ,

+∞ if φt 6� µt

Gα(µ, φ) =

∫ 1

0
Gα(µt , φt) dt, (µ, φ) ∈ D

Important remark

Gα(µ, φ) < +∞ 6=⇒ µt atomic ∀t
=⇒ φ� µ and µt atomic on {|vt(x)| > 0}
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Main result

Theorem (B.-Buttazzo-Santambrogio)

For every ρ0, ρ1 ∈ P(Ω), the minimization problem

Bα(ρ0, ρ1) = min
(µ,φ)∈D

{Gα(µ, φ) : µ0 = ρ0, µ1 = ρ1}

admits a solution

Remark 1

The proof uses Direct Methods...l.s.c.? coercivity? As always, it is
a matter of choosing the right topology

Remark 2

Observe that the problem is not convex, but rather concave
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Choice of the topology

Proposal: pointwise convergence

What about “µn
t ⇀ µt for every t and φn

t ⇀ φt for a.e. t”?

Answer: NO

Good for l.s.c. (you simply apply Fatou Lemma, because Gα is
l.s.c) but not so good for coercivity (how can we infer
compactness from Gα ≤ C ?)

Choice: weak topology

(µn, φn) ⇀ (µ, φ) (as measures on [0, 1]× Ω)
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The basic inequalities

If (µ, φ) ∈ D such that φ� µ and φt = vt · µt

(B.I .)1

Gα(µt , φt) =
∑

i

µt({xi})α |vt(xi )| =
∑

i

(
µt({xi}) |vt(xi )|1/α

)α
≥

(∑
i

µt({xi}) |vt(xi )|1/α
)α

= ‖vt‖L1/α(µt) ≥ |µ
′
t |w1/α

(B.I .)2

Gα(µ, φ) =
∫ 1

0 Gα(µt , φt) dt ≥
∫ 1

0 |φt |(Ω) dt = |φ|([0, 1]× Ω)

Remark

supt Gα ≤ C =⇒ |φ|([0, 1]× Ω) ≤ C and µt Lipschitz in W1/α
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Proof of the main result I

Stage 1 – Exctraction of a subsequence

{(µn, φn)} ⊂ D minimizing sequence

we can assume Gα(µn, φn) ≤ C for every n

Gα 1−homogeneous w.r.t. vt (i.e. reparametrization invariant)

(µn, φn) (µ̃n, φ̃n), with µ̃n
s = µn

t(s) and φ̃n
s = t′(s) · φn

t(s)

choose t s.t. Gα(µ̃n
s , φ̃

n
s ) ≡ Gα(µ̃n, φ̃n) = Gα(µn, φn) ≤ C

=⇒ µ̃n ⇀ µ and φ̃n ⇀ φ (thanks to (B.I .)1 and (B.I .)2)
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Proof of the main result II

Stage 2 – Admissibility of the limit

clearly µ =
∫
µt dt (uniform limit of continuous curves)

to show that φ =
∫
φt dt, we use l.s.c. of Benamou-Brenier

functional

F1/α(µ, φ) ≤ lim infn→∞F1/α(µ̃n, φ̃n)
(B.I .)1

≤ C

=⇒ φ� µ and φ =
∫
φt dt

(µ, φ) still solves the continuity equation =⇒ (µ, φ) ∈ D

µ0 = ρ0 and µ1 = ρ1
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Proof of the main result III (conclusion)

Stage 3 – l.s.c. along a minimizing sequence

remember that φ̃n = ṽn · µ̃n and Gα(µ̃n, φ̃n) ≤ C

define mn =
∫ ∑

i |ṽn
t (xi ,t)| µ̃n

t ({xi ,t})α δxi,t dt ∈M([0, 1]×Ω)

mn([0, 1]× Ω) = Gα(µ̃n, φ̃n) ≤ C

=⇒ mn ⇀ m and m =
∫

mt dt

mn([0, 1]× Ω)→ m([0, 1]× Ω)=⇒Gα(µ̃n, φ̃n)→
∫ 1

0 mt(Ω) dt

show mt(Ω) ≥ Gα(µt , φt) (a little bit delicate)

=⇒ Gα(µ, φ) ≤ lim infn→∞ Gα(µ̃n, φ̃n) = inf Gα
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Equivalences with other models

Theorem (B.-Buttazzo-Santambrogio)

Bα(ρ0, ρ1) = min{Eα(Q) : (ei )]Q = ρi} = dα(ρ0, ρ1)

As always, we have equivalence of the problems, not just
equality of the minima

Recall that

Eα(Q) =

∫
Lip([0,1];Ω)

∫ 1

0
[σ(t)]α−1

Q |σ′(t)| dt dQ(σ)

Remark

In order to compare the two models, we need to switch from
curves of measures to measures on curves (and back!)
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Some preliminary comments

Alert!

- Transiting mass in our model =⇒ µt({x}) (local in space/time)
- Transiting mass in Eα model =⇒ [x ]Q (not local in time)

We will need the following

Theorem (Superposition principle (AGS, Theorem 8.2.1))

Let (µ, v) solve the continuity equation, with ‖vt‖pLp(µt) integrable

in time. Then µt = (et)]Q with Q concentrated on solutions of
the ODE σ′(t) = vt(σ(t))

Comment

This is a probabilistic version of the method of characteristics



Branched Eulerian The variational setting Equivalences

Sketch of the proof: Bα(ρ0, ρ1) ≥ dα(ρ0, ρ1)

Step 1

(µ, φ) optimal
(B.I .)1
=⇒ φ = v · µ and

∫ 1
0 ‖vt‖L1/α(µt) dt ≤ Bα(ρ0, ρ1)

Step 2 - superposition principle

∃Q s.t. µt = (et)#Q and σ′(t) = vt(σ(t)) for Q−a.e. σ

Step 3 - comparison of the multiplicities

µt = (et)]Q =⇒ [x ]Q ≥ Q({σ̃ : σ̃(t) = x}) = µt({x})

∫
[σ(t)]α−1

Q |σ′(t)| dQ(σ)
Step2

=

∫
[x ]α−1

Q |vt(x)| dµt(x)

Step3
≤

∫
µt({x})α−1|vt(x)| dµt(x)
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Sketch of the proof: Bα(ρ0, ρ1) ≤ dα(ρ0, ρ1)

Step 0 – approximation

Approximate (ρ0, ρ1) with (ρn
0, ρ

n
1) (finite sums of Dirac masses)

s.t. dα(ρn
0, ρ

n
1)→ dα(ρ0, ρ1)

Remark: why approximation?

∃Q optimal s.t.

[σ(t)]Q = Q({σ̃(t) = σ(t)}) the mass is synchronized

(this is true if ρ0 is finitely atomic)

Step 1 – curve in P(Ω)

µt := (et)]Q and disintegrate Q =
∫

Qt
x dµt(x) (i.e. Qt

x is
concentrated on {σ : σ(t) = x})
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Sketch of the proof: Bα(ρ0, ρ1) ≤ dα(ρ0, ρ1)

Step 2 – velocity field

vt(x) :=
∫
{σ :σ(t)=x} σ

′(t) dQt
x(σ) (average velocity)

Step 3

(µ, v · µ) ∈ D and Gα(µ, v · µ) ≤ Eα(Q) = dα(ρn
0, ρ

n
1), with

µ0 = ρn
0 and µ1 = ρn

1

Step 4

Putting all together, we have

Bα(ρ0, ρ1) ≤ lim inf
n→∞

Bα(ρn
0, ρ

n
1) ≤ lim

n→∞
dα(ρn

0, ρ
n
1) = dα(ρ0, ρ1)
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A final remark: comparison of dα and w1/α

Taking (µ, φ) optimal for Bα(ρ0, ρ1)∫ 1

0
|µ′t |w1/α

dt
(B.I .)1

≤ Bα(ρ0, ρ1)
equivalence

= dα(ρ0, ρ1)

i.e. we have another proof of

w1/α(ρ0, ρ1) ≤ dα(ρ0, ρ1)

Remark

dα and w1/α have exactly the same scaling

dα =
∑

mα ` w1/α =
(∑

m `1/α
)α
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Further readings

- Standard reference on branched transport

M. Bernot, V. Caselles, J.-M. Morel Optimal transportation
networks – Models and theory, Springer Lecture Notes (2009)

- Other models employing curves in Wasserstein spaces (but
avoiding the use of the continuity equation) have been studied

A. Brancolini, G. Buttazzo, F. Santambrogio, Path functionals
over Wasserstein spaces, JEMS (2006)

L. B., F. Santambrogio, An equivalent path functional
formulation of branched transportation problems, accepted
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