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Euler equations for incompressible ideal fluids

C. Bardos and E. S. Titi

Abstract. This article is a survey concerning the state-of-the-art mathe-
matical theory of the Euler equations for an incompressible homogeneous
ideal fluid. Emphasis is put on the different types of emerging instability,
and how they may be related to the description of turbulence.
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1. Introduction

This contribution is mostly devoted to a time-dependent analysis of the 2D
and 3D Euler equations

∂tu+∇ · (u⊗ u) +∇p = 0, ∇ · u = 0 (1)

of an incompressible homogeneous ideal fluid. We intend to connect several known
(and maybe less known) points of view concerning this very classical problem.
Furthermore, we will investigate the conditions under which one can consider the
above problem as the limit of the incompressible Navier–Stokes equations

∂tuν +∇ · (uν ⊗ uν)− ν∆uν +∇pν = 0, ∇ · uν = 0, (2)

when the viscosity ν goes to zero, that is, as the Reynolds number goes to infinity.
At the macroscopic level the Reynolds number Re corresponds to the ratio of

the strength of the non-linear effects to the strength of the linear viscous effects.
Therefore, with the introduction of a characteristic velocity U and a characteristic
length scale L of the flow one has the dimensionless parameter

Re =
UL

ν
. (3)

With the introduction of the characteristic time scale T = L/U and the dimension-
less variables,

x′ =
x

L
, t′ =

t

T
, and u′ =

u′

U
,

the Navier–Stokes equations (2) take the non-dimensional form:

∂tu
′ +∇x′ · (u′ ⊗ u′)− 1

Re
∆x′u

′ +∇x′p
′ = 0, ∇ · u′ = 0. (4)

These are the equations to be considered below, omitting the prime (′) and returning
to the notation ν for Re−1.

In the presence of a physical boundary the problems (1) and (2) will be considered
in an open domain Ω ⊂ Rd, d = 2, d = 3, with a piecewise smooth boundary ∂Ω.

There are several good reasons to focus at present on the ‘mathematical analysis’
of the Euler equations rather than the Navier–Stokes equations.

1. Turbulence applications involving the Navier–Stokes equations (4) often cor-
respond to very large Reynolds numbers; and a theorem which is valid for any
finite, but very large, Reynolds number is expected to be compatible with results
concerning infinite Reynolds number. In fact, this is the case when Re = ∞, which
drives other results, and we will give several examples of this fact.

2. Many non-trivial and sharp results for the incompressible Navier–Stokes equa-
tions rely on the smoothing effect of the Laplacian when the viscosity ν is > 0, and
on the invariance of the set of solutions under the scaling

u(x, t) 7→ λu(λx, λ2t). (5)

However, simple examples with the same scalings but without an energy conser-
vation law may exhibit very different behaviour concerning regularity and stability.
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1. With φ a scalar function, the viscous Hamilton–Jacobi type or Burgers
equation

∂tφ− ν∆φ+
1
2
|∇φ|2 = 0 in Ω× R+

t ,

φ(x, t) = 0 for x ∈ ∂Ω, and φ(·, 0) = φ0(·) ∈ L∞(Ω),
(6)

has (because of the maximum principle) a global smooth solution for any ν > 0.
However, for ν = 0 it is well known that certain solutions of the inviscid Burgers
equation (6) will become singular (with shocks) in finite time.

2. Denote by |∇| the square root of the operator −∆, defined in Ω and with
Dirichlet homogeneous boundary conditions. Let us consider the solution u(x, t) of
the equation

∂tu− ν∆u+
1
2
|∇|(u2) = 0 in Ω× R+

t , (7)

u(x, t) = 0 for x ∈ ∂Ω, and u(·, 0) = u0(·) ∈ L∞(Ω). (8)

Then one has the following proposition.

Proposition 1.1. Assume that the initial data u0 satisfies the relation∫
Ω

u0(x)φ1(x) dx = −M < 0, (9)

where φ1(x) > 0 denotes the first eigenfunction of the operator −∆ (with Dirichlet
boundary condition), −∆φ1 = λ1φ1. If M is sufficiently large, then the correspond-
ing solution u(x, t) of the system (7), (8) blows up in a finite time.

Proof. The L2 scalar product of the equation (7) with φ1(x) gives

d

dt

∫
Ω

u(x, t)φ1(x) dx+ νλ1

∫
Ω

u(x, t)φ1(x) dx = −
√
λ1

2

∫
Ω

u(x, t)2φ1(x) dx.

Since φ1(x) > 0, the Cauchy–Schwarz inequality implies that( ∫
u(x, t)φ1(x) dx

)2

6

( ∫
Ω

u(x, t)2φ1(x) dx
)( ∫

Ω

φ1(x) dx
)
.

As a result, the quantity m(t) = −
∫

Ω

u(x, t)φ1(x) dx satisfies the relation

dm

dt
+ λ1m >

√
λ1

∫
Ω

φ1(x)dx

2
m2 with m(0) = M,

and the conclusion of the proposition follows.

Remark 1.1. The above example was given with Ω = R3 by Montgomery-Smith [1]
(under the name ‘cheap Navier–Stokes equations’) with the purpose of revealing
the role of the conservation of energy (which is not present in the above examples)
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in the Navier–Stokes dynamics. His proof shows that the same blowup property
may appear in any space dimension for the solution of the ‘cheap hyperviscosity
equations’

∂tu+ ν(−∆)mu+
1
2
|∇|(u2) = 0.

On the other hand, one should observe that the above argument does not apply to
the Kuramoto–Sivashinsky-like equations

∂tφ+ ν(−∆)mφ+ α∆φ+
1
2
|∇φ|2 = 0 (10)

for m > 2. Without a maximum principle or without a control of some sort on the
energy, the question of global existence of a smooth solution or finite-time blowup
of some solution of the above equation is an open problem in Ω = Rn for n > 2
and for m > 2. However, if in (10) the term |∇φ|2 is replaced by |∇φ|2+γ , γ > 0,
then one can prove the blowup of some solutions (cf. [2] and references therein).

In conclusion, the above examples indicate that the conservation of some sort
of energy, which is guaranteed by the structure of the equation, is essential in the
analysis of the dynamics of the underlying problem. In particular, this very basic
fact plays an essential role in the dynamics of the Euler equations.

Taking into account the above simple examples, the rest of the paper is organized
as follows. In § 2 classical existence and regularity results for the time-dependent
Euler equations are presented. § 3 provides more examples concerning the patho-
logical behaviour of solutions of the Euler equations. The fact that the solutions
of the Euler equations may exhibit oscillatory behaviour implies similar behaviour
for the solutions of the Navier–Stokes equations as the viscosity tends to zero.
The existence of (or lack thereof) strong convergence is analyzed in § 4 with the
introduction of the Reynolds stress tensor and the notion of dissipative solution.
A standard and very important problem for both theoretical study and applications
is the vanishing-viscosity limit of solutions of the Navier–Stokes equations subject
to the no-slip Dirichlet boundary condition in domains with physical boundaries.
Very few mathematical results are available for this very unstable situation. One
of the most striking results is a theorem of Kato [3], which is presented in § 5.
§ 6 is again devoted to the Reynolds stress tensor. We show that with the intro-
duction of the Wigner measure the notion of Reynolds stress tensor, deduced from
the defect in strong convergence as the viscosity tends to zero, plays the same role
as the one originally introduced in the statistical theory of turbulence. When the
zero viscosity limit of solutions of the Navier–Stokes equations is compared with
the solution of the Euler equations, the main difference appears in a boundary
layer which is described by the Prandtl equations. These equations are briefly
described in § 7. There it is also recalled how the mathematical results are in agree-
ment with the instability of the physical problem. The Kelvin–Helmholtz problem
also exhibits some similar basic instabilities, but it is in some sense simpler. This
is explained at the end of § 7, where it is also shown that some recent results
of [4], [5], [6] on the regularity of the vortex sheet (interface) do contribute to an
understanding of the instabilities of the original problem.
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2. Classical existence and regularity results

2.1. Introduction. The Euler equations correspond formally to the limit case
when the viscosity is 0 (or the Reynolds number is infinite):

∂tu+∇ · (u⊗ u) +∇p = 0, ∇ · u = 0 in Ω. (11)

In the presence of physical boundaries, the above system is supplemented with the
standard, no-normal flow, boundary condition:

u · n⃗ = 0 on ∂Ω, (12)

where n⃗ denotes the outwards normal vector to the boundary ∂Ω. It turns out
that the vorticity ω = ∇ ∧ u is ‘the basic quantity’, from both the physical and
mathematical analysis points of view. Therefore, equations (11) and (12), written
in terms of the vorticity, are equivalent to the system

∂tω + u · ∇ω = ω · ∇u in Ω, (13)
∇ · u = 0, ∇∧ u = ω in Ω, and u · n⃗ = 0 on ∂Ω. (14)

That is, the equations (14) completely determine u in terms of ω, which makes the
whole system ‘closed’. More precisely, the operator K : ω 7→ u determined by (14)
is a continuous linear map from Cα(Ω) to Cα+1(Ω) (with α > 0), and also from
Hs(Ω) to Hs+1(Ω).

Furthermore, for 2D flows the vorticity is perpendicular to the plane of motion,
and therefore equation (13) reduces (this can also be checked directly) to the advec-
tion equation

∂tω + u · ∇ω = 0. (15)

The structure of the quadratic non-linearity in (13) has a number of consequences,
to be described below. We will be presenting only the essence of the essential
arguments and not the full details of the proofs (see, for example, [7] or [8] for the
details).

2.2. General results in 3D. The short-time existence of a smooth solution for
the 3D incompressible Euler equations was obtained a long time ago, provided
that the initial data are sufficiently smooth. To the best of our knowledge the
original proof goes back to Lichtenstein [9]. This proof is based on a non-linear
Gronwall estimate of the form

y′ 6 Cy
3
2 =⇒ y(t) 6

y(0)(
1− 2tCy

1
2 (0)

)2 . (16)

Therefore, the value y(t), which represents an adequate norm of the solution, is
finite for a finite interval of time which depends on the size of the initial value y(0),
that is, the initial data of the solution of the Euler equations. These initial data
have to be chosen from an appropriate space of sufficiently regular functions. In
particular, if we consider the solution in the Sobolev space Hs, with s > 5

2 , then by
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taking the scalar product in Hs of the Euler equations with the solution u and by
using the appropriate Sobolev inequalities we obtain:

1
2
d∥u∥2Hs

dt
= −

(
∇ · (u⊗ u), u

)
Hs 6 Cs∥u∥2Hs∥∇u∥L∞ 6 C∥u∥3Hs . (17)

As a result of (16) and (17) we obtain the local (in time) existence of a smooth
solution.

As in many standard non-linear time-dependent problems, local regularity of
smooth (strong) solutions implies local uniqueness and local stability (that is, con-
tinuous dependence on initial data). Furthermore, one may exhibit a threshold
for this existence, uniqueness, and propagation of the regularity of the initial data
(including analyticity; see Bardos and Benachour [10]). More precisely, one uses
the following theorem.

Theorem 2.1 (Beale–Kato–Majda theorem [11]). Let u(t) be a solution of the 3D
incompressible Euler equations which is regular for 0 6 t < T , that is,

for all t ∈ [0, T ], u(t) ∈ Hs(Ω) for some s >
5
3
.

If ∫ T

0

∥∥∇∧ u(·, t)
∥∥

L∞
dt <∞, (18)

then u(t) can be uniquely extended up to a time T + δ (δ > 0) as a smooth solution
of the Euler equations.

The main interest of this statement is that it shows that if one starts with smooth
initial data, then instabilities can develop only if the size of the vorticity becomes
arbitrarily large.

Remark 2.1. The Beale–Kato–Majda theorem was first proved in the whole space
in [11]. Extension to a periodic ‘box’ is easy. For a bounded domain with the
boundary condition u · n⃗ = 0 it was established by Ferrari [12]. By combining
arguments from [10] and [12] one can show, as in the Beale–Kato–Majda theorem,
that the solution of the 3D Euler equations, with real-analytic initial data, remains
real-analytic as long as (18) holds.

The Beale–Kato–Majda result has been slightly improved by Kozono [13], who
proved that on the left-hand side of (18), the ∥ · ∥L∞ -norm can be replaced by
the norm in the space BMO. This generalization is interesting because it employs
harmonic analysis (or Fourier modes decomposition) techniques, which constitute
an important tool for the study of ‘turbulent’ solutions; indeed, the space BMO, as
the dual space of the Hardy space H 1, is well defined in the frequency (Fourier)
space. In fact (cf. [14]), BMO is the smallest space containing L∞ which is also
invariant under the action of zero-order pseudodifferential operators. The idea
behind the Beale–Kato–Majda theorem, and its generalizations, is the fact that the
solution u of the elliptic equations (14) satisfies for 1 < p <∞ the estimate

∥∇u∥W s,p 6 Cs,p

(
∥u∥W s,p + ∥ω∥W s,p

)
. (19)
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This relation could also be phrased in the context of the Hölder spaces Ck,α, α > 0.
We stress, however, that the estimate (19) ceases to be true for p = ∞ (or α = 0).
This is due to the nature of the singularity, of the form |x− y|2−d, in the kernel of
the operator K, which leads (for s > d/2 + 1) to the estimate

∥∇u∥L∞ 6 C
(
∥ω∥L∞ log

(
1 + ∥u∥2Hs

))
, or, sharper, (20)

∥∇u∥L∞ 6 C
(
∥ω∥BMO log

(
1 + ∥u∥2Hs

))
. (21)

If we let z = 1 + ∥u∥2Hs , then by (21) the inequality (17) becomes

d

dt
z 6 C∥ω∥BMOz log z.

This yields (
1 + ∥u(t)∥2Hs

)
6

(
1 + ∥u(0)∥2Hs

)eC
∫ t
0 ∥ω(s)∥BMO ds

,

which proves the statement. The uniqueness of solutions can be proved along the
same lines, as long as ∫ t

0

∥ω(s)∥BMO ds

remains finite.

Remark 2.2. The vorticity ω can be represented by the anti-symmetric part of the
deformation tensor ∇u. However, in the estimates (20) or (21) this anti-symmetric
part, that is, ω, can be replaced by the symmetric part of the deformation tensor

S(u) =
1
2
(
∇u+ (∇u)t

)
. (22)

Therefore, the theorems of Beale–Kato–Majda and Kozono can be rephrased in
terms of this symmetric tensor, as was established in Ponce [15] and Kozono [13],
respectively.

In fact, the above deformation tensor S(u) (or S̃(ω), when expressed in term of
the vorticity), plays an important role in a complementary result of Constantin,
Fefferman, and Majda [16] which shows that it is mostly the variations in the
direction of the vorticity that produces singularities.

Proposition 2.1 [16]. Let u, defined in Q = Ω × (0, T ), be a smooth solution of
the Euler equations. Let k1(t) and k2(t) (which are well defined for t < T ) be given
by

k1(t) = sup
x∈Ω

|u(x, t)|,

which measures the size of the velocity, and

k2(t) = 4π sup
x,y∈Ω,x ̸=y

|ξ(x, t)− ξ(y, t)|
|x− y|

,

which measures the Lipschitz regularity of the direction

ξ(x, t) =
ω(x, t)
|ω(x, t)|
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of the vorticity. Then under the assumptions∫ T

0

(
k1(t) + k2(t)

)
dt <∞ and

∫ T

0

k1(t)k2(t) dt <∞, (23)

the solution u(x, t) exists and is as smooth as the initial data up to a time T + δ
for some δ > 0.

Proof. As before we present here only the basic ideas, and for simplicity we will
focus on the case when Ω = R3. First, since

S(u) =
1
2
(
∇u+ (∇u)t

)
(x, t) = S̃(ω)(x, t), (24)

we have
1
2
(
∂t|ω|2 + u · ∇|ω|2

)
= (ω · ∇u, ω) =

(
S̃(ω)ω, ω

)
, (25)

which gives
d∥ω∥∞
dt

6 sup
x

(
|S̃(ω)|

)
∥ω∥∞. (26)

Next, we consider only the singular part of the operator ω 7→ S̃(ω). The Biot–Savart
law reproduces the velocity field from the vorticity according to the formula

u(x, t) =
1
4π

∫
(x− y) ∧ ω(y)

|x− y|3
dy. (27)

For the essential part of this kernel, we introduce two smooth non-negative radial
functions β1

δ and β2
δ with

β1
δ + β2

δ = 1, β1
δ = 0 for |x| > 2δ, and β2

δ = 0 for |x| < δ. (28)

Then we have

|S̃(ω)| 6
∣∣∣∣∫ (

y

|y|
· ξ(x)

)(
Det

(
y

|y|
, ξ(x+ y), ξ(x)

)
β1

δ

(
|y|

))
|ω(x+ y)| dy

|y|3

∣∣∣∣
+

∣∣∣∣∫ (
y

|y|
· ξ(x)

)(
Det

(
y

|y|
, ξ(x+ y), ξ(x)

)
β2

δ (|y|)
)
|ω(x+ y)| dy

|y|3

∣∣∣∣. (29)

For the first term we use the estimate∣∣∣∣Det
(
y

|y|
, ξ(x+ y), ξ(x)

)
β1

δ (|y|)
∣∣∣∣ 6

k2(t)
4π

|y| (30)

to obtain∣∣∣∣∫ (
y

|y|
· ξ(x)

)(
Det

(
y

|y|
, ξ(x+ y), ξ(x)

)
β1

δ (|y|)
)
|ω(x+ y)| dy

|y|3

∣∣∣∣ 6 k2(t)δ∥ω∥∞.

(31)
Next, we write the second term as∫ (
y

|y|
· ξ(x)

)(
Det

(
y

|y|
, ξ(x+ y), ξ(x)

)
β2

δ (|y|)
)(
ξ(x+ y) ·

(
∇y ∧ u(x+ y)

)) dy
|y|3



Euler equations for incompressible ideal fluids 417

and integrate by parts with respect to y. By the Lipschitz regularity of ξ one has∣∣∣∣∇y

((
y

|y|
· ξ(x)

)(
Det

(
y

|y|
, ξ(x+ y), ξ(x)

)))∣∣∣∣ 6 Ck2(t).

Therefore (observing that the terms coming from large values of |y| and the terms
coming from the derivatives of β2

δ (|y|) give more regularity),∣∣∣∣∫ (
y

|y|
· ξ(x)

)(
Det

(
y

|y|
, ξ(x+ y), ξ(x)

)
β2

δ (|y|)
)
|ω(x+ y)| dy

|y|3

∣∣∣∣
6

∫ ∣∣∣∣∇y

(
y

|y|
· ξ(x)

)(
Det

(
y

|y|
, ξ(x+ y), ξ(x)

))∣∣∣∣β2
δ (|y|) dy

|y|3
∥u∥∞

6 Ck2(t)| log δ| ∥u∥∞ 6 Ck1(t)k2(t)| log δ|.

Finally, inserting the above estimates in (26), we get that for ∥ω∥∞ > 1 and
δ = ∥ω∥−1

∞
d∥ω∥∞
dt

6 Ck2(t)
(
1 + k1(t)

)
∥ω∥∞ log ∥ω∥∞,

and the conclusion follows as in the case of the Beale–Kato–Majda theorem.

The reader is referred, for instance, to the book of Majda and Bertozzi [7] and
the recent survey of Constantin [17] for additional relevant material.

2.3. About the two-dimensional case. In the 2D case the vorticity ω = ∇∧u
obeys the equation

∂t(∇∧ u) + (u · ∇)(∇∧ u) = 0. (32)

This evolution equation preserves any Lp-norm (1 6 p 6 ∞) of the vorticity.
Taking advantage of this observation in his remarkable paper [18], Yudovich proved
the existence, uniqueness, and global regularity for all solutions with initial vorticity
in L∞. If the vorticity is in Lp, with 1 < p 6 ∞, then one can prove the existence
of weak solutions. The same results hold also for p = 1 and for vorticity as a finite
measure with ‘simple’ changes of sign. The proof is more delicate in this limit case
(cf. Delort [19] and § 7.2 below).

3. Pathological behaviour of solutions

Continuing with the comments of the previous section, we should recall some
facts.

I. First, the following hold in the three-dimensional case.
i) There is no result on global (in time) existence of smooth solutions. More

precisely, it is not known whether a solution of the Euler system defined on a finite
time interval and with initial velocity in, say, Hs with s > 3

2 + 1 can be extended
as a regular or even a weak solution for all positive time.

ii) There is no result on the existence, even for a small time interval, of a weak
solution for initial data less regular than in the above case.

iii) Due to the scaling property of the Euler equations in R3, the problem of
global (in time) existence for small initial data is equivalent to the global existence
for all initial data and for all t ∈ R.



418 C. Bardos and E. S. Titi

II. Second, in both the 2D (d = 2) and the 3D (d = 3) cases the fact that
a function u ∈ L2

(
[0, T ];L2(Rd)

)
is a weak solution, that is, satisfies the equations

∂tu+∇ · (u⊗ u) +∇p = 0, ∇ · u = 0, u(x, 0) = u0(x) (33)

in the distribution sense, is not sufficient to determine it uniquely from the initial
data u0 (except in 2D with the additional regularity assumption that ∇∧u0 ∈ L∞).
More precisely, in both 2D and 3D one can construct, following Scheffer [20] and
Shnirelman [21], non-trivial solutions u ∈ L2

(
Rt;L2(Rd)

)
of (33) that are of com-

pact support in space and time.
The following examples may contribute to the understanding of the underlying

difficulties. First, one can exhibit (cf. Constantin [17], Gibbon and Ohkitani [23],
and references therein) blowup for smooth solutions, with infinite energy, of the 3D
Euler equations. Such solutions can be constructed as follows. The solution u is
(x1, x2)-periodic on the lattice (R/LZ)2 and is defined for all x3 ∈ R according to
the formula

u =
(
u1(x1, x2, t), u2(x1, x2, t), x3γ(x1, x2, t)

)
= (ũ, x3γ),

where ũ and γ are determined by the following equations.
To maintain the divergence-free condition, it is required that

∇ · ũ+ γ = 0,

and to enforce the Euler dynamics, it is required that

∂t(∇∧ ũ) + (ũ · ∇)(∇∧ ũ) = γũ,

∂tγ + (ũ · ∇)γ = −γ2 + I(t),

and finally to enforce the (x1, x2)-periodicity it is required that

I(t) = − 2
L2

∫
[0,L]2

(
γ(x1, x2, t)

)2
dx1 dx2.

Therefore, the scalar function γ satisfies an integro-differential Riccati equation of
the form

∂tγ + ũ∇γ = −γ2 − 2
L2

∫
[0,L]2

(
γ(x1, x2, t)

)2
dx1 dx2,

from which the proof of the blowup including the explicit nature of this blowup,
follows.

The above example can be regarded as non-physical, because the initial energy∫
(R2/L)2×R

|u(x1, x2, x3, 0)|2 dx1 dx2 dx3

is infinite. On the other hand, it is instructive because it shows that the con-
servation of energy in the Euler equations may play a crucial role in the absence
of singularities. Furthermore, an approximation of the above solution by a family of
finite-energy solutions would probably be possible, but to the best of our knowledge
this has not yet been done. Such an approximation procedure might lead to the
idea that no uniform bound can be obtained for the stability or regularity of the 3D
Euler equations. Along these lines, one has the following proposition.
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Proposition 3.1. For 1 < p < ∞ there is no continuous function τ 7→ φ(τ) such
that any smooth solution of the Euler equations satisfies the estimate∥∥u(·, t)∥∥

W 1,p(Ω)
6 φ

(∥∥u(·, 0)
∥∥

W 1,p(Ω)

)
.

Observe that the above statement is not in contradiction to the local stability
results which produce local control of the higher norms at time t in terms of these
norms at time 0 in the form of the inequality

∥∥u(t)∥∥
Hs(Ω)

6
∥u(0)∥Hs(Ω)

1− Ct∥u(0)∥Hs(Ω)
for s >

5
2
,

which follows from (17).

Proof. The proof is by inspection of a pressureless solution which is defined on
a period box (R/Z)3 according to the formula

u(x, t) =
(
u1(x2), 0, u3

(
x1 − tu1(x2), x2

))
,

and which satisfies the equation

∇ · u = 0, ∂tu+ u · ∇u = 0.

Therefore, the initial data satisfies the relation

∥∥u(·, 0)
∥∥p

W 1,p(Ω)
≃

∫ 1

0

|∂x2u1(x2)|p dx1

+
∫ 1

0

∫ 1

0

(
|∂x1u3(x1, x2)|p + |∂x2u3(x1, x2)|p

)
dx1 dx2. (34)

And for t > 0,∥∥u(·, t)∥∥p

W 1,p(Ω)
≃

∫
|∂x2u1(x2)|p dx1 dx2 dx3

+
∫ 1

0

∫ 1

0

(
|∂x1u3(x1, x2)|p + |∂x2u3(x1, x2)|p

)
dx1 dx2

+ tp
∫ 1

0

∫ 1

0

|∂x2u1(x2)|p|∂x1u3(x1, x2)|p dx1 dx2. (35)

Then a suitable choice of u1 and u3 makes the left-hand side of (34) bounded, while
the term

tp
∫ 1

0

∫ 1

0

|∂x2u1(x2)|p|∂x1u3(x1, x2)|p dx1 dx2

on the right-hand side of (35) may be infinite. The proof is then completed by
a regularization argument.

Remark 3.1. With smooth initial data, the above construction gives an example
of a global (in time) smooth solution with vorticity growing (here only linearly)
as t→∞.



420 C. Bardos and E. S. Titi

As in the case of the Riccati differential inequality y′ 6 Cy2, one can obtain
sufficient conditions for the existence of a smooth solution during a finite interval
of time (say 0 6 t < T ). On the other hand, this gives no indication of the possible
appearance of blowup after such time. Complicated phenomena that take place in
the fluid due to strong non-linearities may later interact in such a way that they
balance each other and bring the fluid back to a smooth regime. Such a phenomenon
is called singularity depletion.

An example which seems to illustrate such cancellation has been constructed by
Hou and Li [24]. It involves axisymmetric solutions of the 3D Euler equations of
the form rf(z), which obviously possess infinite energy.

Specifically, let us start with the following system of integro-differential equations
with solutions that are defined for (z, t) ∈ (R/Z)× R+:

ut + 2ψuz = −2vu, vt + 2ψvz = u2 − v2 + c(t), (36)

ψz = v,

∫ 1

0

v(z, t) dz = 0. (37)

In (36) the z-independent function c(t) is chosen to enforce the second relation
of (37), which in turn makes the function ψ(z, t) 1-periodic in the z direction. As
a result one has the following.

Lemma 3.1. For any initial data
(
u(z, 0), v(z, 0)

)
∈ Cm(R/Z) with m > 1, the

system (36), (37) has a unique global (in time) smooth solution.

Proof. This proof relies on a global a priori estimate. Taking the derivative with
respect to z gives (using the notation (uz, vz) = (u′, v′))

u′t + 2ψu′z − 2ψzu
′ = −2v′u− 2vu′,

v′t + 2ψv′z − 2ψzv
′ = 2uu′ − 2vv′.

Next, one uses the relation ψz = −v, multiplies the first equation by u and the
second by v, and adds them to obtain

1
2
(u2

z + v2
z)t + ψ(u2

z + v2
z)z = 0. (38)

The relation (38) provides a uniform L∞ bound on the z-derivatives of u and v.
A uniform L∞ bound for v follows from the Poincaré inequality, and finally one
uses for u the Gronwall inequality∥∥u(z, t)∥∥

L∞
6

∥∥u(z, 0)
∥∥

L∞
et∥(u(z,0))2+(v(z,0))2∥L∞ . (39)

Remark 3.2. The global existence of solutions of the system (36), (37) with no
restriction on the size of the initial data is the result of a delicate balance/cancelat-
ion which depends on the coefficients of the system. Any modification of these
coefficients may lead to a finite-time blowup of the solutions of the modified system.
On the other hand, the solutions of the system (36), (37) can grow exponentially in
time. Numerical simulations in [24] indicate that the exponential growth rate in (39)
may get saturated.
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The special structure of the system (36), (37) is related to the 3D axisymmetric
Euler equations with swirl as follows. We introduce the orthogonal basis

er =
(
x

r
,
y

r
, 0

)
, eθ =

(
−y
r
,
x

r
, 0

)
, ez = (0, 0, 1),

and for a solution of the system (36), (37) we construct solutions of the 3D
(2 + 1/2) Euler equation according to the following proposition.

Proposition 3.2. If u(z, t) and ψ(z, t) are solutions of the system (36), (37), then
the function

U(z, t) = −r ∂ψ(z, t)
∂z

er + ru(z, t)eθ + 2rψ(z, t)ez

is a smooth solution of the 3D Euler system, but with infinite energy. Moreover,
this solution is defined for all time and without any smallness assumption on the
size of the initial data.

4. Weak limit of solutions of the Navier–Stokes dynamics

As we have already remarked in the Introduction, for practical problems as
well as for mathematical analysis one can regard Euler dynamics as the limit of
Navier–Stokes dynamics as the viscosity tends to zero. Therefore, this section is
devoted to the study of the weak limit as ν → 0 of Leray–Hopf type solutions of
the Navier–Stokes equations in 2D and 3D. We will consider only convergence on
finite intervals of time 0 < t < T <∞. Let us recall once again that ν denotes the
dimensionless viscosity, that is, the inverse of the Reynolds number.

4.1. Reynolds stress tensor. As above, we denote by Ω an open set in Rd.
For any initial data uν(x, 0) = u0(x) ∈ L2(Ω) and any given viscosity ν > 0, the
pioneering works of Leray [25]–[27] and Hopf [28]–[30] (see also the detailed survey of
Ladyzhenskaya [31] and the later generalizations by Scheffer [20] and by Caffarelli,
Kohn, and Nirenberg [32]) showed the existence of functions uν and pν with the
property

uν ∈ L∞
(
(0, T );L2(Ω)

)
∩ L2

(
(0, T );H1

0 (Ω)
)

for every T ∈ (0,∞) (40)

that satisfy the Navier–Stokes equations

∂tuν +∇ · (uν ⊗ uν)− ν∆uν +∇pν = 0, (41)
∇ · uν = 0, uν = 0 on ∂Ω (42)

in the sense of distributions. Moreover, such solutions satisfy the ‘pointwise’ energy
inequality

1
2
∂t|uν(x, t)|2 + ν|∇uν(x, t)|2

+∇ ·
(

(uν ⊗ uν)(x, t)− ν∇|uν(x, t)|2

2

)
+∇ ·

(
pν(x, t)uν(x, t)

)
6 0 (43)
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or, in integrated form,

1
2
∂t

∫
Ω

|uν(x, t)|2 dx+ ν

∫
Ω

|∇uν(x, t)|2 dx 6 0. (44)

A pair {uν , pν} which satisfies (40), (42), (43) is called a suitable weak solution of
the Navier–Stokes equations in the Caffarelli–Kohn–Nirenberg sense. If, however, it
satisfies the integrated version (44) of the energy inequality instead of the pointwise
energy inequality (43), then it will be called a Leray–Hopf weak solution of the
Navier–Stokes equations.

In dimension two (or in an arbitrary dimension but with stronger smallness
hypothesis on the size of the initial data with respect to the viscosity), these solu-
tions are shown to be smooth, unique, and continuously dependent on the initial
data. Furthermore, in this case equality holds in (43) and (44).

Therefore, as a result of the above, and in particular the energy inequality (44),
one concludes that, modulo the extraction of a subsequence, the sequence {uν}
converges in the weak-∗ topology of L∞

(
R+

t , L
2(Ω)

)
to a limit ū, the sequence

{∇pν} converges to a distribution ∇p̄ as ν → 0, and the following hold:

ū ∈ L∞
(
R+

t , L
2(Ω)

)
, ∇ · ū = 0 in Ω, ū · n⃗ = 0 on ∂Ω,∫

Ω

|ū(x, t)|2 dx+ 2ν
∫ t

0

∫
Ω

|∇u|2 dx dt 6
∫

Ω

|ū0(x)|2 dx,

lim
ν→0

(uν ⊗ uν) = ū⊗ ū+ lim
ν→0

(
(uν − ū)⊗ (uν − ū)

)
, (45)

∂tū+∇ · (ū⊗ ū) + lim
ν→0

∇ ·
(
(uν − ū)⊗ (uν − ū)

)
+∇p̄ = 0. (46)

Observe that the term

RT(x, t) = lim
ν→0

(
uν(x, t)− ū(x, t)

)
⊗

(
uν(x, t)− ū(x, t)

)
(47)

is a positive, symmetric, measure-valued tensor. In analogy with (see below) the
statistical theory of turbulence, this tensor may be called the Reynolds stress tensor
or turbulence tensor. In particular, certain turbulent regions will correspond to the
support of this tensor.

This approach leads to the following questions.
1. What are the basic properties (if any) of the tensor RT(x, t)?
2. When is the tensor RT(x, t) identically equal to zero? Or, what is equivalent,

when does the limit pair {ū, p̄} satisfies the Euler equations?
3. When does the energy dissipation

ν

∫ T

0

∫
Ω

|∇uν(x, t)|2 dx dt

tend to zero as ν → 0?
4. Assuming that the pair {ū, p̄} is a solution of the Euler equations, is such a

solution sufficiently regular to imply the conservation of energy?
Hereafter, we will use the following notation for the L2-norm:

|Φ| =
( ∫

Ω

|Φ(x)|2 dx
)1/2

.
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Remark 4.1. The tensor RT(x, t) is generated by the high frequency spatial
oscillations of the weak solution. This feature will be explained in more detail
in § 6.1. Therefore, such behaviour should be intrinsic and, in particular, indepen-
dent of orthogonal changes of coordinates (rotations). For instance, in the 2D case
if the function ū is regular, then invariance under rotation implies the relation

RT(x, t) = α(x, t) Id+
1
2
β(x, t)

(
∇ū+ (∇ū)T

)
,

where α(x, t) and β(x, t) are some (unknown) scalar-valued functions. Thus, the
equation (46) becomes

∂tū+∇ · (ū⊗ ū) +∇ ·
(
β(x, t)

1
2
(
∇ū+ (∇ū)T

))
+∇

(
p̄+ α(x, t)

)
= 0. (48)

Of course, this ‘soft information’ does not indicate whether β(x, t) is zero or not. It
also does not indicate whether this coefficient is positive, nor how to compute it. But
this turns out to be the turbulent eddy diffusion coefficient that is present in classical
engineering turbulence models like the Smagorinsky model or the kε-models (see,
for example, [33]–[36]).

Remark 4.2. Assume that the limit {ū, p̄} is a solution of the Euler equations which
is sufficiently regular to ensure conservation of energy, that is, |ū(t)|2 = |u0|2. Then
by virtue of the energy relation (44) we have

1
2
|uν(t)|2 + ν

∫ t

0

|∇uν(s)|2 ds 6
1
2
|u0|2,

and by the weak limit relation

lim inf
ν→0

1
2
|uν(t)|2 >

1
2
|ū(t)|2

we get strong convergence and the equality

lim inf
ν→0

ν

∫ t

0

|∇uν(s)|2 ds = 0.

The following question was then raised by Onsager in [37]: “What is the minimal
regularity needed to be satisfied by the solutions of the 2D or 3D Euler equations
that would imply conservation of energy?” The question was pursued by several
authors up to the contribution of Eyink [38] and of Constantin, E, and Titi [39].
Basically, in 3D it was shown that if u is bounded in L∞

(
R+

t , H
β(Ω)

)
with β > 1/3,

then the energy
1
2

∫
Ω

|u(x, t)|2 dx

is independent of the time. On the other hand, arguments borrowed from the
statistical theory of turbulence (cf. § 6.2) show that the sequence uν will in general
be bounded in L∞

(
R+

t , H
1
3 (Ω)

)
, and one should observe that such a statement does

not contradict the possibility of decay of the energy in the limit as ν → 0.
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4.2. Dissipative solutions of the Euler equations. To study the weak limit
of Leray–Hopf solutions of the Navier–Stokes dynamics as ν → 0, DiPerna and
Lions (see [40], p. 153) introduced the notion of dissipative solution of the Euler
equations. To motivate this notion, let w(x, t) be a divergence-free test function
which satisfies w · n⃗ = 0 on the boundary ∂Ω and let

E(w) = ∂tw + P (w · ∇w), (49)

where P is the Leray–Helmholtz projector (see, for example, [41]). Then for any
smooth divergence-free solution u(x, t) of the Euler equations in Ω with the bound-
ary condition u · n⃗ = 0 on ∂Ω, one has

∂tu+∇ · (u⊗ u) +∇p = 0,
∂tw +∇ · (w ⊗ w) +∇q = E(w),

d|u− w|2

dt
+ 2

(
S(w)(u− w), (u− w)

)
= 2

(
E(w), u− w

)
,

where S(w) denotes, as before, the symmetric tensor

S(w) =
1
2
(
∇w + (∇w)T

)
.

By integration with respect to time this gives

|u(t)− w(t)|2 6 e
∫ t
0 2∥S(w)(s)∥∞ ds|u(0)− w(0)|2

+ 2
∫ t

0

e
∫ t

s
2∥S(w)(τ)∥∞ dτ

(
E(w)(s), (u− w)(s)

)
ds. (50)

The above observation leads to the following definition.

Definition 4.1. A divergence-free vector field

u ∈ Cw

(
Rt;

(
L2(Ω)

)d)
which satisfies the boundary condition u · n⃗ = 0 on ∂Ω is called a dissipative
solution of the Euler equations (11) if (50) holds for any smooth divergence-free
vector field w with w · n⃗ = 0 on ∂Ω.

The following statement is easy to verify, but we mention it here for the sake of
clarity.

Theorem 4.1. i) Any classical solution u of the Euler equations (11) is a dissipa-
tive solution.

ii) Every dissipative solution satisfies the energy inequality

|u(t)|2 6 |u(0)|2. (51)

iii) The dissipative solutions are ‘stable with respect to classical solutions’. More
precisely, if w is a classical solution and u is a dissipative solution of the Euler
equations, then

|u(t)− w(t)|2 6 e
∫ t
0 2∥S(w)(s)∥∞ ds|u(0)− w(0)|2.



Euler equations for incompressible ideal fluids 425

In particular, if there exists a classical solution for specific initial data, then any
dissipative solution with the same initial data coincides with it.

iv) In the absence of physical boundaries, that is, in the case of periodic bound-
ary conditions or in the whole space Rd, d = 2, 3, any weak limit as ν → 0 of
Leray–Hopf solutions of the Navier–Stokes equations is a dissipative solution of the
Euler equations.

Proof and remarks. The point i) is a direct consequence of the construction. To
prove ii) we regard w ≡ 0 as a classical solution. As a result, one obtains for
any dissipative solution the inequality (51), which justifies the term ‘dissipative’.
Furthermore, it shows that the pathological examples constructed by Scheffer [20]
and Shnirelman [21] are not dissipative solutions of the Euler equations.

For the point iii) we use in (50) the fact that w, being a classical solution, must
satisfy E(w) ≡ 0. We also observe that this statement is in the spirit of the ‘weak
with respect to strong’ stability result of Dafermos (cf. [72; p. 66, Theorem 5.2.1])
for hyperbolic systems.

Next, we prove iv) in the absence of physical boundaries. Let uν be a Leray–Hopf
solution of the Navier–Stokes system which satisfies the energy inequality (44), and
let w be a classical solution of the Euler equations. By subtracting the two equations

∂tuν +∇ · (uν ⊗ uν)− ν∆uν +∇pν = 0,
∂tw +∇ · (w ⊗ w)− ν∆w +∇p = −ν∆w

one from the other and taking the L2 inner product of the difference with (uν −w),
one obtains

d|uν − w|2

dt
+ 2

(
S(w)(uν − w), (uν − w)

)
− 2ν

(
∆(uν − w), (uν − w)

)
6 2

(
E(w), uν − w

)
−

(
ν∆w, (uν − w)

)
. (52)

We stress that the above step is formal, and only through rigorous arguments can
one see the reason for obtaining the inequality in (52) instead of equality. However,
this should not be a surprise, because we are dealing with Leray–Hopf solutions
uν of the Navier–Stokes system which satisfy the energy inequality (44) instead of
equality.

To conclude our proof we now observe that in the absence of physical boundaries
we can use the equality

− ν

∫
∆(w − uν)(x, t) · (w − uν)(x, t) dx = ν

∫
|∇(w − uν)(x, t)|2 dx, (53)

and the result follows by letting ν tend to zero.

Remark 4.3. The above theorem states, in particular, that, in the absence of phys-
ical boundaries, as long as a smooth solution of the Euler equations does exist, it
is the limit as ν → 0 of any sequence of Leray–Hopf solutions of the Navier–Stokes
equations with the same initial data. In a series of papers starting with Bardos,
Golse, and Levermore [43], connections were established between the notion of
Leray–Hopf solutions for the Navier–Stokes equations and renormalized solutions
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of the Boltzmann equations, as defined by DiPerna and Lions [44]. In particular, it
was ultimately shown by Golse and Saint-Raymond [45] that, modulo the extrac-
tion of a subsequence and for a suitable choice of space-time scaling, any sequence
of such renormalized solutions of the Boltzmann equations converges (in some weak
sense) to a Leray–Hopf solution of the Navier–Stokes system. On the other hand,
it was shown by Saint-Raymond [46] that, under a scaling which reinforces the
non-linear effect (corresponding at the macroscopic level to the Reynolds number
going to infinity), any sequence (modulo extraction of a subsequence) of renor-
malized solutions of the Boltzmann equations converges to a dissipative solution
of the Euler equations. Therefore, such a sequence of normalized solutions of the
Boltzmann equations converges to the classical solution of the Euler equations, as
long as such a solution exists. In this situation one should observe that, with the
notion of dissipative solutions of the Euler equations, classical solutions of the Euler
equations play a role similar to the ‘Leray–Hopf limit’ and the ‘Boltzmann limit’.

Remark 4.4. There are at least two situations where the notion of dissipative solu-
tion of the Euler equations is not helpful.

The first situation is concerned with the 2D Euler equations. Let uε(x, t) be
the sequence of solutions of the 2D Euler equations corresponding to a sequence
of smooth initial data uε(x, 0). Suppose that the sequence of initial data uε(x, 0)
converges weakly but not strongly in L2(Ω) to initial data ū(x, 0) as ε → 0. Then
thanks to (50), for any smooth divergence-free vector field w one has the inequality

|uε(t)− w(t)|2 6 e
∫ t
0 2∥S(w)(s)∥∞ ds|uε(0)− w(0)|2

+ 2
∫ t

0

e
∫ t

s
2∥S(w)(τ)∥∞ dτ

(
E(w), uε − w

)
(s) ds. (54)

However, with weak convergence as ε→ 0 one has only

|ū(0)− w(0)|2 6 lim inf
ε→0

|uε(0)− w(0)|2,

and (54) might not hold at the limit as ε → 0. To illustrate this situation, we
consider a sequence of oscillating solutions of the 2D Euler equations of the form

uε(x, t) = U

(
x, t,

φ(x, t)
ε

)
+O(ε),

where the map θ 7→ U(x, t, θ) is a non-trivial 1-periodic function. In Cheverry [47]
a specific example was constructed such that

ū = w − lim
ε→0

uε =
∫ 1

0

U(x, t, θ) dθ

is no longer a solution of the Euler equations. The obvious reason for this (in
comparison to the notion of dissipative solution) is the fact that

U

(
x, 0,

φ(x, 0)
ε

)
does not converge strongly in L2(Ω).
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The second situation, which will be discussed at length below, corresponds to
a weak limit of solutions of the Navier–Stokes equations in a domain with physical
boundary, subject to the no-slip Dirichlet boundary condition.

As we have already indicated in Theorem 4.1, one of the most important features
of the above definition of dissipative solution of the Euler equations is that it coin-
cides with the classical solution of the Euler equations when the latter exists. This
can be seen by replacing w in (50) with this classical solution of the Euler equa-
tions. Therefore, any procedure for approximating dissipative solutions of the Euler
equations must in the limit lead to the inequality (50). Indeed, in the absence of
physical boundaries we showed almost at once in Theorem 4.1 that the Leray–Hopf
weak solutions of the Navier–Stokes equations converge to dissipative solutions
of the Euler equations. On the other hand, in the presence of physical boundaries
the proof does not go as smoothly, because of boundary effects. Specifically, in the
case of domains with physical boundaries, the inequality (52) leads to the inequality

1
2
d|uν − w|2

dt
+

(
S(w)(uν − w), (uν − w)

)
+ ν

∫
|∇(w − uν)|2 dx

6
(
E(w), uν − w

)
− ν

(
∆w, (uν − w)

)
+ ν

∫
∂Ω

∂nuν · w dσ. (55)

The very last term in (55) represents the boundary effect. We will discuss below
the subtleties in handling this term.

5. No-slip Dirichlet boundary conditions
for the Navier–Stokes dynamics

This section is devoted to the very few available results concerning the limit as
ν → 0 of solutions of the Navier–Stokes equations in a domain Ω ⊂ Rd, d = 2, 3,
with the homogeneous (no-slip) Dirichlet boundary condition uν = 0 on ∂Ω. This
boundary condition is not the easiest to deal with, as far as the zero viscosity limit
is concerned. For instance, the solutions of the of 2D Navier–Stokes equations,
subject to the boundary conditions uν · n = 0 and ∇ ∧ uν = 0, are much better
understood and much easier to analyze mathematically (see, for example, [48]) as
ν → 0. However, the no-slip boundary condition corresponds better to the physical
picture for the following reasons.

i) It can be deduced in the smooth (laminar) regime from the Boltzmann kinetic
equations when the interaction with the boundary is described by a scattering
kernel.

ii) It generates the pathology that is observed in physical experiments, like the
von Kármán vortex streets. Moreover, one should keep in mind that almost all high
Reynolds number turbulence experiments involve a physical boundary (very often
turbulence is generated by a pressure driven flow through a grid).

The problem emerges first from the boundary layer. This is because for the
Navier–Stokes dynamics, the whole velocity field equals zero on the boundary, that
is, uν = 0 on ∂Ω, while for the Euler dynamics only the normal component of
velocity field is equal to zero on the boundary, that is, u · n⃗ = 0 on ∂Ω. Therefore,
in the limit as ν → 0 the tangential component uν of the velocity field of the
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Navier–Stokes dynamics generates a boundary layer by its ‘jump’. Then, unlike the
situation with linear singular perturbation problems, the non-linear advection term
of the Navier–Stokes equations may propagate this instability inside the domain.

As we have already pointed out, the very last term in (55), that is, the boundary
integral term in the case of the no-slip boundary condition,

ν

∫
∂Ω

∂uν

∂n
· w dσ = ν

∫
∂Ω

(
∂uν

∂n

)τ

· wτ dσ = ν

∫
∂Ω

(∇∧ uν) · (n⃗ ∧ w) dσ, (56)

is possibly responsible for the loss of regularity in the limit as ν → 0. This is stated
more precisely in the following.

Proposition 5.1. Let u(x, t) be a solution of the incompressible Euler equations
in Ω× (0, T ], with the following regularity assumptions :

S(u) =
1
2
(
∇u+ (∇u)T

)
∈ L1

(
(0, T );L∞(Ω)

)
,

u ∈ L2
(
(0, T );Hs(Ω)

)
for s >

1
2
.

Further, suppose that the sequence uν of Leray–Hopf solutions of the Navier–Stokes
dynamics (with no-slip boundary condition) with the initial data uν(x, 0) = u(x, 0),
satisfies the relation

lim
ν→0

ν
∥∥P∂Ω(∇∧ uν)

∥∥
L2((0,T );H−s+ 1

2 (∂Ω))
= 0,

where P∂Ω denotes the projection on the tangent plane to ∂Ω according to the for-
mula

P∂Ω(∇∧ uν) = ∇∧ uν −
(
(∇∧ uν) · n⃗

)
n⃗.

Then the sequence uν converges to u in C
(
(0, T );L2(Ω)

)
.

The proof is a direct consequence of (55) and (56) with w replaced by u. This
proposition can be improved with the following simple and beautiful theorem of
Kato which takes into account the vorticity production in the boundary layer{
x ∈ Ω | d(x, ∂Ω) < ν

}
, where d(x, y) denotes the Euclidean distance between

the points x and y.

Theorem 5.1. Let u(x, t) ∈W 1,∞(
(0, T )×Ω

)
be a solution of the Euler dynamics,

and let uν be a sequence of Leray–Hopf solutions of the Navier–Stokes dynamics with
no-slip boundary condition

∂tuν − ν∆uν +∇ · (uν ⊗ uν) +∇pν = 0, uν(x, t) = 0 on ∂Ω (57)



Euler equations for incompressible ideal fluids 429

with initial data uν(x, 0) = u(x, 0). Then the following are equivalent :

(i) lim
ν→0

ν

∫ T

0

∫
∂Ω

(∇∧ uν) · (n⃗ ∧ u) dσ dt = 0, (58)

(ii) uν(t) → u(t) in L2(Ω) uniformly with respect to t ∈ [0, T ], (59)

(iii) uν(t) → u(t) weakly in L2(Ω) for each t ∈ [0, T ], (60)

(iv) lim
ν→0

ν

∫ T

0

∫
Ω

|∇uν(x, t)|2 dx dt = 0, (61)

(v) lim
ν→0

ν

∫ T

0

∫
Ω∩{d(x,∂Ω)<ν}

|∇uν(x, t)|2 dx dt = 0. (62)

Sketch of the proof. The statement (59) is deduced from (58) by replacing w by u
in (55) and (56). No proof is needed to deduce (60) from (59) and (62) from (61).

Next, we recall the energy inequality (44) satisfied by the Leray–Hopf solutions
of the Navier–Stokes dynamics:

1
2

∫
Ω

|uν(x, T )|2 dx+ ν

∫ T

0

∫
Ω

|∇uν(x, t)|2 dx dt 6
1
2

∫
Ω

|u(x, 0)|2 dx. (63)

By the weak convergence stated in (60) and the fact that u is a smooth solution of
the Euler dynamics,

lim
ν→0

1
2

∫
Ω

|uν(x, T )|2 dx >
1
2

∫
Ω

∣∣∣∣ limν→0
uν(x, T )

∣∣∣∣2 dx
=

1
2

∫
Ω

|u(x, T )|2 dx =
1
2

∫
Ω

|u(x, 0)|2 dx. (64)

Together with (63) this shows that (60) implies (61).
The most subtle part in the proof of this theorem is the fact that (62) implies (58).

The first step is the construction of a divergence-free function vν(x, t) with support
in the region

{
x ∈ Ω | d(x, ∂Ω) 6 ν

}
× [0, T ), coinciding with u on ∂Ω× [0, T ], and

satisfying the estimates (with K a constant independent of ν)

∥vν∥L∞(Ω×(0,T )) +
∥∥d(x, ∂Ω)∇vν

∥∥
L∞(Ω×(0,T ))

6 K, (65)∥∥(
d(x, ∂Ω)

)2∇vν

∥∥
L∞(Ω×(0,T ))

6 Kν, (66)

∥vν∥L∞((0,T );L2(Ω)) + ∥∂tvν∥L∞((0,T );L2(Ω)) 6 Kν
1
2 , (67)

∥∇vν∥L∞((0,T );L2(Ω)) 6 Kν−
1
2 , (68)

∥∇vν∥L∞(Ω×(0,T )) 6 Kν−1. (69)
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Then we multiply the Navier–Stokes equations by vν and integrate to obtain

− ν

∫ T

0

∫
∂Ω

(∇∧ uν) · (n⃗ ∧ u) dσ dt = −ν
∫ T

0

∫
∂Ω

∂uν

∂n
· vν dσ dt

= −ν
∫ T

0

∫
Ω

∆uν · vν dx dt− ν

∫ T

0

∫
Ω

(∇uν : ∇vν) dx dt

= −
∫ T

0

(∂tuν , vν) dt−
∫ T

0

(
∇ · (uν ⊗ uν), vν

)
dt− ν

∫ T

0

(∇uν ,∇vν) dt. (70)

By using the above estimates and (62), one can show finally that

lim
ν→0

( ∫ T

0

(
(∂tuν , vν) +

(
∇ · (uν ⊗ uν), vν

)
+ ν(∇uν ,∇vν)

)
dt

)
= 0, (71)

which completes the proof.

Remark 5.1. In [49] Constantin and Wu study the rate of convergence of solu-
tions of the 2D Navier–Stokes equations to solutions of the Euler equations in the
absence of physical boundaries and for finite intervals of time. Their main observa-
tion is that while the rate of convergence in the L2-norm for smooth initial data is of
order O(ν), it is of order O

(√
ν

)
for less smooth initial data. For instance, the order

of convergence O
(√
ν

)
is attained for vortex patch data with a smooth boundary.

In this case the fluid develops an internal boundary layer which is responsible for
this reduction in the order of convergence.

In the 2D case and for initial data of finite W 1,p-norm with p > 1 (and also
for initial data with the vorticity a finite measure with a ‘simple’ change of sign
[19], [50]), one can prove the existence of ‘weak solutions of the Euler dynamics’.
In the absence of physical boundaries, such solutions are limit points of a family of
(uniquely determined) Leray–Hopf solutions of the Navier–Stokes dynamics. How-
ever, these weak solutions of the Euler equations are not uniquely determined, and
the issue of the conservation of energy for them is, to the best of our knowledge,
completely open.

On the other hand, in a domain with physical boundary and with smooth initial
data, Theorem 5.1 shows a clear-cut difference between the following two situations
(the same remark is valid locally in time for the 3D problem).

i) The mean rate of dissipation of energy

ε =
ν

T

∫ T

0

∫
|∇uν(x, t)|2 dx dt

goes to zero as ν → 0, and the sequence uν of Leray–Hopf solutions converges
strongly to a regular solution ū of the Euler dynamics.

ii) The mean rate of dissipation of energy does not go to zero as ν → 0 (mod-
ulo the extraction of a subsequence), so the corresponding weak limit u of the
sequence uν does not conserve energy, that is,

1
2
|u(t)|2 < 1

2
|u(0)|2 for some t ∈ (0, T ),

and one of the following two scenarios may occur in the limit.
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a) In the limit one obtains a weak solution (not a strong solution) of the Euler
dynamics that exhibits energy decay. Such a scenario is compatible with a uniform
estimate for the Fourier spectrum

Eν(k, t) = |ûν(k, t)|2|k|d−1, ûν(k, t) =
1

(2π)d

∫
Rd

e−ikxuν(x, t) dx,

which can satisfy an estimate, uniform in ν, of the type

Eν(k, t) 6 C|k|−β (72)

with β < 5/3. Otherwise, this would be in contradiction to results of Onsager [37],
Eyink [38], and Constantin, E, and Titi [39].

b) No estimate of the type (72) is true uniformly with respect to the viscosity, and
the limit is not even a solution of the Euler dynamics, rather a solution of a mod-
ified system of equations with a term connected with turbulence modeling — an
‘eddy-viscosity’ term.

6. Deterministic and statistical spectrum of turbulence

6.1. Deterministic spectrum and Wigner transform. The purpose of this
subsection is the introduction of Wigner measures for the analysis (in dimensions
d = 2 and 3) of the Reynolds stress tensor

RT(uν)(x, t) = lim
ν→0

(
(uν − ū)⊗ (uν − ū)

)
, (73)

which appears in the weak limit process of solutions uν of the Navier–Stokes equa-
tions as ν → 0 (cf. (45)). (Note that RT(uν)(x, t) is independent of the viscosity ν,
but it depends on the sequence {uν}.) This point of view will be compared below
(cf. § 6.2) to ideas emerging from statistical theory of turbulence.

Let {uν , pν} be a sequence of Leray–Hopf solutions of the Navier–Stokes equa-
tions subject to the no-slip Dirichlet boundary condition in a domain Ω (with
a physical boundary). By the energy inequality (44) (possibly an equality in some
cases),

1
2
|uν(·, t)|2 + ν

∫ t

0

|∇uν(·, t)|2 dt 6
1
2
|u(·, 0)|2, (74)

the sequence {uν} converges (modulo the extraction of a subsequence) as ν → 0
in the weak-∗ topology of the Banach space L∞

(
(0, T );L2(Ω)

)
, to a divergence-free

vector field ū, and the sequence of distributions {∇pν} converges to a distribu-
tion ∇p̄. Moreover, the pair {ū, p̄} satisfies the system of equations

∇ · ū = 0 in Ω, ū · n⃗ = 0 on ∂Ω, (75)
∂tū+∇ · (ū⊗ ū) +∇ · RT(uν) +∇p̄ = 0 in Ω (76)

(cf. (46)). Being concerned with the behaviour of the solution inside the domain,
we consider an arbitrary open subset Ω′ whose closure is compact in Ω, that is,
Ω′ b Ω. Assuming that the weak-∗ limit function belongs to L2

(
(0, T );H1(Ω)

)
, we

introduce the function
vν = a(x)(uν − ū),
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where a(x) ∈ D(Ω) and a(x) ≡ 1 for all x ∈ Ω′. As a result of (74), and the above
assumptions, the sequence vν satisfies the uniform estimate

ν

∫ ∞

0

∫
Ω

|∇vν |2 dx 6 C. (77)

Consequently, the sequence vν is (in the sense of Gérard, Markowich, Mauser,
and Poupaud [51])

√
ν -oscillating. Accordingly, we introduce the deterministic

correlation spectrum, or Wigner transform, at the scale
√
ν :

R̂T(vν)(x, t, k) =
1

(2π)d

∫
Rd

y

eik·y
(
vν

(
x−

√
ν

2
y

)
⊗ vν

(
x+

√
ν

2
y

))
dy.

By means of the inverse Fourier transform one has

vν(x, t)⊗ vν(x, t) =
∫

Rd
k

R̂T(vν)(x, t, k) dk. (78)

The tensor R̂T(vν)(x, t, k) is the main object in § 1 of [51]. Modulo the extraction
of a subsequence, the tensor R̂T(vν)(x, t, k) converges weakly as ν → 0 to a non-
negative symmetric matrix-valued measure R̂T(x, t, dk), which is called a Wigner
measure or Wigner spectrum. Moreover, interior to the open subset Ω′ the weak
limit ū is a solution of the equation

∂tū+∇ · (ū⊗ ū) +∇ ·
∫

Rd
k

R̂T(x, t, dk) +∇p̄ = 0.

The Wigner spectrum has the following properties.
i) It is defined by a two-point correlation formula.
ii) It is an (x, t)-locally dependent object. Specifically, for any φ ∈ D(Ω)

lim
ν→0

(
1

(2π)d

∫
Rd

y

eik·y
(

(φvν)
(
x−

√
ν

2
y

)
⊗ (φvν)

(
x+

√
ν

2
y

))
dy

)
= |φ(·)|2R̂T(x, t, dk). (79)

Therefore, the construction of R̂T(x, t, dk) is independent of the choice of the func-
tion a(x) and the open subset Ω′.

iii) It is a criteria for turbulence: points (x, t) around which the sequence uν

remains smooth and converges locally strongly to ū as ν → 0 are characterized by
the relation

Trace
(
R̂T(x, t, dk)

)
= 0. (80)

iv) It is a microlocal object. In fact, it depends only on the behaviour of the
Fourier spectrum of the sequence φ(x)vν (or in fact φ(x)uν) in the frequency band

A 6 |k| 6 B√
ν
.
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Proposition 6.1. For any pair (A,B) of strictly positive constants and any test
functions

(
ψ(k), φ(x), θ(t)

)
∈ C∞0 (Rd

k)× C∞0 (Rd
x)× C∞0 (R+

t ),∫ ∞

0

∫
ψ(k)|φ(x)|2θ(t) Trace

(
R̂T(uν)

)
(x, t, dk) dx dt

= lim
ν→0

∫ ∞

0

θ(t)
∫

A6|k|6 B√
ν

(
ψ

(√
ν k

)
(̂φvν), (̂φvν)

)
dk dt. (81)

The only difference between this representation and that in [51] is that the weak
limit ū has been subtracted from the sequence uν . Otherwise, the formula (78)
together with the energy estimate is the first statement in Proposition 1.7 of [51],
while (81) is deduced from (1.32) in [51] by observing that the weak convergence
of (uν − ū) to 0 implies that

lim
ν→0

( ∫ ∞

0

θ(t)
∫
|k|6A

(
ψ

(√
ν k

)
(̂φvν), (̂φvν)

)
dk dt

)
= 0.

6.2. The energy spectrum in the statistical theory of turbulence. The
Wigner spectrum studied in the previous subsection turns out to be the deter-
ministic version of the ‘turbulence spectrum’, which is a classical concept in the
statistical theory of turbulence. The two points of view can be correlated by intro-
ducing homogeneous random variables. Let (M,F, dm) be an underlying probability
space. A random variable u(x, µ) is said to be homogeneous if for any function F
the expectation of F

(
u(x, µ)

)
, namely,

〈
F

(
u(x, ·)

)〉
=

∫
M

F
(
u(x, µ)

)
dm(µ),

is independent of x, that is,

∇x

(〈
F

(
u(x, ·)

)〉)
= 0.

In particular, if u(x, µ) is a homogeneous random vector-valued function, then

〈
u(x+ r, ·)⊗ u(x, ·)

〉
=

〈
u

(
x+

r

2
, ·

)
⊗ u

(
x− r

2
, ·

)〉
, (82)

which leads to the following proposition.

Proposition 6.2. Let u(x, µ) be a homogeneous random variable and denote by
û(k, µ) its Fourier transform. Then

〈
û(k, ·)⊗ û(k, ·)

〉
=

1
(2π)d

∫
Rd

e−ik·r
〈
u

(
x+

r

2
, ·

)
⊗ u

(
x− r

2
, ·

)〉
dr. (83)

Proof. The proof will be given for a homogeneous random variable which is peri-
odic with respect to the variable x, with basic periodic box of size 2πL. The



434 C. Bardos and E. S. Titi

formula (83) is then deduced by letting L go to infinity. From the Fourier series
expansion in (R/2πLZ)d,

û(k, µ)⊗ û(k, µ)

=
1

(2πL)2d

∫
(R/2πLZ)d

∫
(R/2πLZ)d

(
u(y, µ)e−i k·y

L ⊗ u(y′, µ)ei k·y′
L

)
dy′ dy

=
1

(2πL)2d

∫
(R/2πLZ)d

e−i k·r
L

∫
(R/2πLZ)d

(
u(y, µ)⊗ u(y + r, µ)

)
dy dr.

Averaging with respect to the probability measure dm, using the homogeneity of
the random variable u(x, µ), and integrating with respect to dy, we have

〈
û(k, ·)⊗ û(k, ·)

〉
=

1
(2πL)d

∫
(R/2πLZ)d

e−i k·r
L

〈
uν

(
y +

r

2
, ·

)
⊗ uν

(
y − r

2
, ·

)〉
dr.

(84)
This concludes our proof of Proposition 6.2.

Assuming now that in addition to homogeneity, the expectation of the two-point
correlation tensor

〈
u(x+ r, ·)⊗ u(x, ·)

〉
is isotropic (that is, it does not depend on

the direction of the vector r, but only on its length), we obtain the formula

〈
û(k, ·)⊗ û(k, ·)

〉
=

1
(2πL)d

∫
(R/2πLZ)d

e−i k·r
L

〈
uν

(
y +

r

2
, ·

)
⊗ uν

(
y − r

2
, ·

)〉
dr

=
E(|k|)

Sd−1|k|d−1

(
I − k ⊗ k

|k|2

)
,

where S1 = 2π and S2 = 4π, and this defines the turbulence spectrum E(|k|).
Homogeneity implies that solutions of the Navier–Stokes equations satisfy a

local version of energy balance often called the Kármán–Howarth relation (cf. (85)
below). Specifically, let {uν , pν} be a solution of the forced Navier–Stokes equa-
tions in Ω (subject to either no-slip Dirichlet boundary condition in the presence
of a physical boundary, otherwise Ω is the whole space or a periodic box)

∂tuν +∇ · (uν ⊗ uν)− ν∆uν +∇pν = f.

Here uν and pν are random variables which depend on (x, t). Below we will drop
the explicit dependence on µ when this does not cause any confusion.

We multiply the Navier–Stokes equations by uν(x, t, µ) and assume the equality

1
2
∂t|uν(x, t, µ)|2 −∇x ·

(
(ν∇xuν − pνI)uν

)
(x, t, µ)

+ ν|∇xuν(x, t, µ)|2 = f(x, t) · uν(x, t, µ),

which in the 2D case is a proven fact. However, in the 3D case the suitable
solutions of the Navier–Stokes equations in the Caffarelli–Kohn–Nirenberg sense are
only known to satisfy a weaker form of the above relation, involving an inequality
instead of equality (cf. (43)).
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By the homogeneity assumption,〈(
(ν∇xuν − pνI)uν

)
(x, t, ·)

〉
does not depend on x, and therefore,〈

∇x ·
(
(ν∇xuν − pνI)uν

)
(x, t, ·)

〉
= ∇x ·

〈(
(ν∇xuν − pνI)uν

)
(x, t, ·)

〉
= 0.

Thus, the averaged pointwise energy relation

1
2
∂t

〈
|uν(x, t, ·)|2

〉
+ ν

〈
|∇uν(x, t, ·)|2

〉
=

〈
f(x, t) · uν(x, t, ·)

〉
(85)

is obtained. This equality is often called the Kármán–Howarth relation; it implies
that the quantities

e =
〈
|uν(x, t, ·)|2

〉
and ε(ν) =

1
t

∫ t

0

ν
〈
|∇uν(x, s, ·)|2

〉
ds

are uniformly bounded in time, under reasonable assumptions on the forcing term.
Finally, assume also that the random process is stationary in time. Then the

equation (85) gives an a priori estimate for the mean rate of dissipation of energy

ε(ν) = ν
〈
|∇uν(x, t, ·)|2

〉
which is independent of (x, t). With the forcing term f acting only on low Fourier
modes, one may now assume the existence of a region called the inertial range
where the turbulence spectrum E(|k|) behaves according to a universal power law.
The term ‘inertial’ refers to the fact that in this range of wave numbers the energy
cascades from low modes to high modes with no leakage of energy. That is, there
are no viscous effects in this range and only the inertial term (u · ∇)u is active.
Combining the above assumptions of homogeneity, isotropy, and stationarity of the
random process, together with the existence of an inertial range of size

A 6 |k| 6 Bν−
1
2

where the spectrum behaves according to a power law, we finally get the ‘Kol-
mogorov law’

E(|k|) ≃ ε(ν)
2
3 |k|− 5

3 , (86)

using dimensional arguments in the three-dimensional case. It is important to keep
in mind the fact that this derivation is based on the analysis of a random family
of solutions. Therefore, the formula (86) combined with the formula (84) implies
that in the average the solutions have a spectrum which behaves in the turbulent
regime according to the prescription〈

ûν(k, t, ·)⊗ ûν(k, t, ·)
〉

=
1

(2πL)d

∫
(R/LZ)d

e−i k·r
L

〈
uν

(
y +

r

2
, t, ·

)
⊗ uν

(
y − r

2
, t, ·

)〉
dr

≃ ε(ν)
2
3 |k|− 5

3

4π|k|d−1

(
I − k ⊗ k

|k|2

)
.
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Remark 6.1. The main difficulty in the full justification of the above derivation is
the construction of a probability measure dm on the ensemble of solutions of the
Navier–Stokes equations that would satisfy the conditions of homogeneity, isotropy,
and stationarity. In particular, the construction of such a measure should be uni-
formly valid when the viscosity ν tends to 0; see, for instance, the books of Vishik
and Fursikov [52] and of Foias et al. [53] and their references for further study
regarding this challenging problem.

The next difficulty (which is a controversial subject) is the justification for the
spectrum of an inertial range with a power law. In Foias et al. [53] (see also
Foias [54]) it was established, for example, that there is an inertial range of wave
numbers where one has a forward energy cascade. However, we are unaware of a rig-
orous justification for a power law in this inertial range.

Nevertheless, the construction of a power law of the spectrum is often used as
a benchmark for validation of numerical computations and experiments. Since in
general one would have only one run of an experiment or one run of a simulation,
Birkhoff’s theorem corresponding to assuming ergodicity is then used. This allows
the replacement of the ensemble average by the time average. For instance, in the
presence of a forcing term one may assume in addition to stationarity that for
almost all solutions (that is, for almost every µ)

lim
T→∞

1
T

∫ T

0

uν

(
y+

r

2
, t, µ

)
⊗uν

(
y− r

2
, t, µ

)
dt =

〈
uν

(
y+

r

2
, t, ·

)
⊗uν

(
y− r

2
, t, ·

)〉
,

which would give the following relation for almost every solution uν :

lim
T→∞

1
T

∫ T

0

uν(k, t, µ)⊗ ûν(k, t, µ) dt

=
1

(2π)d

∫
Rd

e−ik·r
〈
uν

(
y +

r

2
, t, ·

)
⊗ uν

(
y − r

2
, t, ·

)〉
dr

=
〈
û(k, t, ·)⊗ û(k, t, ·)

〉
≃ ε(ν)

2
3 |k|− 5

3

4π|k|d−1

(
I − k ⊗ k

|k|2

)
.

6.3. Comparison between deterministic and statistical spectra. The det-
erministic point of view considers families of solutions uν of the Navier–Stokes
dynamics with viscosity ν > 0, and interprets the notion of turbulence in terms of
the weak limit behaviour (the asymptotic behaviour of such sequences as ν → 0)
with the Wigner spectrum:

R̂T(x, t, dk)

= lim
ν→0

1
(2π)d

∫
Rd

y

eik·y
(

(uν − ū)
(
x−

√
ν

2
y, t

)
⊗ (uν − ū)

(
x+

√
ν

2
y, t

))
dy.

As already observed earlier, this is a local object (it takes into account the depen-
dence on (x, t)). Moreover, one could define the support of turbulence for such
a family of solutions as the support of the measure Trace R̂T(x, t, dk). Of course,
determining such a support is extremely hard and is a configuration-dependent
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problem. This is perfectly described in often-quoted words of Leonardo da Vinci
on this subject, in particular, in [55] (p. 112):

doue la turbolenza dellacqua sigenera
doue la turbolenza dellacqua simantiene plugho
doue la turbolenza dellacqua siposa.1

Up to this point nothing much can be said without extra hypotheses, except that
the formula (81) indicates the existence of an essential, if not an ‘inertial’, range

A 6 |k| 6 B√
ν
. (87)

On the other hand, the statistical theory of turbulence starts from hypotheses
(seemingly difficult to formulate in a rigorous mathematical setting) about the
existence of statistics (a probability measure) with respect to which the two-point
correlations for any family of solutions uν of the Navier–Stokes equations are homo-
geneous and isotropic. Under these assumptions one proves properties on the decay
of the turbulence spectrum. Moreover, from all these assumptions one obtains by
simple dimensional arguments that for averages of solutions with respect to the
probability measure dm(µ), the following formula holds in the inertial range:

〈
|ûν(k, t, ·)|2

〉
=

1
(2π)4

E(|k|)
|k|2

≃
(
ε(ν)

) 2
3 |k|− 11

3 . (88)

Finally, by assuming and using the stationarity (in time) of these two-point
correlations, and by applying sometimes the Birkhoff ergodic theorem, one should
be able to obtain for almost every solution the formula

lim
T→∞

1
T

∫ T

0

(
ûν(k, t, µ)⊗ ûν(k, t, µ)

)
dt

=
〈
ûν(k, t, ·)⊗ ûν(k, t, ·)

〉
≃

(
ε(ν)

) 2
3 |k|− 5

3

4π|k|d−1

(
I − k ⊗ k

|k|2

)
.

Remark 6.2. Some further connections between these two aspects of spectra may
be considered.

i) Assuming that near a point (x0, t0) the Wigner spectrum is isotropic, define
the local mean rate of energy dissipation as

ε(x0,t0)(ν) = ν

∫ ∞

0

∫
Ω

|φ(x, t)|2|∇uν(x, t)|2 dx dt, (89)

1Editor’s note: The English translation given in [55] is

where the turbulence of water is generated,

where the turbulence of water maintains for long,

where the turbulence of water comes to rest.
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where φ is a localized function near (x0, t0). Then one can prove that for |k| in the
range (87),

1
(2π)d

∫
Rd

y

eik·y
(

(uν − ū)
(
x−

√
ν

2
y, t

)
⊗ (uν − u)

(
x+

√
ν

2
y, t

))
dy

≃ ε(x0,t0)(ν)|k|
− 11

3

(
I − k ⊗ k

|k|2

)
as ν tends to zero.

ii) Since large-scale forcing and boundary effects tend to break isotropy, isotropy
can hold only at small spatial scales, and hence away from these effects. Since
the Wigner spectrum is localized and involves only a range of high wave numbers
(that is, small spatial scales), it is reasonable to ask for sufficient conditions which
guarantee the isotropy of the Wigner spectrum.

iii) Another approach for establishing the existence of an inertial range for a for-
ward energy cascade in 3D, and a forward enstrophy cascade in 2D, is presented
in [53] (see also references therein). This approach is based on statistically station-
ary solutions of the Navier–Stokes equations. These are time-independent probabil-
ity measures which are invariant under the solution operator of the Navier–Stokes
equations. Furthermore, in Foias [54] some semirigorous arguments are presented
to justify the Kolmogorov power law for the energy spectrum.

7. Prandtl and Kelvin–Helmholtz problems

In this section we assume that the sequence {uν} of solutions of the Navier–Stokes
equations with no-slip Dirichlet boundary condition (in the presence of a physical
boundary) converges to a solution of the Euler equations. According to Theorem 5.1
of Kato, in this situation one has

lim
ν→0

ν

∫ T

0

∫
{x∈Ω:d(x,∂Ω)<ν}

|∇uν(x, t)|2 dx dt = 0. (90)

However, since the tangential velocity of the solution of the Euler equations is
not zero on the boundary as ν → 0, a boundary layer is going to appear. On the
one hand, the scaling of the boundary layer has to be compatible with (90), and
on the other hand, the equations that model the behaviour in this boundary layer
have to reflect the fact that the problem is very unstable. This is because the insta-
bilities (and possible singularities) that occur near the boundary may not remain
confined near the boundary, and will in fact propagate inside the domain due to
the non-linear advection term in the Navier–Stokes equations. These considerations
explain why the Prandtl equations (PE) of the boundary layer are complicated.

There are good reasons to justify comparing the Prandtl equations with the
Kelvin–Helmholtz problem (KH).

1. Even though some essential issues remain unsolved for KH, it is much better
understood from the mathematical point of view than the PE problem. However,
the two problems share similar properties such as instabilities and appearance of
singularities.



Euler equations for incompressible ideal fluids 439

2. At the level of modeling (in particular, for the problem of the wake behind an
airplane and the vortices generated by the tip of the wings) it is not clear whether
turbulence should be described by singularities in KH or PE (or both)!

For simplicity these problems are considered in the 2D case, and for PE in the
half-space x2 > 0.

7.1. The Prandtl boundary layer. We start with the 2D Navier–Stokes equa-
tions in the half-plane x2 > 0 with the no-slip boundary condition uν(x1, 0, t) ≡ 0,

∂tu
ν
1 − ν∆uν

1 + uν
1∂x1u

ν
1 + uν

2∂x2u
ν
1 + ∂x1p

ν = 0, (91)
∂tu

ν
2 − ν∆uν

2 + uν
1∂x1u

ν
2 + uν

2∂x2u
ν
2 + ∂x2p

ν = 0, (92)
∂x1u

ν
1 + ∂x2u

ν
2 = 0, (93)

uν
1(x1, 0, t) = uν

2(x1, 0, t) = 0 for x1 ∈ R, (94)

and assume that inside the domain (away from the boundary) the vector field
uν(x1, x2, t) converges to the solution uint(x1, x2, t) of the Euler equations with
the same initial data. The tangential component of this solution on the boundary
x2 = 0 and the pressure are denoted by

U(x1, t) = uint
1 (x1, 0, t), P̃ (x1, t) = p(x1, 0, t).

We now introduce the scale ε =
√
ν. Taking into account that the normal

component of the velocity remains 0 on the boundary, we use the following ansatz,
which corresponds to a boundary layer in a parabolic PDE problem:(

uν
1(x1, x2)
uν

2(x1, x2)

)
=

(
ũν

1(x1, x2/ε)
εũν

2(x1, x2/ε)

)
+ uint(x1, x2). (95)

Inserting the right-hand side of (95) into the Navier–Stokes equations, returning to
the notation (x1, x2) for the variables

X1 = x1, X2 =
x2

ε
,

and letting ε go to zero, we obtain formally the equations

ũ1(x1, 0, t) + U1(x1, 0, t) = 0, (96)

∂x2 p̃(x1, x2) = 0 =⇒ p̃(x1, x2, t) = P̃ (x1, t), (97)

∂tũ1 − ∂2
x2
ũ1 + ũ1∂x1 ũ1 + ũ2∂x2 ũ1 = ∂x1 P̃ (x1, t), (98)

∂x1 ũ1 + ∂x2 ũ2 = 0, ũ1(x1, 0) = ũ2(x1, 0) = 0 for x1 ∈ R, (99)
lim

x2→∞
ũ1(x1, x2) = lim

x2→∞
ũ2(x1, x2) = 0. (100)

Remark 7.1. As an indication of the validity of the Prandtl equations we observe
that (95) is consistent with Theorem 5.1 of Kato. Specifically, thanks to (95) one
has

ν

∫ T

0

∫
Ω∩{d(x,∂Ω)6cν}

|∇uν(x, s)|2 dx ds 6 C
√
ν .
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Remark 7.2. The following example, constructed by Grenier [56], shows that the
Prandtl expansion cannot always be valid. In the case when the solutions are
considered in the domain

(Rx1/Z)× R+
x2
,

Grenier starts with a solutions uν
ref of the pressureless Navier–Stokes equations

given by

uν
ref =

(
uref

(
t, y/

√
ν

)
, 0

)
,

∂turef − ∂Y Y uref = 0,

where Y = y/
√
ν . Using a convenient and explicit choice of the function uref ,

together with some sharp results on instabilities, he constructs a solution of the
Euler equations of the form

ũ = uref + δv +O(δ2e2λt) for 0 < t <
1

λ log δ
.

He then shows that the vorticity generated by the boundary for the solution of
the Navier–Stokes equations (with the same initial data) is too strong to allow
convergence of the Prandtl expansion. One should observe, however, that once
again this is an example which involves solutions with infinite energy. It would be
interesting to see if such an example could be modified to belong to the class of
finite-energy solutions; and then to analyze how the modified finite-energy solution
might violate the Kato criterion in Theorem 5.1.

It is important to observe that in their mathematical properties the PE exhibit
the pathology of the situation that they are trying to model. First, one can prove the
following proposition.

Proposition 7.1. Let T > 0 be a finite positive time, and let
(
U(x, t), P (x, t)

)
∈

C2+α
(
Rt × (Rx1 ×R+

x2
)
)

be a smooth solution of the 2D Euler equations satisfying
at time t = 0 the compatibility condition U1(x1, 0, t) = U2(x1, 0, t) = 0 (note that
only the boundary condition U2(x1, 0, t) = 0 is preserved by the Euler dynamics).
Then the following statements are equivalent :

i) with initial data ũ(x, 0) = 0, the boundary condition ũ1(x1, 0, t) = U1(x1, 0, t)
in (96), and right-hand side in (97) given by P̃ (x1, t) = P (x1, 0, t), the Prandtl
equations have a smooth solution ũ(x, t), for 0 < t < T ;

ii) the solution uν(x, t) of the Navier–Stokes equations with initial data uν(x, 0) =
U(x, 0) and with the no-slip boundary condition at the boundary x1 = 0 converges
in C2+α to the solution of the Euler equations as ν → 0.

The fact that i) and ii) can fail for some t is related to the appearance of a detach-
ment zone and the generation of turbulence. This is well illustrated in the analysis
of the Prandtl equations written in the simplified form

∂tũ1 − ∂2
x2
ũ1 + ũ1∂x1 ũ1 + ũ2∂x2 ũ1 = 0, ∂x1 ũ1 + ∂x2 ũ2 = 0, (101)

ũ1(x1, 0) = ũ2(x1, 0) = 0 for x1 ∈ R, (102)
lim

x2→∞
ũ1(x1, x2) = 0, (103)

ũ1(x1, x2, 0) = ũ0(x1, x2). (104)
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Regularity in the absence of detachment corresponds to a theorem of Oleinik [57].
She proved that global smooth solutions of the above system do exist provided that
the initial profile is monotonic, that is, for any initial profile satisfying

ũ(x, 0) =
(
ũ1(x1, x2), 0

)
, ∂x2 ũ1(x1, x2) ̸= 0.

On the other hand, initial conditions with ‘recirculation properties’ leading to
a finite-time blowup have been constructed by E and Engquist [58] and E [59].
An interesting aspect of these examples is that the blowup generally does not occur
on the boundary, but rather inside the domain.

The above pathology appears in the fact that the PE are highly unstable. This
comes from the determination of ũ2 in terms of ũ1 in the equation

∂x1 ũ1 + ∂x2 ũ2 = 0.

Therefore, it is only with analytic initial data (in fact, analytic with respect to
the tangential variable is sufficient) that one can obtain (using an abstract ver-
sion of the Cauchy–Kovalevskaya theorem) the existence of a smooth solution of
the Prandtl equations on a finite time interval and the convergence to the solu-
tion of the Euler equations on the same time interval (Asano [60], Caflisch and
Sammartino [61], and Cannone, Lombardo, and Sammartino[62]).

7.2. The Kelvin–Helmholtz problem. The Kelvin–Helmholtz (KH) problem
concerns the evolution of a solution of the 2D Euler equations

∂tu+∇ · (u⊗ u) +∇p = 0, ∇ · u = 0 (105)

with initial vorticity ω(x, 0) a measure concentrated on a curve Γ(0).
This is already simpler than the PE because the pathology, if any, should in

principle be concentrated on a curve. Furthermore, the dynamics in this case
inherits the general properties of the 2D dynamics. In particular, it will obey the
equation

∂t(∇∧ u) + (u · ∇)(∇∧ u) = 0,

for the conservation (for smooth solutions) of the density of the vorticity. Therefore,
one can guarantee the existence of a weak solution when the initial vorticity ω(x, 0)
is a Radon measure. This was first done by Delort [19], assuming that the initial
measure has definite sign. Then the result was generalized to situations where the
change of sign was sufficiently simple (see [50]). However, this remarkable positive
result is impaired by the non-uniqueness result of Shnirelman [21].

For smooth solutions of the KH problem, that is, solutions with vorticity ω
a bounded Radon measure with support on the curve Σt = {r(λ, t), λ ∈ R}, the
velocity field is given for x /∈ Σt by the so-called Biot–Savart law:

u(x, t) =
1
2π
Rπ

2

∫
x− r′

|x− r′|2
ω(r′, t) ds′

:=
1
2π
Rπ

2

∫
x− r(λ′, t)
|x− r(λ′, t)|2

ω
(
r(λ′, t), t

)∂s(λ′, t)
∂λ′

dλ′. (106)
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Here r(λ, t) with λ ∈ R is a parametrization of the curve Σt, and s(λ, t) = |r(λ, t)| is
the corresponding arc length; Rπ

2
denotes the π

2 -counterclockwise rotation matrix

Rπ
2

=
(

0 −1
1 0

)
.

Furthermore, the velocity field u has two-sided limits u± as x approaches the
curve Σt. By virtue of the incompressibility condition one has the continuity con-
dition for the normal component of the velocity field, that is,

u− · n⃗ = u+ · n⃗,

where hereafter τ⃗ and n⃗ will denote the unit tangent and unit normal vectors to
the curve Σt, respectively. In addition, the average

⟨u⟩ =
u+ + u−

2

is given by the principal value of the singular integral appearing in (106):

v = ⟨u⟩ =
1
2π
Rπ

2
p. v.

∫
x− r′

|x− r′|2
ω(r′, t) ds′. (107)

Using the calculus of distributions, one can show that as long as the curve Σt

is smooth, the velocity field u defined above, being a weak solution of the Euler
equations

∂tu+∇ · (u⊗ u) +∇p = 0, ∇ · u = 0,

is equivalent to the density of the vorticity ω, and the curve Σt satisfies the coupled
system of equations

ωt − ∂s

(
ω(∂tr − v) · τ⃗

)
= 0, (108)

(rt − v) · n⃗ = 0, (109)

v(r, t) =
1
2π
Rπ

2
p. v.

∫
r − r′

|r − r′|2
ω(r′, t) ds′. (110)

The equations (108), (109), (110) do not completely determine r(λ, t). This is due
to the freedom in the choice of the parametrization of the curve Σt. Assuming that
ω ̸= 0, one can introduce a new parametrization λ(t, s) which reduces the problem
to the equation

∂tr(λ, t) =
1
2π
Rπ

2
p. v.

∫
r(λ, t)− r(λ′, t)
|r(λ, t)− r(λ′, t)|2

dλ′, (111)

or, introducing the complex variable z = r1 + ir2 with r = (r1, r2), one obtains the
Birkhoff–Rott equation

∂tz̄(λ, t) =
1

2πi
p. v.

∫
dλ′

z(λ, t)− z(λ′, t)
. (112)
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Remark 7.3. The following are certain mathematical similarities between the KH
problem and the PE.

1. As in the PE, one has for the evolution equation (112) a local (in time)
existence and uniqueness result in the class of analytic initial data. This is done
by implementing a version of the Cauchy–Kovalevskaya theorem (C. Sulem,
P.-L. Sulem, Bardos, and Frisch [63]).

2. As also for the PE, one can construct solutions that blow up in finite time.
3. One observes that the singular behaviour in experiments and numerical simu-

lations with the KH problem is very similar to the phenomena that can be observed
in the problem with the no-slip boundary condition as the viscosity approaches zero.

The best way to understand the structure of the KH problem is to use the fact
that the Euler equations are invariant under both space and time translations, and
under space rotations, and to consider a weak solution of the 2D Euler dynamics
either in the whole plane R2, satisfying

u ∈ C
(
(−T, T );L2(R2)

)
, T > 0,

or subject to periodic boundary conditions satisfying

u ∈ C
(
(−T, T );L2

(
(R/Z)2

))
.

Assuming that in a small neighbourhood U of the point (t = 0, z = 0) the vorticity
is concentrated on a smooth curve in the complex plane which takes the form

z(λ, t) =
(
αt+ β

(
λ+ εf(λ, t)

)
, f(0, 0) = ∇f(0, 0) = 0. (113)

Then using the relations ∇·u = 0, ∇∧u = ω and the Biot–Savart law, one obtains

ε|β|2∂tf̄(λ, t) =
1

2πi
p. v.

∫
{z(t,λ′)∈U }

dλ′

(λ− λ′)
(
1− ε f(λ,t)−f(λ′,t)

λ−λ′

) + E
(
z(λ, t)

)
(114)

where, here and below, E(z) denotes the ‘remainder’, which is analytic with respect
to z. Next, we use the expansion

1
2π

p. v.
∫

dλ′

(λ− λ′)
(
1− ε f(λ,t)−f(λ′,t)

λ−λ′

) dλ′
=

ε

2π
p. v.

∫
f(λ, t)− f(λ′, t)

(λ− λ′)2
dλ′ +

∑
n>2

εn

2π
p. v.

∫ (
f(λ, t)− f(λ′, t)

)n

(λ− λ′)(n+1)
dλ′

(115)

and employ for the Hilbert transform the formulae

1
2π

p. v.
∫
f(λ, t)− f(λ′, t)

λ− λ′
dλ′ = − i

2
sgn(Dλ)f, (116)

1
2π

p. v.
∫
f(λ, t)− f(λ′, t)

(λ− λ′)2
dλ′ = |Dλ|f, (117)
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to deduce from (114) and (115) that the real and imaginary parts of f(λ, t) =
X(λ, t) + iY (λ, t) are local solutions of the system

∂tX =
1

2|β|2
|Dλ|Y + εR1(X,Y ) + E1(X,Y ), (118)

∂tY =
1

2|β|2
|Dλ|X + εR2(X,Y ) + E2(X,Y ), (119)

or (
∂2

t +
1

4|β|4
∂2

λ

)
X = ε

(
∂tR1(X,Y )− 1

2|β|2
|Dλ|R2(X,Y )

)
+ ∂tE1(X,Y )− 1

2|β|2
|Dλ|E2(X,Y ), (120)(

∂2
t +

1
4|β|4

∂2
λ

)
Y = ε

(
∂tR2(X,Y )− 1

2|β|2
|Dλ|R1(X,Y )

)
+ ∂tE2(X,Y )− 1

2|β|2
|Dλ|E1(X,Y ). (121)

In (120) and (121) the terms

∂tE1(X,Y )− 1
2|β|2

|Dλ|E2(X,Y ) and ∂tE2(X,Y )− 1
2|β|2

|Dλ|E1(X,Y )

are the first-order derivatives of analytic functions with respect to (X,Y ) while the
terms

∂tR1(X,Y )− 1
2|β|2

|Dλ|R2(X,Y ) and ∂tR2(X,Y )− 1
2|β|2

|Dλ|R1(X,Y )

are the second-order derivatives of analytic functions with a small factor ε. There-
fore, one observes that, up to a small perturbation, the KH problem behaves like
a second-order constant-coefficient elliptic equation. This fact has several important
consequences.

1. It explains why the evolution equation is well-posed only on a short time
interval, and only with initial data belonging to the class of analytic functions.
It is like solving an elliptic equation simultaneously with both the Dirichlet and
Neumann boundary conditions.

2. It is a tool for the construction of solutions that blow up in finite time.
3. It explains, by an indirect regularity argument, the very singular behaviour

of the solution after the first breakdown of its regularity.
These three points are discussed in further detail below.

7.2.1. Local solution. When the curve Σt is a graph of a function, say y = y(x, t),
the equations (108)–(110) become

yt + yxv1 = v2, ∂tω + ∂x(v1ω) = 0, (122)

v1(t, x) = − 1
2π

p. v.
∫

R

y(x, t)− y(x′, t)ω(x′, t)

(x− x′)2 +
(
y(x, t)− y(x′, t)

)2 dx
′, (123)

v2(t, x) =
1
2π

p. v.
∫

R

(x− x′)ω(x′, t)

(x− x′)2 +
(
y(x, t)− y(x′, t)

)2 dx
′, (124)



Euler equations for incompressible ideal fluids 445

where (v1, v2) = v is the average velocity given in (107). Therefore, the above
evolution equations involve the two unknown functions y(x, t) and ω(x, t), which
is also the case for the Birkhoff–Rott equation (112), where the two unknowns are
the two components of r(s, t) =

(
x(s, t), y(s, t)

)
, or of z(s, t) = x(s, t) + iy(s, t)

in the complex notation. In fact, since the Birkhoff–Rott equation was obtained
by choosing the vorticity density as a parameter, one recovers this vorticity by the
formula

ω(s, t) =
1

|∂sz(s, t)|
.

Because the system is a local perturbation of a second-order elliptic equation, impos-
ing two constraints at t = 0 is similar to solving this elliptic equation simultaneously
with both Neumann and Dirichlet boundary conditions. It is known that in the
absence of stringent compatibility of the conditions (they are related by the so-called
Dirichlet to Neumann operator) such a problem can be solved only locally and with
analytic data. This is why the solution of (122)–(124) is obtained locally in time
under the assumption that the functions y(x, 0) and ω(x, 0) are analytic.

7.2.2. Singularities. For the construction of solutions with singularities one follows
the same idea, and uses the time reversibility of the 2D Euler equations. More
precisely, if one constructs solutions which are singular at t = 0 and regular on the
interval (0, T ], then just by changing the time variable t to T − t one has smooth
solutions at t = 0 that blow up at t = T . The first result in this direction was
obtained by Duchon and Robert [64]; the initial condition on the vorticity at t = 0
is relaxed, and one assumes that the solution y(x, t) goes to zero as t→∞. Then
one can regard the system (122)–(124) as a two-point Dirichlet boundary-value
problem with y(x, t) given for t = 0 and required to tend to zero as t → ∞. By
a perturbation method one proves the following proposition.

Proposition 7.2. There exists an ε > 0 such that for any initial data for which

y(x, 0) =
∫
eixξg(ξ) dξ, where

∫
|g(ξ)| dξ 6 ε, (125)

the problem (122)–(124) has a unique solution which goes to zero as t → ∞. Fur-
thermore, this solution is analytic (with respect to (x, t)) for all t > 0.

As mentioned above, this is a result about the formation of a singularity. It
exhibits (by changing the time variable t to T − t) an example of solutions which
are analytic for some time, but with no more regularity at a later time than what
is allowed by the equation (125). In fact, it was observed in some numerical exper-
iments in [65] and [66] that the first breakdown of regularity appears as a cusp
on the curve r(λ, t). This motivated Caflisch and Orellana [22] to introduce the
function

f0(λ, t) = (1− i)
{
(1− e−

t
2−iλ)1+σ − (1− e−

t
2+iλ)1+σ

}
(126)

which enjoys the following properties:
i) for any t > 0 the map λ 7→ f(λ, t) is analytic;
ii) for t = 0 the map λ 7→ f(0, λ) does not belong to the Hölder space C1+σ,

but it belongs to every Hölder space C1+σ′ with 0 < σ′ < σ;
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iii) the function
z0(λ, t) = λ+ εf0(λ, t)

is an exact solution of the linearized Birkhoff–Rott equation, or more pre-
cisely, one has

∂tf(λ, t) =
1
2π

p. v.
∫
f(λ, t)− f(λ′, t)

(λ− λ′)2
dλ′. (127)

Therefore, by using the ellipticity of this linear operator, one can prove by a per-
turbation method the following proposition.

Proposition 7.3. For sufficiently small ε > 0 there exists a function rε(λ, t) with
the following properties :

i) the function λ 7→ rε(λ, t) is analytic for t > 0;
ii) the function λ 7→ ε

(
f0(λ, t) + rε(λ, t)

)
is a solution of the Birkhoff–Rott

equation (112);
iii) the function λ 7→ rε(λ, t) is (for λ ∈ R, t ∈ R+) uniformly bounded in C2.

As a consequence of Proposition 7.3 (and of the reversibility in time) one can
establish the existence of analytic solutions to the Birkhoff–Rott equation (112),
say on the interval 0 6 t < T , such that at time t = T the map λ 7→ z(λ, t) does
not belongs to C1+σ at the point λ = 0.

7.2.3. Analyticity and pathological behaviour after the breakdown of regularity.
The local reduction of the KH problem to the equation

ε|β|2∂tf̄(λ, t) =
1

2πi
p. v.

∫
z(λ′,t)∈U

dλ′

(λ− λ′)
(
1− ε f(λ,t)−f(λ′,t)

λ−λ′

) +E
(
z(λ, t)

)
(128)

obviously requires some assumptions about the regularity of the function z(λ, t)
near the point (0, 0). However, when this reduction is valid it will, thanks to
the ellipticity, imply that the solution is C∞, and even analytic. Therefore, there
appears to be a threshold (say T) in the behaviour of the solutions of the KH
problem. Existence of such a regularity threshold is common in the study of
free-boundary problems. This threshold is characterized by the fact that any func-
tion with regularity stronger than T is in fact analytic, and that there may exist
solutions with less regularity than T. This has the following practical and important
consequence: regularity of the solutions that are smooth for t < T and singular after
the time t = T cannot be extended to t > T by solutions which are more regular
than the threshold T. Otherwise, the above theorem would lead to a contradiction.
This fact explains why after the breakdown of regularity the solution becomes very
singular.

For instance, it was shown by Lebeau [4] (and Kamotski and Lebeau [67] for
the local version) that any solution belonging to Cσ

t (C1+σ
λ ) near a point must

be analytic. As a consequence, if a solution constructed (by changing t to T − t)
according to the method of Caflisch and Orellana [22] could be continued after time
t = T , it would not be in any Hölder space C1+σ′ .

Therefore, the challenge (and an open problem) is to determine this threshold
of regularity that will imply analyticity. Up to now, the best (to the best of our
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knowledge) known result is due to Wu [5], [6]. The Cα
loc

(
Rt;C

1+β
loc (Rλ)

)
hypothesis is

replaced by H1
loc(Rt×Rλ). The estimates are obtained by explicitly using theorems

of David [42] saying that, for all chord arc curves Γ: s 7→ ξ(s) parameterized by
their arc length, the Cauchy integral operator

CΓ(f) = p. v.
∫

f(s′)
ξ(s)− ξ(s′)

dξ(s′)

is bounded in L2(ds).
The importance of this improvement is illustrated by a numerical experiment

in [68]. It is interesting to note that these results will apply to logarithmic spirals
r = eθ, θ ∈ R, but not to infinite-length algebraic spirals. What is observed is
that from a cusp singularity the solution evolves into a spiral which behaves like
an algebraic spiral, and therefore has infinite length. The results of [69] provide an
explanation of the fact that the spiral has to have infinite length.

After the appearance of the first singularity the solution becomes very irregular.
This leads to the issue of the definition of weak solution (a solution less regular than
the threshold T) not of the Euler equations themselves but of the Birkhoff–Rott
equation. For instance, Wu [5], [6] proposed the following definition.

A weak solution is a function α 7→ z(α, t) from R into C such that

∂t

( ∫
z̄(α, t)η(α) dα

)
=

1
4πi

∫∫
η(α)− η(β)

z(α, t)− z(β, t)
dα dβ

for any η ∈ C∞0 (R).
However, the problem is basically open, because we have no theorem on the

existence of such a solution. Furthermore, for physical reasons weak solutions of
the Birkhoff–Rott equation should provide weak solutions of the incompressible
Euler equations, but in fact this is not always the case, as is illustrated by the
Prandtl–Munk example (cf. [70]) with initial vortex sheet

ω0(x1, x2) =
x1√

1− x2
1

(
χ(−1,1)(x1)⊗ δ(x2)

)
, (129)

where χ(−1,1) is the characteristic function of the interval (−1, 1). By the Biot–Savart
law, the velocity v is constant:

v =
(

0,−1
2

)
. (130)

The solution of the Birkhoff–Rott equation is given by the formula

x1(t) = x1(0), x2(t) =
t

2
, ω(x1, x2, t) = ω0

(
x1, x2 +

t

2

)
.

On the other hand, it was observed in [70] that the velocity u associated with this
vorticity is not even a weak solution of the Euler equations. In fact, one has

∇ · u = 0 and ∂tu+∇x · (u⊗ u) +∇p = F, (131)
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where F is given by the formula

F =
π

8

(
δ

(
x1 + 1, x2 +

t

2

)
− δ

(
x1 − 1, x2 +

t

2

)
, 0

)
. (132)

This has led Lopes Filho, Nussenweig Lopes, and Schochet [71] to propose a weaker
definition which contains more freedom with respect to the parameter and may be
more adaptable.
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