Transport problems with
gradient penalization

Jean LOUET

International conference
Monge-Kantorovich optimal transportation problem,
transport metrics and their applications

June 7, 2012

Jean LOUET
Transport problems with gradient penalization



Outline

Introduction
The one-dimensional and uniform case
Introduction to the general case

Perspectives

Jean LOUET
Transport problems with gradient penalization



Introduction

problems with gradient penalization



Introduction

The more general formulation

Let be Q c RY a bounded open set, 1 € P(Q), v € P(RY); we
investigate the problem

inf { /Q c(x, T(X),VT(X))d,u(x)}

among the functions T : Q — RY, VT being the Jacobian matrix
of T, such that Ty = v.
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Motivations :

» this problem starts from the classical optimal transportation
theory (Monge, 1781) :

inf { /Q (¢, TO))da(x) : Topt = V}
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Introduction

Motivations :
» this problem starts from the classical optimal transportation
theory (Monge, 1781) :

inf { /Q (¢, TO))da(x) : Topt = V}

» link with the incompressible elasticity :
» minimization of the stress tensor, quatratic in VT
» the constraint involves | det V T|, which is equivalent to
conditions on the image measure T4 p for regular and
injective T
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Introduction

The quadratic case, if 1 has a density f :

inf{/ (IT(x) = x>+ |VT(x)P) f(x)dx} (1)
Q
If 0 < c<f < C < +4o0, the constraint is

T e HYQ) and Typ=v
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Introduction

The quadratic case, if 1 has a density f :

inf{/ (IT(x) = x>+ |VT(x)P) f(x)dx} (1)
Q
If 0 < c<f < C < +4o0, the constraint is

T e HYQ) and Typ=v

Let (T,)n be a minimizing sequence ; there exists T € H!(Q) and
(ng )k such that
Tp, — T a.e.on Q

and T satisfies the constraint on the image measure.
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Introduction

The quadratic case, if 1 has a density f :

inf{/ (IT(x) = x>+ |VT(x)P) f(x)dx} (1)
Q
If 0 < c<f < C < +4o0, the constraint is

T e HYQ) and Typ=v

Let (T,)n be a minimizing sequence ; there exists T € H!(Q) and
(ng )k such that
Tp, — T a.e.on Q

and T satisfies the constraint on the image measure.

= The problem (1) admits at least one solution.
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The one-dimensional and uniform case

The one-dimensional and uniform case
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The one-dimensional and uniform case

It is well-known (Brenier, 1987) that for the quadratic cost
c(x,y) = |y — x|? and < L, the Monge problem admits a
unique solution, which has the form T = V¢ where ¢ is convex.
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The one-dimensional and uniform case

It is well-known (Brenier, 1987) that for the quadratic cost
c(x,y) = |y — x|? and < L, the Monge problem admits a
unique solution, which has the form T = V¢ where ¢ is convex.

In dimension one, this means that T is nondecreasing.
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The one-dimensional and uniform case

It is well-known (Brenier, 1987) that for the quadratic cost
c(x,y) = |y — x|? and < L, the Monge problem admits a
unique solution, which has the form T = V¢ where ¢ is convex.

In dimension one, this means that T is nondecreasing.

For the problem with gradient c(x, T,VT) = |x — T|>+ |[VT|?:

> the nondecreasing T such that Txu = v is not optimal in
general ;
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The one-dimensional and uniform case

It is well-known (Brenier, 1987) that for the quadratic cost
c(x,y) = |y — x|? and < L, the Monge problem admits a
unique solution, which has the form T = V¢ where ¢ is convex.

In dimension one, this means that T is nondecreasing.

For the problem with gradient c(x, T,VT) = |x — T|>+ |[VT|?:

> the nondecreasing T such that Txu = v is not optimal in
general ;

> it is optimal if = £!.
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The one-dimensional and uniform case

If u = L, the optimality of the monotone T comes from the
following result :
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The one-dimensional and uniform case

If u = L, the optimality of the monotone T comes from the
following result :
Theorem (L.-Santambrogio '11)

Let | C R be a bounded interval. Let f : R™ — R be convex,
nondecreasing, nonnegative. Let U, T € WL1(I) such that

> [, F(JU(x)])dx < +o0
» T is nondecreasing and TyL! = U#El
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The one-dimensional and uniform case

If u = L, the optimality of the monotone T comes from the
following result :

Theorem (L.-Santambrogio '11)

Let | C R be a bounded interval. Let f : R™ — R be convex,
nondecreasing, nonnegative. Let U, T € WL1(I) such that

> [, F(JU(x)])dx < +o0
» T is nondecreasing and TyL! = U#El
Then [, f(T'(x))dx < 400 with the inequality

[ QUGN = [ fneoT 0x @
/ /

where n(x) = #U(T(x)), x € I.
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The one-dimensional and uniform case

Inequality (2) : sketch of the proof

The proof is elementary if U is piecewise C! and monotone, using

the formula 1 1
T’ = Z U’
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The one-dimensional and uniform case

Inequality (2) : sketch of the proof

The proof is elementary if U is piecewise C! and monotone, using

the formula 1 1
T’ = Z U’

We generalize to the case T, U € Wh1(/) considering a sequence
(Uk)k of such functions, verifying more :

» Uy — Uin Wh(1) and fo |U;| — fo |U] in L}(1)

» the sequence of corresponding monotone transport maps Ty

(i.e. such that (Ty)4L! = (Uk)xL1) is uniformly convergent
to T.
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The one-dimensional and uniform case

Inequality (2) : sketch of the proof

The proof is elementary if U is piecewise C! and monotone, using

the formula 1 1
T’ = Z U’

We generalize to the case T, U € Wh1(/) considering a sequence
(Uk)k of such functions, verifying more :

» Uy — Uin Wh(1) and fo |U;| — fo |U] in L}(1)

» the sequence of corresponding monotone transport maps Ty

(i.e. such that (Ty)4L! = (Uk)xL1) is uniformly convergent
to T.

We take the limit of the inequality at the rank k by semi-continuity
and -convergence techniques.
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The one-dimensional and uniform case

A counter-example in the non-Lebesgue case
We would like to get i € P([0,1]) and U, T with T
nondecreasing, U non-injective, Tup = Ugp and the inequality (2)
false.

Jean LOUET
Transport problems with gradient penalization



The one-dimensional and uniform case

A counter-example in the non-Lebesgue case
We would like to get i € P([0,1]) and U, T with T

nondecreasing, U non-injective, Tup = Ugp and the inequality (2)
false.
We take for U the triangle function :

U(x) =2xo0on [0,1/2], 1 —2x on [1/2,1]

and to each p, we associate the unique T nondecreasing such that
T#,u = U#N-
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The one-dimensional and uniform case

A counter-example in the non-Lebesgue case
We would like to get i € P([0,1]) and U, T with T

nondecreasing, U non-injective, Ty = Uxp and the inequality (2)
false.
We take for U the triangle function :

U(x) =2xo0on [0,1/2], 1 —2x on [1/2,1]
and to each u, we associate the unique T nondecreasing such that
T#,u = U#N-
We take p < L1 with

du  f aon[0,1/4]U[3/4,1]
drl ] 1 otherwise

(o will be fixed later, and p has to be renormalized)
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The one-dimensional and uniform case

We compute v = Ugpu and T. This gives T/ = a on [1 — 54, 1],

thus ,
/T’Pdu >
| 2

while [, [U'|Pdp = 2P(a + 1). Taking o large enough, the
inequality (2) becomes false.

(This stays true if we consider U — [, f(|U’]) with
f(x)/x — 400).
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Introduction to the general case

Introduction to the general case
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Introduction to the general case

Introduction to the general case
We consider the functional

JiT e /l((T(x) C X+ T(0)?) da(x)

Problem : which is the suitable functional space X to consider the
problem
inf{J(T): T e X, Tup=v}7?
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Introduction to the general case

Introduction to the general case
We consider the functional

JiT e /l((T(x) C X+ T(0)?) da(x)

Problem : which is the suitable functional space X to consider the
problem
inf{J(T): T e X, Tup=v}7?

» If we do not assume p to be regular, the condition T € Li(l)
does not guarantee the existence of T’ even at the weak sense

» We should ideally get the implication

)n bounded in X = m )i, Tn, — —a.e.
(Th)n bounded in X = 3T, (ng)k, T, Tu
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Introduction to the general case

Notion of tangential gradient

In any dimension, let u € L2(9).

Definition (Bouchitté-Buttazzo-Seppecher, Zhikov)
We say v € L2(Q)9 to be a gradient of u if :

u, — u

(un)n € DN { Vi, v in Li

We denote by I'(u) these set.
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Introduction to the general case

Notion of tangential gradient

In any dimension, let u € L2(9).

Definition (Bouchitté-Buttazzo-Seppecher, Zhikov)
We say v € L2(Q)9 to be a gradient of u if :

u, — u

)
in L
Vu, — v K

I(un)y € DQN {

We denote by I'(u) these set. We call tangential gradient of u, and
we denote by V, u, the element of ['(u) with minimal Li—norm. We
denote by H;; the space of u € L3, such that T (u) # 0.
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Introduction to the general case

Definition
There exists x — T,(x) a multifunction, called tangent space to p
such that, for v € (Li)d, we have the equivalence :

v el (0) & v(x) L T,(x) for p-a.e. x
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Introduction to the general case

Definition
There exists x — T,(x) a multifunction, called tangent space to p
such that, for v € (Li)d, we have the equivalence :

v el (0) & v(x) L T,(x) for p-a.e. x

Then for u € H;, and v € T'(u) we have :

Vyuu(x) = pr, ) (v(x)) for p-a.e. x
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Introduction to the general case

Definition
There exists x — T,(x) a multifunction, called tangent space to p
such that, for v € (Li)d, we have the equivalence :

v el (0) & v(x) L T,(x) for p-a.e. x

Then for u € H;, and v € T'(u) we have :

Vyuu(x) = pr, ) (v(x)) for p-a.e. x

Examples :
» if 11 is uniform on [0,1] x {0}9471, V,,u = (88—;’1,0, ...,O)

» if M is a k-dimensional manifold and 1 = H* |y, then
T,=Tm.
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Introduction to the general case

Caracterization in dimension 1

Let i = pa + ps be the Lebesgue decomposition of i, and :

» A a Lebesgue-negligible set on which is concentrated us ;
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Introduction to the general case

Caracterization in dimension 1
Let i = pa + ps be the Lebesgue decomposition of i, and :

» A a Lebesgue-negligible set on which is concentrated us ;

» f the density of u,, and

1
M = XEI:VE>O,/ - = +o00
IN]x—e,x+e[ f
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Introduction to the general case

Caracterization in dimension 1

Let i = pa + ps be the Lebesgue decomposition of i, and :
» A a Lebesgue-negligible set on which is concentrated us ;

» f the density of u,, and

1
M = XEI:VE>O,/ - = +o00
IN]x—e,x+e[ f

We show that :

{0}ifxe MUA
R otherwise

0= {
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Introduction to the general case

Arguments for the caracterization

T, = R outside of MU A : we want :

< up — 0 ) = v=0 L!—ae outside of M

/
u, —v
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Introduction to the general case

Arguments for the caracterization

T, = R outside of MU A : we want :

< up — 0 ) - v=0 L!—ae outside of M

/
u, —v

If J verifies [,(1/f) < +o0 and ¢ € D(J) :

el < ()" ([F) "
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Introduction to the general case

Arguments for the caracterization

T, ={0} on M : we want :
up — u

(Vu e H}L) (3v, (un)n) u, — v
V|M =0
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Introduction to the general case

Arguments for the caracterization

T, ={0} on M : we want :

(Vu e H}L) (3v, (un)n) u,—v

For any interval J containing an element of M, we have
J;1/f = +00 and the injection Li < L' is false; thus

inf{/ |V/|?f : v = u at the bounds of J} =0;
J

we use this proprety to approach v in Li by regular functions
which the derivatives on M are arbitrary small (for the Li—norm).
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Introduction to the general case

Corollary
The problem

inf {/ (T) = x)?+ (VuT(x))) du(x) : T € Hy(l), Tp = u}

/

has at least one solution.
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Introduction to the general case

Corollary
The problem

inf {/ (T) = x)?+ (VuT(x))) du(x) : T € Hy(l), Tp = u}

/

has at least one solution.

Idea : let (T,), be a minimizing sequence.

> Outside of M U A, we have the injection L2 < L}, _ and thus

loc
H}L — BV = convergence p-a.e.

» On MUA, V, T = 0. We substitute T, by the nondecreasing
map which maps p|pua on the same measure.

» We verify that the limit function satisfies Tuu = v.
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Introduction to the general case

Partial results in any dimension

» We still have 7, = RY, a.e. for the regular part of i, outside
of the set

1
M = XEQ:VE>O,/ - =+o00
B(X,E)ﬁQf
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Introduction to the general case

Partial results in any dimension

» We still have 7, = RY, a.e. for the regular part of i, outside
of the set

1
M = XEQ:VE>O,/ - =+o00
B(X,a)ﬁQf

» We can build f with [ 1/f = 400 on any open set, but

inf{/ |Vul?f:u=¢on 89} >0
Q

The construction that we performed in the one-dimensional
case to get T, = 0 on M does not work if d > 2 in that case

» However, it is possible to show that T, = {0} on each atom
of the measure p
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Perspectives

problems with gradient penalization



More or less short term :
> precise description of T, in any dimension ;
» result of “pointwise compactness”’ in Hﬁ;

> extension to a power p # 2
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More or less short term :
> precise description of T, in any dimension ;
» result of “pointwise compactness”’ in Hﬁ;
> extension to a power p # 2

More longer term :
» optimality conditions on T ;

» behavior with respect to the measure p; link between

inf{l1T(x) = xlli = Ty = v}

and a “Benamou-Brenier’ formulation

1
inf {/ Vel byt = po = o o1 = v, Depe + div(peve) = O}
0
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Thank you for your attention!

Cnacubo 3a BHUMAaHUe !
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