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Congested transport: introduction

From an overall point of view...

Optimal Transport Problem, where the infinitesimal cost obeys

“spreading the mass during the transport, we save cost”

in a point, if our transport accumulates an amount of mass m, we
pay

H(m) where H convex and superlinear (given)

The total cost is something of the type

∫
H(m(x))dx

...and from an individual one
A game with many players going from certain sources to their
destinations using a system of roads

“travel time on a road increasingly depends on the traffic ”

i.e. my satisfaction is affected by choices of the other players



Congested transport: introduction

From an overall point of view...

Optimal Transport Problem, where the infinitesimal cost obeys

“spreading the mass during the transport, we save cost”

in a point, if our transport accumulates an amount of mass m, we
pay

H(m) where H convex and superlinear (given)

The total cost is something of the type

∫
H(m(x))dx

...and from an individual one
A game with many players going from certain sources to their
destinations using a system of roads

“travel time on a road increasingly depends on the traffic ”

i.e. my satisfaction is affected by choices of the other players



Anisotropic transport costs

The typical costs we will consider are of the form

(C) H(m) = H1(m1) + · · ·+ HN(mN)

where mi = mass transported in direction ei

Motivation
The model we are going to present is a continuous version of a
classical discrete model settled on networks. Question: do the
discrete models “converge” to the continuous one, for very dense
networks? Yes, if the network is a regular grid of size ε� 1, with
a cost that at each node distinguish between the mass entering
with different directions (Baillon-Carlier)

The limit continuous model has a cost of the form (C), which
“keeps memory” of the geometry of the approximating problems
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Goals of the talk

From an overall point of view...

Prove existence of an optimal transport, i.e. existence of a way
to accomplish the transport which minimizes the total cost and
show regularity properties for this optimizer.

In particular, we will
be lead to analyze widely degenerate equations like

−
[
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|ux |

]
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−
[

(|uy | − 1)q−1
+
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|uy |

]
y

= f

...and from an individual one
Prove existence of equilibrium situations, i.e. existence of
configurations where players have no interest in changing
unilaterally their choice, in order to avoid congested routes
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A continuous model for congested transport

We start with the overall optimization point of view

Data of the problem

I a “city” Ω ⊂ RN

I ρ0, ρ1 ∈ P(Ω) probability measures

I “admissible couplings” (transport plans)

Π ⊂ Π(ρ0, ρ1) = {γ ∈ P(Ω× Ω) : (πx)#γ = ρ0, (πy )#γ = ρ1}

I a density-cost function H : RN → R+ smooth

H(z) = H1(z1) + · · ·+ HN(zN)

with Hi strictly convex, Hi (0) = 0 and Hi (t) ' |t|p, for p > 1



The cost of transportation

Unknown of the problem: traffic assignments

Q ∈ P(Lip([0, 1]; Ω)) such that (e0, e1)#Q ∈ Π

where et(σ) = σ(t) for every curve σ

Each Q gives rise to a traffic intensity

iQ = (iQ,1, . . . , iQ,N)

positive vector measure defined on Ω by∫
Ω
ϕ(x) diQ,j(x) =

∫
Lip([0,1];Ω)

(∫ 1

0
ϕ(σ(t)) |σ′j(t)| dt

)
dQ(σ)

The problem

Total cost =

∫
Ω
H(iQ(x)) dx if iQ � L N and +∞ otherwise
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A pair of (not congested) example

Anisotropic, not congested

If we take the density-cost H(z) = |z1|+ · · ·+ |zN | then

Total cost =

∫
Ω

d‖iQ‖`1 =

∫
length`1(σ) dQ(σ)

and the minimization is equivalent to Monge problem with cost
c(x , y) = ‖x − y‖`1

Neither anisotropic, nor congested

The traffic intensity iQ is a scalar measure, if we take H(z) = |z |

Total cost =

∫
Ω

d iQ =

∫
length(σ) dQ(σ)

and we are back to the standard Monge problem with cost
c(x , y) = |x − y |. The optimal iQ is given by the transport
density



A pair of (not congested) example

Anisotropic, not congested

If we take the density-cost H(z) = |z1|+ · · ·+ |zN | then

Total cost =

∫
Ω

d‖iQ‖`1 =

∫
length`1(σ) dQ(σ)

and the minimization is equivalent to Monge problem with cost
c(x , y) = ‖x − y‖`1

Neither anisotropic, nor congested

The traffic intensity iQ is a scalar measure, if we take H(z) = |z |

Total cost =

∫
Ω

d iQ =

∫
length(σ) dQ(σ)

and we are back to the standard Monge problem with cost
c(x , y) = |x − y |. The optimal iQ is given by the transport
density



Existence of an optimal transport

Theorem (Carlier-Jimenez-Santambrogio)

The problem

(W) = min

{∫
Ω
H(iQ) dx : Q s.t. (e0, e1)#Q ∈ Π , iQ ∈ Lp

}
admits a solution Q̃

Sketch of the proof:

I for a minimizing sequence

C ≥
∫

Ω
H(iQn) &

∫
Ω
|iQn | '

∫
length(σ) dQn(σ)

I up to a time reparametrization, {Qn}n∈N is compact and each
iQn is unchanged

I the weak Lp limit of iQn is “greater” than iQ and H is
“increasing”
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For the case Π = Π(ρ0, ρ1)

a more comfortable formulation is available...



Beckmann’s continuos model of trasportation

Transportation activities are described by Φ : Ω→ RN , s.t.

I |Φ(x)| = amount of mass passing from x

I Φ(x) |Φ(x)|−1 = direction of transportation in x

I divΦ = ρ0 − ρ1, i.e. the transport is ruled by the balance
demand/offer

I H(Φ) = cost for transporting |Φ|, with direction Φ/|Φ|

Beckmann’s Optimization problem

(B) = min
Φ∈Lp

{∫
Ω
H(Φ(x)) dx : divΦ = ρ0 − ρ1, 〈Φ, νΩ〉 = 0

}

For H(z) = |z |, this is the dual formulation of Kantorovich
problem max

ϕ 1−Lip
〈ϕ, ρ0 − ρ1〉
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What is the relation between Beckmann’s model

and the previous one?



The two models are equivalent

Restriction We consider the case Π = Π(ρ0, ρ1)

Theorem (B.-Carlier-Santambrogio)

Let Ω ⊂ RN bounded with smooth boundary. Assume that:

I ρi = fi ·L N , with fi ∈ Lp(Ω).

Then we have

(W) = (B)

and for every optimal Q, we can construct an optimal Φ with the
same cost (and viceversa)
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Proof of the equivalence: (B) ≤ (W)

Given Q optimal, construct a vector field ΦQ such that

〈ϕ,ΦQ〉 =

∫
Lip([0,1];Ω)

(∫ 1

0
〈ϕ(σ(t)), σ′(t)〉 dt

)
dQ(σ)

then

I ΦQ is admissibile for (B)

I |ΦQ,j(x)| ≤ iQ,j(x) (since the traffic defined in a vectorial
way allows for some “mass cancellations”)

I H is increasing in each variable

so in conclusion

(B) ≤
∫

Ω
H(ΦQ) ≤

∫
Ω
H(iQ) = (W)



Proof of the equivalence: (B) ≥ (W)

Idea
If Φ optimal, construct QΦ by following the flow of λt Φ for a
suitable scalar λt such that

(?) iQΦ
= (|Φ1|, . . . , |ΦN |)

Heuristics

I set µt = (1− t) ρ0 + t ρ1 and take Q concentrated on the
flow Xt of the field Φ/µt

I (Xt)#ρ0 and µt coincide, since by the method of
characteristics they both solve the same continuity
equation...

I ...Q transports ρ0 to ρ1, since X0 = Id and
(X1)#ρ0 = ρ1

I finally, we have (?)
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To give sense to the previous heuristics, we need the following
“probabilistic method of characteristics”

Theorem (Ambrosio-Crippa, Maniglia)

Let µ : [0, 1]→P(Ω) a curve of measures and
v : [0, 1]× Ω→ RN such that∫ 1

0

∫
Ω
|v(t, x)| dµt(x) dt <∞

with (µ, v) solving the continuity equation (in distributional sense).
Then there exists a Q ∈P(C ([0, 1]; Ω)) such that

µt = (et)#Q and σ′(t) = v(t, σ(t)) for Q−a.e. σ

Remark
The choice µt = (1− t) ρ0 + t ρ1 and v = Φ/µt verifies the
hypothesis



Some remarks on this procedure

Remark 1
Not only we have equality of the minima, but the two models
describe the same optimal structures (using two
complementary point of views)

Remark 2
The deterministic flow construction becomes feasible if the optimal
Φ is smooth enough (i.e. Lipschitz or Sobolev) and the data ρ0, ρ1

are smooth and bounded from below. In this case, we can
construct an optimal traffic assignment supported on a real flow,
not just on a probabilistic one
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The latency functions

We have to quantify the effects of congestion on the routes

Latency functions

Increasing functions hj ≥ 1 such that

hj(iQ,j) = cost (per unit length) of passing from a point
where the traffic in direction ej is iQ,j

Some important comments

1. the cost expressed by hj should be thought as a time, i.e.

[hj ] =
time

length
=

1

speed

in fact “the higher the congestion, the slower we can move”

2. why do we require hj ≥ 1? because

“you can not move with infinite speed on an empty road”
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Equilibrium issues

Individual cost for using the road σ ∈ C x ,y

ch(σ) :=
N∑
j=1

∫ 1

0
hj ◦ iQ,j(σ(t)) |σ′j(t)| dt

Finsler length, averaged according the traffic, i.e. congestion
effects compensate the difference of length

Some individuals could decide to change their path, taking a less
crowded one. This change of strategy alters the traffic distribution
Q and so the cost paid by the others and so on and on...

Goal
Does a Nash equilibrium exist? What does it mean here?
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Wardrop equilibrium

Definition
Q is a Wardrop equilibrium for h = (h1, . . . , hN) if it gives full
mass to the geodesics of the traffic-dependent metric

dQ(x , y) = inf


N∑
j=1

∫ 1

0
hj ◦ iQ,j(σ(t))|σ′j(t)| dt :

σ(0) = x
σ(1) = y


Important remark

The metric dQ can be defined when hj ◦ iQ,j ∈ Ls(Ω), with s > N

Why? Because...

If ξ ∈ C (Ω;R+), the metric dξ(x , y) = inf

∫ 1

0
ξ(σ) |σ′(t)| dt

has an Hölder estimate in terms of the Ls norm of ξ =⇒ define dQ

as the supremum of dξn as ξn → h ◦ iQ in Ls
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Given the data ρ0, ρ1 and Π and the latency functions hj ,

does a Wardrop Equilibrium exist?



Existence via convex optimization

Theorem (Carlier-Jimenez-Santambrogio)

Let Π be convex and suppose that

∇H = (h1, . . . , hN)

Then Q̃ minimizes (W) if and only if

1. Q̃ is a Wardrop equilibrium for (h1, . . . , hN)

2. γ̃ = (e0, e1)#Q̃ ∈ Π solves the MK problem

min

{∫
Ω×Ω

d
Q̃

(x , y) dγ(x , y) : γ ∈ Π

}

Proof: some hints

I Convex perturbations to derive Euler-Lagrange inequality, i.e.∫
Ω
〈∇H(i

Q̃
), iQ〉 ≥

∫
Ω
〈∇H(i

Q̃
), i

Q̃
〉 for every Q

I necessary conditions are sufficient as well
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Some comments

I A global optimum for the cost H, gives a Wardrop equilibrium
for the marginal costs (∂x1H, . . . , ∂xNH)

I at equilibrium Q̃, the total cost

∫
Ω
H(i

Q̃
) minimized is not

the total cost paid by the commuters...

I ...the latter being given by∫
Ω
〈∇H(i

Q̃
), i

Q̃
〉

I Open problem: how large can be the ratio∫
Ω
〈∇H(i

Q̃
), i

Q̃
〉

min

∫
Ω
〈∇H(iQ), iQ〉

:= price of anarchy
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A significant choice for the cost

Basic requirement

We want costs H such that

“marginal costs ∂xjH are latency functions, i.e. ∂xjH ≥ 1”

Model cost

H(z) :=
N∑
i=1

|zi |p

p
+ |zi |, z ∈ RN

Remark
For |z | � 1, we have H(z) ' |z |, i.e.

“congestion effects are negligible for small masses”

Restriction
We require p < N/(N − 1), so that ∂xjH ◦ iQ ∈ Ls(Ω) s > N
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Optimization and optimality for (B)

Beckmann’s dual

sup

{
〈ϕ, ρ0 − ρ1〉 −

∫
Ω
H∗(∇ϕ(x)) dx : ϕ ∈W 1,q(Ω)

}

Primal-dual optimality conditions

∇ϕ0 ∈ ∂H(Φ0) or Φ0 = ∇H∗(∇ϕ0)

Key point

Regularity of Φ0  regularity of solutions to

(BVP) div∇H∗(∇u) = f +

(
homogeneous Neumann

conditions

)

Wide degeneracy H∗(ξ) =
N∑
i=1

(|ξi | − 1)q+
q

q = p/(p − 1)
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Regularity estimates for (B)

Local “almost” L∞ estimate (B.-Carlier-Santambrogio)

Let q ≥ 2 and f ∈ L∞(Ω) with zero-mean. If ϕ0 ∈W 1,q(Ω) is a
weak solution of (BVP) then

∇ϕ0 ∈ Lr
loc(Ω), for every r ≥ q

Local Sobolev estimate (B.-Carlier-Santambrogio)

Let q ≥ 2 and f ∈W 1,p(Ω) with zero-mean. If ϕ0 ∈W 1,q(Ω) is a
weak solution of (BVP) then

(|∂xjϕ0| − 1)
q
2
+

∂xjϕ0

|∂xjϕ0|
∈W 1,2

loc (Ω), j = 1, . . . ,N

Corollary (Regularity of Beckmann’s optimizer)

Φ0 = ∇H∗(∇ϕ0) ∈W 1,s(Ω;RN) ∩ Lr (Ω;RN)

for every s < 2 and every r ≥ q



Regularity estimates for (B)

Local “almost” L∞ estimate (B.-Carlier-Santambrogio)

Let q ≥ 2 and f ∈ L∞(Ω) with zero-mean. If ϕ0 ∈W 1,q(Ω) is a
weak solution of (BVP) then

∇ϕ0 ∈ Lr
loc(Ω), for every r ≥ q

Local Sobolev estimate (B.-Carlier-Santambrogio)

Let q ≥ 2 and f ∈W 1,p(Ω) with zero-mean. If ϕ0 ∈W 1,q(Ω) is a
weak solution of (BVP) then

(|∂xjϕ0| − 1)
q
2
+

∂xjϕ0

|∂xjϕ0|
∈W 1,2

loc (Ω), j = 1, . . . ,N

Corollary (Regularity of Beckmann’s optimizer)

Φ0 = ∇H∗(∇ϕ0) ∈W 1,s(Ω;RN) ∩ Lr (Ω;RN)

for every s < 2 and every r ≥ q



Regularity estimates for (B)

Local “almost” L∞ estimate (B.-Carlier-Santambrogio)

Let q ≥ 2 and f ∈ L∞(Ω) with zero-mean. If ϕ0 ∈W 1,q(Ω) is a
weak solution of (BVP) then

∇ϕ0 ∈ Lr
loc(Ω), for every r ≥ q

Local Sobolev estimate (B.-Carlier-Santambrogio)

Let q ≥ 2 and f ∈W 1,p(Ω) with zero-mean. If ϕ0 ∈W 1,q(Ω) is a
weak solution of (BVP) then

(|∂xjϕ0| − 1)
q
2
+

∂xjϕ0

|∂xjϕ0|
∈W 1,2

loc (Ω), j = 1, . . . ,N

Corollary (Regularity of Beckmann’s optimizer)

Φ0 = ∇H∗(∇ϕ0) ∈W 1,s(Ω;RN) ∩ Lr (Ω;RN)

for every s < 2 and every r ≥ q



A sketch of the proof: higher integrability of the gradient
First of all, we try a quick review of the standard theory

I First step: equation for the gradient

div (D2H∗(∇ϕ0)∇∂xjϕ0) = ∂xj f

this is linear and degenerate elliptic

I usually, convex increasing functions g(|∇ϕ0|) (ex. power
functions) are subsolutions and this would suffice to produce
an iterative scheme of reverse Hölder inequalities

I how does it work?:

suppose that

c |z |q−2 Id ≤ D2H∗(z) ≤ C |z |q−2 Id for M ≤ |z |

then use test functions like (|∇ϕ0|k − (2M)k)+ and get the
unnatural inequality (Caccioppoli)∫

B%

∣∣∣∇(|∇ϕ0|βk
)∣∣∣2 . (R − %)−2

∫
BR

(
|∇ϕ0|βk

)2
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I combining with Sobolev inequality, we get the reverse Hölder
inequalities

‖∇ϕ0‖L2∗βk (B%) . (R − %)
− 1

2∗βk ‖∇ϕ0‖L2βk (BR)

I iterating, we get ∇ϕ0 ∈ L∞

...and for our H∗?

Problems

I this is not uniformly convex, neither globally nor “at infinity”

I ellipticity fails each time a component of ∇ϕ is small

I D2H∗ has a diagonal structure, with

h′′i (∂xjϕ0) ' |∂xjϕ0|q−2 on the diagonal

imitating the previous proof and choosing test functions that
“try to mimick the Hessian”, ex. |∂xjϕ|k , we end up with...
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I ...partial derivatives are mixed! i.e. surrogate of Caccioppoli
inequality

N∑
i=1

∫
h′′i (∂xiϕ0)

∣∣∣∂xi (∂xjϕ0)β+1
∣∣∣2 . ∫ |∇ϕ0|q+2β

I key point: a surrogate of Sobolev inequality for the LHS,
something of the type

N∑
i=1

∫
h′′i (∂xiϕ0) |∂xiϕ0|2 |∂xjϕ0|α ≤

N∑
i=1

∫
h′′i (∂xiϕ0)

∣∣∣∂xi (∂xjϕ0)β+1
∣∣∣2

+ (lower order terms)

with α > 2β

I Di Benedetto’s trick: the latter is obtained by inserting the
test function ϕ0 |∇ϕ0|α ξ2 in the equation (not in the derived
equation) — for this we need to know that ϕ0 ∈ L∞ (easy)
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A sketch of the proof: Sobolev estimate

I first of all: in general ϕ0 6∈W 2,q

I we use Nirenberg’s method (i.e. the method of incremental
ratios), to differentiate the equation in a discrete sense...

I ...and the monotonicity and growth properties of ∇H∗, i.e.

〈∇H∗(z)−∇H∗(w), z − w〉 & |G (z)− G (w)|2

where

G (z) =
N∑
i=1

(|zi | − 1)
q
2
+

zi
|zi |

ei

I finally, observe that Φ0 = f (G ), with f locally Lipschitz



Regularity estimates for (W)

Hypothesis

Let ρ0, ρ1 ∈P(Ω) be such that ρi = fi ·L N with fi ∈ L∞

Using the equivalence (W) = (B), we get:

I the optimal iQ is in Lr
loc for every r ≥ p

I ∇H(iQ) is more integrable =⇒ we can extend the range of p
for which Wardrop equilibriums are well-defined

, i.e. we can
pass from p < N/(N − 1) to p ≤ 2

I if ρ0 and ρ1 are bounded from below by δ, we can estimate∫
length(σ)s dQ(σ) ≤ Cs,δ for every s ≥ 1

i.e. “optimal routes have almost uniformly bounded lengths”
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Thanks for your attention

“Discipline is never an end in itself, only ameans to an end ′′



Further readings

Discrete and continuous models

I J. G. Wardrop, Proc. Inst. Civ. Eng., 2 (1952)

I M. J. Beckmann, Econometrica, 20 (1952)

I G. Carlier, C. Jimenez, F. Santambrogio, SIAM J. Control
Opt. 47 (2008)

A pioneering paper on anisotropic equations

I N. Uralt’seva, N. Urdaletova, Vest. Leningr. Univ. Math., 16
(1984)

The isoptropic case

I L. B., Nonlinear Anal., 74 (2011)

I L. B., G. Carlier, F. Santambrogio, J. Math. Pures Appl., 93
(2010)
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