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Abstract. The information contained in a string x about a string
y is the difference between the Kolmogorov complexity of y and the
conditional Kolmogorov complexity of y given x, i.e., I(x : y) =
C(y) − C(y |x). The Kolmogorov–Levin Theorem says that I(x : y) is
symmetric up to a small additive term. We investigate if this property
also holds for several versions of polynomial time bounded Kolmogorov
complexity.
We study symmetry of information for some variants of distinguishing
complexity CD where CD(x) is the length of a shortest program which
accepts x and only x. We show relativized worlds where symmetry of
information does not hold in a strong way for deterministic and non-
deterministic polynomial time distinguishing complexities CDpoly and
CNDpoly. On the other hand, for nondeterministic polynomial time dis-
tinguishing complexity with randomness, CAMDpoly, we show that sym-
metry of information holds for most pairs of strings in any set in NP.
Our techniques extend work of Buhrman et al. (CCC 2004) on language
compression by AM algorithms, and have the following application to the
compression of samplable sources, introduced in Trevisan et al. (CCC
2004): any element x in the support of a polynomial time samplable
source X can be given a description of size − log Pr[X = x] + O(log3 n),
from which x can be recovered by an AM algorithm.
Keywords. Kolmogorov complexity, Symmetry of information
Subject classification. 68Q30, 68Q15

1. Introduction

One of the most beautiful theorems in Kolmogorov Complexity is the princi-
ple of “Symmetry of Information”, independently proven by Kolmogorov and
Levin (ZL70). Roughly speaking, symmetry of information states that for any
two strings x and y, the information contained in x about y is equal to the
information contained in y about x, up to logarithmic factors. More formally,
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letting C(x) be the length of a shortest program which prints x, and C(y |x) be
the length of a shortest program which prints y when given input x, symmetry
of information can be stated as C(y) − C(y |x) ≈ C(x) − C(x | y). Besides its
inherent attractiveness, this principle has also seen applications in diverse areas
of theoretical computer science, for example in (ABK+02; JSV97; VV02).

In this paper, we investigate the principal of symmetry of information when
resource bounds are placed on the program to describe y given x. While the
argument of Kolmogorov-Levin (ZL70) can be used without modification to
show that symmetry of information holds for programs using exponential time
or polynomial space, things become trickier with polynomial time bounds.
Though this question has been around for some time, indeed as early as 1967
Kolmogorov suggested time-bounded versions of symmetry of information as
an interesting avenue of research (Lev04), still few definite answers are known.
See section 7.1 of (LV97) for a survey and open problems.

The main contributions to the problem of polynomial time symmetry of
information appear in the series of works (LM93; LW95) which show, in par-
ticular, the following:

◦ If P=NP then polynomial time symmetry of information holds (LW95).

◦ If cryptographic one-way functions exist, then polynomial time symmetry
of information does not hold up to a O(log n) factor (LM93; LW95).

The intuition behind the second result is, if f is a polynomial time computable
one-way function, and f(x) = y, then y is simple given x. On the other hand, if
x is simple in polynomial time given y then this would provide a way to invert
the function, by cycling through all small programs.

Revisiting these works, several interesting questions arise:

◦ Can polynomial time symmetry of information hold up to a factor larger
than O(log n)? The same argument sketched above shows that if sym-
metry of information holds up to a factor of δ(n) then there do not exist
polynomial time computable cryptographical functions which cannot be
inverted in time 2δ(n). However, as, for example, factoring n-bit integers
can be done in 2O(

√
n) time (BJP93), it is not implausible that sym-

metry of information could hold up to a factor of δ(n) = εn or even
δ(n) = n1/2+ε. It is the case that 2C(x, y) ≥ C(x) + C(y |x), could we
show (2− ε)C(x, y) ≥ C(x) + C(y |x) for some ε?

◦ Can symmetry of information hold for complexity measures other than
polynomial time printing complexity? En route to showing that BPP
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is in the polynomial hierarchy, Sipser (Sip83) introduced a relaxation of
printing complexity called distinguishing complexity, denoted CD. For a
string x, CD(x) is the length of a shortest program which accepts x and
only x.

The arguments of (LM93; LW95) leave open the question if symmetry
of information can hold for distinguishing complexity. Now if f is a
polynomial time computable one-way permutation and f(x) = y, then
CDpoly(x | y) is constant, as with a description of f , on input z we accept
if and only if f(z) = y. More recently, distinguishing complexity measures
using nondeterminism, denoted CND, and nondeterminism and random-
ness (based on the complexity class AM), denoted CAMD, have been
introduced (BFL02; BLvM04). Does symmetry of information hold for
these measures?

◦ Is there an assumption weaker than P=NP which implies polynomial time
symmetry of information?

Addressing the first two questions, we show relativized worlds where symme-
try of information fails in a strong way for CDpoly and CNDpoly (the existence of
such worlds was claimed in (BF95), though without a complete proof). On the
other hand, we show that for any set A ∈ NP symmetry of information holds for
most pairs of strings 〈x, y〉 ∈ A with respect to the measure CAMDpoly. We also
unconditionally show that Cpoly(x, y) ≥ CAMDpoly(x)+CAMDpoly(y |x). This
implies that symmetry of information holds under the condition Cpoly(x | y) ≤
CAMDpoly(x | y). We show that this statement, however, is equivalent to
P=NP.

The main tool of our positve results is an extension of the language com-
pression technique of (BLvM04). This extension itself has an interesting im-
plication for the compression of samplable sources, the study of which is intro-
duced in (TVZ04). We show that for any polynomial time samplable source
X, any element x in the support of X can be given a description of size
− log Pr[X = x] + log3 n, such that x can be recovered from this description
by an AM algorithm. Note that this means the source can be compressed to
expected length H(X) + O(log3 n), differing from optimal by just a O(log3 n)
additive factor.

Another interesting approach to the definition of time-bounded Kolmogorov
complexity is L. Levin’s Kt complexity introduced in (Lev73). Recently D. Ron-
neburger proved that symmetry of information does not hold for Kt complexity
in a very strong sense (Ron04).
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2. Preliminaries

We use the following notation:

◦ denote by B the set {0, 1}; similarly, Bn is the set of all binary strings of
length n;

◦ denote by |x| the length of a binary string x;

◦ denote by ‖A‖ the cardinality of a finite set A;

◦ for a set A ⊂ B∗ denote by A=n the set {x : x ∈ A and |x| = n}.

◦ for a set of pairs of strings A ⊂ B∗ × B∗ denote by A=n the set {〈x, y〉 ∈
A : |x|+ |y| = n}.

We will make use of the complexity classes P, NP, UP, RP, and BPP. See (Aar)
for definitions.

2.1. Kolmogorov Complexity Measures. We use notation for Kolmogorov
complexity from (LV97):

Definition 2.1. The Kolmogorov complexity C(y |x) is defined as

min
p
{|p| : U(p, x) = y},

where U is a universal recursive function. Also we define C(z) = C(z |λ), where
λ is the empty word.

The choice of U affects the Kolmogorov complexity by at most an additive
constant. We consider several flavors of time bounded Kolmogorov complexity.

Definition 2.2. Time t printing complexity Ct(y |x) is defined as

Ct(y |x) = min
p
{|p| : U(p, x) = y and U(p, x) runs in at most t(|x|+ |y|) steps}

for a universal machine U . Also Ct(z) = Ct(z |λ).

The choice of universal machine U affects Ct(x | y) by at most an additive
constant and the time bound t by at most a log(t) multiplicative factor.

We also make use of a randomized version of printing complexity:
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Definition 2.3. Randomized printing complexity CBPt(x | y) is defined as
the minimal length of a program p such that

(i) Pr[U(p, y, r) = x] ≥ 2/3 where the probability is taken over all t(|x|+ |y|)
bit strings r.

(ii) U(p, y, r) runs in at most t(|x|+ |y|) steps for all r.

Definition 2.4. Distinguishing complexity CDt(y |x) is defined as the mini-
mal length of a program p such that

(i) U(p, x, y) accepts,

(ii) U(p, x, z) rejects ∀z 6= y,

(iii) U(p, x, z) runs in at most t(|x|+ |z|) steps.

Once again, CDt(z) = CDt(z |λ).

There are a few other variants of distinguishing complexity. In (BFL02) a
nondeterministic variant of distinguishing complexity is defined. This definition
is very similar to Definition Definition 2.4 except that the universal machine
is nondeterministic. This version of complexity is denoted CNDt, where t is a
time bound:

Definition 2.5. Let Un be a nondeterministic universal machine. Nondeter-
ministic distinguishing complexity CNDt(y |x) is defined as the minimal length
of a program p such that

(i) Un(p, x, y) accepts,

(ii) Un(p, x, z) rejects ∀z 6= y,

(iii) Un(p, x, z) runs in at most t(|x|+ |z|) steps.

Further, in (BLvM04) a complexity based on the class AM was defined. In
this case the universal machine is nondeterministic and probabilistic. This
complexity is denoted CAMDt:
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Definition 2.6. Let Un be a nondeterministic universal machine. CAMDt(y |x)
is defined as the minimal length of a program p such that

(i) Prr[Un(p, x, y, r) accepts] > 2/3,

(ii) Prr[Un(p, x, z, r) accepts] < 1/3 for all z 6= y,

(iii) Un(p, x, z, r) runs in at most t(|x|+ |z|) steps.

The probabilities above are taken over all t(|x|+ |y|) (respectively, t(|x|+ |z|))
bit strings r.

As usual, we let CNDt(z) = CNDt(z |λ), and CAMDt(z) = CAMDt(z |λ). We
also use relativized version of Kolmogorov complexities, allowing the universal
machine to query an oracle set.

2.2. Symmetry of Information Properties. Denote by Cpoly a version of
polynomial time-bounded Kolmogorov complexity, which can be Cpoly, CDpoly,
CNDpoly, or CAMDpoly. To formulate the problem of symmetry of information
more precisely, we isolate three associated properties. The first is the Easy
Direction of Symmetry of Information:

For any polynomial p there exists a
polynomial q such that for all x, y :
Cq(n)(x, y) ≤ Cp(n)(x) + Cp(n)(y|x) + O(log(n)),
where n = |x|+ |y|.

(EDSI)

It is easy to verify that (EDSI) holds for any of the above complexity measures.
Next is the Hard Direction of Symmetry of Information:

For any polynomial p there exists a
polynomial q such that for all x, y :
Cq(n)(x) + Cq(n)(y |x) ≤ Cp(n)(x, y) + O(log(n)),
where n = |x|+ |y|.

(HDSI)

Finally we also consider the property of Symmetry of Mutual Information:

For any polynomial p there exists a
polynomial q such that for all x, y :
Cq(x) + Cq(y |x) ≤ Cp(y) + Cp(x | y) + O(log n)

(SMI)

Notice that if both (EDSI) and (HDSI) hold for a complexity measure C,
then also (SMI) holds for C. The converse is not necessarily true.
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2.3. Language Compression Theorems. A fundamental theorem of Kol-
mogorov complexity, and one that is very useful in applications, is the following:

Theorem 2.7 (Language Compression Theorem). For any recursively enumer-
able set A, and all x ∈ A=n we have C(x) ≤ log ‖A=n‖+ O(log n).

This is as x can be described by its index in the enumeration of A=n.

This theorem is essentially used in the proof of (HDSI) in the resource
unbounded case given in (ZL70). Similarly, our results about resource bounded
symmetry of information (both positive and negative) crucially rely on recent
resource bounded language compression theorems. In (BLvM04) the following
analogue of the Language Compression Theorem is shown for CND complexity.

Theorem 2.8 (BLvM04). There is a polynomial p(n) such that for any set
A ⊂ B∗ and for all x ∈ A=n we have CNDp,A=n

(x) ≤ log ‖A=n‖ + O(δ(n))
where δ(n) = (

√
log ‖A=n‖+ log(n)) log(n).

Further (BLvM04) show that with the power of Arthur-Merlin protocols
a Language Compression Theorem holds which is optimal up to an additive
log3 n term:

Theorem 2.9 (BLvM04). There is a polynomial p(n) such that for any set
A ⊂ B∗ and for all x ∈ A=n we have CAMDp,A=n

(x) ≤ log ‖A=n‖+O(log3(n)).

For comparison we remark that for CD complexity the situation is somewhat
different. In (BFL02) it is shown that there is a polynomial p(n) such that for
any set A and for all x ∈ A=n it holds that CDp(n),A=n

(x) ≤ 2 log ‖A=n‖ +
O(log n). Furthermore, (BLM00) show that there is a set A where this bound
is tight up to O(log n) terms. That is, the factor of 2 in general cannot be
improved.

3. On CD complexity

In this section we show a relativized world where the inequalities (SMI) and,
hence, (HDSI) fail in a strong way for CDpoly complexity. The proof of the next
proposition follows the idea outlined in (BF95):
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Proposition 3.1. There exists an oracle A and a polynomial p(n) satisfying
the following condition. For any ε > 0 and large enough n there exists a pair
〈x, y〉 ∈ Bn × Bn such that

◦ CD2εn,A=2n

(y) > (1− ε)n−O(log n),

◦ CDp(n),A=2n

(x) = O(1),

◦ CDp(n),A=2n

(y |x) = O(1) and even Cp(n),A=2n
(y |x) = O(1),

i.e., CDp(n),A=2n

(x) + CDp(n),A=2n

(y |x) � CD2εn,A=2n

(y) + CD2εn,A=2n

(x | y).
Thus, (SMI) does not hold with the oracle A.

Proof. Fix n and choose an incompressible pair 〈xn, yn〉 ∈ Bn ×Bn. Define
a mapping fn : Bn → Bn as follows:

◦ fn(xn) = yn,

◦ fn(z) = z for all z 6= xn.

Now we define A=2n. At first define two auxiliary oracles Bn and Cn: let Bn

contain the graph of the function fn (on input 〈z, i〉 the oracle Bn returns the
i-th bit of y = fn(z)) and Cn contain a single string xn (on input z ∈ Bn the
oracle Cn returns 1 if and only if z = xn). A query to Bn consists of (n+log n)
bits, and a query to Cn consists of n bits. So a query to Bn⊕Cn can be encoded
as a strings of length (n + log n + 1), which is less than 2n. Thus, we may set
A=2n = Bn ⊕ Cn.

Obviously, for some polynomial p(n) we have CDp(n),A=2n

(xn) = O(1) (it is
enough to query Cn to distinguish x from other stings) and Cp(n),A=2n

(yn|xn) =
O(1) (it is enough to query from Bn the value fn(xn)).

On the other hand, CD2εn,A=2n

(yn) ≥ (1− ε)n−O(log n). Really, let s be a
shortest CD2εn

program for y, and assume

|s| ≤ (1− ε)n−D log n

for a large enough constant D. If this program queries at some step t ≤ 2εn

the point xn from the oracle Cn or any point 〈xn, i〉 from the oracle Bn, then

C(xn | yn) ≤ |s|+ log t + O(log n),

and
C(xn, yn) ≤ |yn|+ |s|+ log t + O(log n) < 2n.
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We get a contradiction, as the pair 〈xn, yn〉 is incompressible. Hence, s does
not query any ‘interesting’ points from the oracle. Thus, it can work with a
trivial oracle B′

n ⊕ C ′
n (B′

n returns the i-th bit of z for any pair 〈z, i〉, and C ′
n

returns 0 for any string z). This means that

C(yn) ≤ |s|+ O(1) � n,

and we again get a contradiction. So, we have |s| ≥ (1− ε)n−O(log n). �

4. On CND complexity

In this section we prove that (HDSI) and (SMI) are not true for a relativized
version of polynomial time bounded CND complexity. Our proof is based on the
Language Compression Theorem for CND complexity, Theorem Theorem 2.8.

Theorem 4.1. Let m = m(n), s = s(n), t = t(n) be functions such that

2s(n) + 2m(n) < 2n

and
t(n)2m(n) ≤ 2n−3.

Then there is a polynomial p(n), and sets A, X such that

◦ X=n ⊂ Bn, ‖X=n‖ = 2s(n),

◦ A=2n ⊂ Bn × Bn,

◦ ‖{y : (x, y) ∈ A=2n}‖ ≥ 7/8 · 2n for any x ∈ X=n,

◦ ‖
⋃

x 6∈X

{y : (x, y) ∈ A=2n}‖ ≤ 1/8 · 2n,

and for large enough n, for all x ∈ X=n, for at least 3/4 · 2n strings y ∈ Bn the
following conditions hold: 〈x, y〉 ∈ A=2n,

CNDp,A=2n

(x | y) ≤ s(n) + O(δ(n)),

CNDt(n),A=2n

(x) ≥ m(n)−O(1),

CNDt(n),A=2n

(y |x) ≥ n−O(1),

where δ(n) =
√

n log(n).

Note that the term δ(n) =
√

n log(n) comes from Theorem Theorem 2.8.
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Corollary 4.2. There exists an oracle A such that a CNDpoly version of (HDSI)
and (SMI) do not hold. Moreover, for any ε ∈ (0, 1) there exists a polynomial
p such that for any polynomial q for large enough n

(2− ε)CNDp,A=2n

(x, y) < CNDq,A=2n

(x) + CNDq,A=2n

(y |x)

and

CNDp,A=2n

(y) + CNDp,A=2n

(x | y) � CNDq,A=2n

(x) + CNDq,A=2n

(y |x)

for most 〈x, y〉 ∈ A=2n.

Proof. It follows from Theorem Theorem 4.1 for s(n) = εn/3, m(n) =
(1− ε/3)n, t(n) = 2εn/6. �

The bound (2 − ε) in the first inequality of Corollary Corollary 4.2 is tight.
This can be easily seen as,

CNDpoly,A=2n

(x, y) ≥ CNDpoly,A=2n

(x)−O(1)

and
CNDpoly,A=2n

(x, y) ≥ CNDpoly,A=2n

(y |x)−O(1).

Hence for any oracle A

2CNDp,A=2n

(x, y) ≥ CNDq,A=2n

(x) + CNDq,A=2n

(y |x)−O(1).

Proof. (Theorem Theorem 4.1) Fix an integer n > 0. We denote by F
the characteristic function of A=2n, i.e., F (〈x, y〉) = 1 if 〈x, y〉 ∈ A=2n and
F (x, y) = 0 otherwise. We define this function in a few stages: construct a
sequence of functions F0, F1, . . . , F2m(n)−1,

Fi : Bn × Bn → {0, 1, undef}.

For i < j the function Fj should be an extension of Fi, i.e.,

∀〈a, b〉 if Fi(a, b) 6= undef then Fj(a, b) = Fi(a, b).

The initial function is trivial: F0(a, b) = undef for all 〈a, b〉. In the sequel we
shall define F as an extension of F2m(n)−1.

Let us introduce some notation. We say that a set B ⊂ Bn × Bn respects a
function Fi if {

Fi(a, b) = 1 ⇒ 〈a, b〉 ∈ B,
Fi(a, b) = 0 ⇒ 〈a, b〉 6∈ B.
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Let s1, . . . , s2m(n)−1 be the list of all CND-programs of length less than m(n).
We suppose each program sj can access an oracle O (the oracle is not fixed in
advance). Also we suppose that each sj is clocked and runs at most t(n) steps.
We say that sj is a well defined CND program for an oracle O if sO

j accepts
exactly one string x.

Further define Fi by induction. Let the functions F0, . . . , Fk−1 be already
defined. We must construct a function Fk which is an extension of Fk−1. Con-
sider the program sk. There are two possibilities:

1. for any B ⊂ Bn×Bn that respects Fk−1, the program sk is not well defined
for the oracle B;

2. there exists at least one set B ⊂ Bn × Bn that respects Fk−1, and the
program sk is well defined for the oracle B.

The first case is trivial: we set Fk(x, y) = Fk−1(x, y) for all 〈x, y〉. In the second
case there exists a set B and a string x such that sB

k accepts x in time T (B, x),
which is at most t(n), and rejects all other strings. If there is more than one
such set, we choose a set B with the minimal possible T (B, x). Denote by xk

the fixed string x. Let the list of all queries of the program sB
k (xk) to the oracle

(for one of the shortest path, i.e., for an accepting path of length T (B, x)) be

〈a0, b0〉, 〈a1, b1〉, . . . , 〈ar, br〉,

r < t(n). We include all these pairs in the oracle. More precisely, define Fk as
follows:

Fk(a, b) = Fk−1(a, b) if Fk−1(a, b) 6= undef,
Fk(aj, bj) = 1 if 〈aj, bj〉 ∈ B, j = 0, . . . , r,
Fk(aj, bj) = 0 if 〈aj, bj〉 6∈ B, j = 0, . . . , r,
Fk(a, b) = undef if Fk−1(a, b) = undef and 〈a, b〉 6= 〈aj, bj〉, ∀j.

For any set R that respects Fk, the program sR
k accepts the string xk in time

T (B, x). Note that for a time bound t0 ≥ T (B, x) the CND program sR
k may

accept also a few other strings except xk. But for any t0 < T (B, x) the program
sR

k does not accept in time t0 any string, because we chose xk that provides
minimum to the value T (B, x). Thus, if for a time bound t0 ≤ t(n) the program
sR

k accepts at least one string, it must accept also xk. In other words, it cannot
distinguish any string except xk.

We have described an inductive procedure, which defines the functions
F0, . . ., F2m(n)−1. At each step i we set Fi(a, b) 6= Fi−1(a, b) for at most t(n)
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values 〈a, b〉. Hence the function F2m(n)−1 is equal to undef for all values in
Bn × Bn except for at most t(n)2m(n) values.

Besides we get the list L of strings xi which can be possibly accepted by
distinguishing programs sR

i if a set R respects F2m(n)−1. This set is rather small:
‖L‖ < 2m(n).

Further we choose an arbitrary set

X=n ⊂ Bn \ L

of size 2s(n). Now define the function F as follows:

F (x, y) = F2m(n)−1(x, y) if F2m(n)−1(x, y) 6= undef,
F (x, y) = 1 if F2m(n)−1(x, y) = undef and x ∈ X,
F (x, y) = 0 if F2m(n)−1(x, y) = undef and x 6∈ X.

The characteristic function F defines the oracle A=2n and the construction is
finished. Note that for any x ∈ X=n

‖{y : (x, y) ∈ A=2n}‖ ≥ 7/8 · 2n,

and
‖

⋃
x 6∈X=n

{y : (x, y) ∈ A=2n}‖ < 1/8 · 2n.

Now fix any string x0 ∈ X. Obviously, CNDt(n),A=2n

(x0) ≥ m(n) because
x0 6∈ L. Further, there are at least

2n − 2m(n)t(n)− 2n−3 > 3/4 · 2n

strings y such that

◦ (x0, y) ∈ A=2n,

◦ (x, y) 6∈ A=2n for any x 6∈ X=n, and

◦ CA=2n
(y |x0) ≥ n− 3.

Denote by y0 any of these strings. From the conditions above it follows that

◦ CNDt(n),A=2n

(y0 |x0) > n−O(1) since resource bounded complexity is not
less than plain complexity;

◦ CNDp(n),A=2n

(x0 | y0) ≤ log ‖{x : (x, y0) ∈ A=2n}‖ + O(δ(n)) ≤ s(n) +
O(δ(n)) from Theorem Theorem 2.8.

�
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5. On CAMD complexity

In this section we study symmetry of information under the CAMD complexity
measure. In contrast to the case of CD and CND complexity, with the power of
nondeterminism and randomness we can prove some positive results, showing
that some weaker versions of (HDSI) hold for CAMD.

Our proof will follow the proof in the resource unbounded case as given in
(ZL70). We first review this proof to see how it can be used in our case. Let
α, β be two strings such that |α| + |β| = n, and suppose that C(α, β) = m.
We define the set Ax,m = {y : C(x, y) ≤ m}. Notice that ‖Ax,m‖ ≤ 2m+1 and
that given x and m the set Ax,m is recursively enumerable. Thus as β ∈ Aα,m

by the Language Compression Theorem (Theorem Theorem 2.7), C(β |α) ≤
log ‖Aα,m‖ + O(log n). Let k∗ be such that 2k∗ ≤ ‖Aα,m‖ < 2k∗+1. Then the
above says that C(β |α) ≤ k∗ + O(log n).

Now consider the set Bm,k = {x : ‖Ax,m‖ ≥ 2k}. Notice that the size of
Bm,k is less than 2m−k+1, and that α ∈ Bm,k∗ . The set Bm,k is recursively
enumerable given m, k, thus by the Language Compression Theorem, C(α) ≤
m− k∗ + O(log n). And so

C(α) + C(β |α) ≤ m− k∗ + k∗ + O(log n)

≤ C(α, β) + O(log n)

If we substitute polynomial time printing complexity in the above argument,
then the set Ax,m is in NP. Further, by the approximate lower bound counting
property of AM (Bab85) there is an AM algorithm which accepts with high
probability for x ∈ Bm,k and rejects with high probability for x 6∈ Bm,k−1. We
have, however, no guarantee on the algorithm’s behavior for x ∈ Bm,k−1. In
the next theorem, we extend the language compression results of (BLvM04)
to work for AM ’gap’ sets of this type, allowing the above argument to go
through. This result also implies near optimal AM compression of polynomial
time samplable sources, recently studied in (TVZ04).

5.1. AM compression of AM gap sets.

Lemma 5.1. Let A ⊆ B∗. Suppose there is a polynomial time bound q(n), and
predicate Q such that

◦ for all u ∈ A=n, Prr∈Bq(n) [∃v Q(u, v, r) = 1] ≥ 2/3

◦ ‖{u ∈ Bn : Prr∈Bq(n) [∃v Q(u, v, r) = 1] > 1/3}‖ ≤ 2k,
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and for all u, v, r the predicate Q(u, v, r) can be computed in polynomial time.
Then there is a polynomial time bound p(n) such that for all u ∈ A=n, we have
CAMDp(u) ≤ k + O(log3 n).

Before going into the proof of Lemma Lemma 5.1, we briefly recall the
technique of (BLvM04). Let TR : Bn × Bd → Bm be the function underlying
Trevisan’s extractor (Tre01), that is the composition of a good error correcting
code with the Nisan-Wigderson generator (NW94). The output of TR(u, e) is
the evaluation of the Nisan-Wigderson generator on seed e when using û as the
‘hard’ function supplied to the generator, where û is the image of u under an
error correcting code. The key property of this function, what makes it a good
extractor and compressor, is that if TR(u, e) is not close to uniform over choice
of e ∈ Bd on some set B ⊂ Bm, then u has a short description given oracle
access to B. In (BLvM04) it is shown that u can be printed in polynomial
time from this description and oracle access to B. This construction works
for d = O(log3 n), where this term arises from the weak design construction of
(RRV02).

To give the elements of a set A ⊂ Bn short descriptions, we let the set B be
the image of A×Bd under the function TR. That is, B = ∪x∈A∪e∈Bd TR(x, e).
Notice that for any x ∈ A, Pre[TR(x, e) ∈ B] = 1. On the other hand if we take
m to be log ‖A‖ + d + 1 then the probability that a uniformly chosen y ∈ Bm

is in B is less than 1/2. Thus all the elements of A have a short description
relative to B. Now notice that with nondeterminism and an oracle for A, we
can decide membership in B, thus all the elements of A have a short CNDA

description. The elements of A can be given an even more succinct CAMDA

description by using the randomness in the AM protocol to simulate part of
the probabilistic argument in (NW94; Tre01).

Proof. (Lemma Lemma 5.1) By amplification and the results of (FGM+89),
we can transform the predicate Q into a predicate Q′ taking random strings of
length a polynomial q′(n) and with the property

◦ if u ∈ A=n then Prr[∃v Q′(u, v, r) = 1] = 1

◦ ‖{u : Prr[∃v Q′(u, v, r) = 1] ≥ 2−n−2}‖ ≤ 2k

for r chosen uniformly over Bq′(n). Let L = {u : Prr[∃v Q′(u, v, r) = 1] ≥
2−n−2}.

For each r ∈ Bq′(n) we define a set

Br = {w : ∃u ∈ Bn,∃v, e TR(u, e) = w ∧Q′(u, v, r) = 1}



Resource Bounded Symmetry of Information Revisited 15

In the sequel we denote by Br(w) the property w ∈ Br.
Clearly if u ∈ A=n, then Pre[Br(TR(u, e))] = 1, for any r ∈ Bq′(n). Now for

a randomly chosen w ∈ Bm and randomly chosen r ∈ Bq′(n), we calculate the
probability that w ∈ Br. As for a 0/1 variable the probability of being 1 is
equal to the expectation of the variable, we have

Pr
r,w

[w ∈ Br] = Er,w[Br(w)].

By linearity of expectation, we can divide the latter into two contributions,
that from elements w for which ∃u ∈ L and seed e such that TR(u, e) = w,
and those w for which this is not the case.

Er,w[Br(w)] =
∑

w=TR(u,e)

u∈L′

E[Br(w)] +
∑

w 6=TR(u,e)

u∈L′

E[Br(w)]

By taking m = k + d + 2 the first term can be bounded by 1/4. The second
term is bounded by 2m2−n−2 ≤ 1/4. Going back to probability notation, we
have for any u ∈ A=n

Pr
r,e

[Br(TR(u, e))]− Pr
r,w

[Br(w)] ≥ 1/2.

The value of Trevisan’s function TR(u, e) can be viewed as a sequence of bits

û1(e) . . . ûm(e),

where ûi = û(e|Si
), i.e., the result of application of the boolean function û to the

i-th set of the weak design set system (for details see (RRV02) or (BLvM04)).
Thus, ûi depends on ‖Si‖ variables. By definition of a weak design the cardi-
nalities of Si for all i are equal to each other. Denote n̄ = 2‖Si‖. We choose a
weak design system as in the proof of AM language compression in (BLvM04,
Theorem 3). For this weak design n̄ is polynomial in n.

It follows by the hybrid argument that there is an i ∈ [m] and a setting of
the bits of e outside of the set Si such that
(5.2)

Pr
x,r,r′

[Br(û1(x) . . . ûi−1(x)ûi(x)r′]− Pr
x,r,r′,b

[Br(û1(x) . . . ûi−1(x)br′)] ≥ 1/2m.

When the bits of e outside of Si are fixed, all the functions ûi only depend on
the bits inside of Si, thus the variable x in the above ranges uniformly over
‖Si‖ bit strings.

Let F (x, b, r′) = û1(x) . . . ûi−1(x)br′. Our algorithm to approximate ûi will
do the following: on input x, choose uniformly at random b, r, r′ and evaluate
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Br(F (x, b, r′)); if this evaluates to 1, then output b, otherwise output 1 − b.
Call the output of this algorithm gb(e, r, r

′). We now estimate the probability
that gb(e, r, r

′) agrees with ui(x).

Pr
x,r,r′,b

[gb(x, r, r′) = û(x)] = Pr
x,r,r′,b

[gb(x, r, r′) = û(x)|b = û(x)] Pr
x,b

[b = û(x)]

+ Pr
x,r,r′,b

[gb(x, r, r′) = û(x)|b 6= û(x)] Pr
x,b

[b 6= û(x)]

=
1

2
Pr

x,r,r′,b
[Br(F (x, b, r′)) = 1|b = û(x)]

+
1

2
Pr

x,r,r′,b
[Br(F (x, b, r′)) = 0|b 6= û(x)]

=
1

2
+

1

2

(
Pr

x,r,r′,b
[Br(F (x, b, r′)) = 1|b = û(x)]

− Pr
x,r,r′,b

[Br(F (x, b, r′)) = 1|b 6= û(x)]

)
=

1

2
+

1

2

(
Pr

x,r,r′
[Br(F (x, û(x), r′)) = 1]

− Pr
x,r,r′

[Br(F (x, 1− û(x), r′)) = 1]

)
=

1

2
+ Pr

x,r,r′,b
[Br(F (x, û(x), r′)) = 1]

− Pr
x,r,r′,b

[Br(F (x, b, r′)) = 1]

≥ 1

2
+

1

2m

The last line follows from Equation ((5.2)). We fix the bit b to a value b1

which preserves this prediction advantage. Notice that gb1(x, r, r′) cannot be
computed by Arthur himself, as he needs Merlin to demonstrate witnesses for
acceptance in Br. We now show how the computation of gb1(x, r, r′) can be
simulated by an Arthur-Merlin protocol.

We say that (r, r′) gives an α-approximation to û if Prx[gb1(x, r, r′) =
û(x)] ≥ α. For fixed (r, r′), we identify gb1(x, r, r′) with the string zb1,r,r′ where
zb1,r,r′ has bit b1 in position x if and only if gb1(x, r, r′) = 1. For convenience
we assume without loss of generality that b1 = 1 and drop the subscript. Note
that with this choice the number of ones in zr is the number of strings x for
which B accepts û1(x) · · · ûi−1(x)b1r. With w(z) we denote the number of ones
in a string z.

Arthur randomly selects strings r1, . . . , rs ∈ {0, 1}q′(n) and r′1, . . . , r
′
s ∈
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{0, 1}m−i, and asks Merlin to provide witnesses for Bri
(F (x, b1, r

′
i)). Included

as part of our description will be the average number of acceptances over all
choices of r, r′: ā = 2−q′(n)2i−m

∑
x,r,r′ gb1(x, r, r′). To limit Merlin’s freedom in

choosing which acceptances to demonstrate in an adverse way, we want that
the total number of acceptances of the choice of r1, . . . , rs and r′1, . . . , r

′
s is close

to the expected s · ā. This is insured by an easy Chernoff bound argument:

Claim 5.3. For any γ = γ(m, n̄) > 0, there exists s = O(n̄2/γ2) such that
with probability at least 3/4 over Arthur’s choice of (r1, r

′
1), . . . , (rs, r

′
s) the

following two things will simultaneously happen:

(i) A 1/8m fraction of (r1, r
′
1), . . . , (rs, r

′
s) will give 1

2
+ 1

4m
approximations

to û.

(ii) The total number of acceptances by B over the strings (r1, r
′
1), . . . , (rs, r

′
s)

will be within γs of the expected. That is,

|
s∑

j=1

w(zj)− sā| ≤ γs.

Proof. To lower bound the probability that both of these events happen,
we upper bound the probability that each event individually does not happen
and use a union bound.
Item (1): Notice that for a given (r, r′), if

Pr
x

[Br(û1(x) · · · ûi−1(x)û(x)r′)]− Pr
x

[Br(û1(x) · · · ûi−1(x)b1r
′)] ≥ 1/4m

then (r, r′) gives a (1
2
+ 1

4m
)-approximation of û. We will say that the pair (r, r′)

is bad if it does not yield a 1
2

+ 1
4m

approximation to û. By Equation ((5.2))
and Markov’s inequality,

Pr
r,r′

[(r, r′) ∈ bad] ≤ 1− 1/2m

1− 1/4m
< 1− 1/4m.

By a Chernoff bound, for some constant c1 > 0,

Pr
(r1,r′1),...,(rs,r′s)

[‖bad‖ ≥ (1− 1/8m)s] ≤ exp(−c1s/m
2).

Item (2): By a Chernoff bound, for some constant c2 > 0,

Pr[|1/s
s∑

j=1

w(zj)− ā| ≥ γ] ≤ 2 exp(−c2γ
2s/n̄2).
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By taking s = c3n̄
2/γ2 for a sufficiently large constant c3, the probability

of each item will be less than 1/8, and the claim follows. �

From this point the proof follows verbatim as in the proof of AM language
compression (BLvM04, Theorem 3). �

One application of this lemma is for the AM compression of samplable
sources. The study of the compression of samplable sources is introduced in
(TVZ04). They give evidence that it is unlikely that all polynomial time sam-
plable sources can be (near) optimally compressed by probabilistic polynomial
time algorithms. We show, by contrast, that with AM algorithms, and when
we only consider decompression efficiency, we can achieve nearly optimal com-
pression.

Definition 5.4. Let Xn be a probability distribution on strings of length n.
We say that Xn is polynomial time samplable if there is a polynomial p(n) and
algorithm S such that

Pr
r∈{0,1}p(n)

[S(1n, r) = x] = Pr[Xn = x]

for every x ∈ {0, 1}n, and where the running time of S(1n, r) is bounded by
p(n).

Theorem 5.5. Let Xn be a polynomial time sampable source. There is a
polynomial p(n) such that for every x in the support of Xn,

CAMDp(n)(x) ≤ − log Pr[Xn = x] + O(log3 n).

Proof. Consider the set Lk = {x : Pr[Xn = x] ≥ 2−k}. As the source Xn

is samplable, say by an algorithm S, the set {r : S(1n, r) = x} is in P. Thus
by the approximate lower bound counting property of AM (Bab85), there is an
AM algorithm which accepts any x ∈ Lk with probability greater than 2/3, and
rejects any element x not in Lk−1 with probability greater than 2/3. Thus the
total number of strings x which will be accepted by the AM lower bound count-
ing algorithm will be less than the number of strings which receive probability
more than 2−k−1 which is less than 2k+1. Now applying Lemma Lemma 5.1 we
obtain that there exists a polynomial p such that CAMDp(x) ≤ k + O(log3 n)
for all x ∈ Lk. �

Finally, we remark that these results relativize.
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5.2. Application to symmetry of information.

Theorem 5.6. There is a polynomial p(n) such that for any set A ⊂ B∗ × B∗

and all 〈x, y〉 ∈ A=n

log ‖A=n‖ ≥ CAMDp,A=n

(x) + CAMDp,A=n

(y |x)−O(log3 n).

Furthermore, if A ∈ NP then there is a polynomial q(n) such that

log ‖A=n‖ ≥ CAMDq(x) + CAMDq(y |x)−O(log3 n).

Proof. Fix n and 〈α, β〉 ∈ A=n. Denote m = log ‖A=n‖ and Ax = {y :
(x, y) ∈ A=n}. Membership in the set Ax can be decided in polynomial time
given x and the oracle A=n. As β ∈ Aα it follows from Theorem Theorem 2.9
that CAMDq,A=n

(β |α) ≤ log ‖Aα‖+ O(log3 n).

Now consider the set Bk = {x : ‖Ax‖ ≥ 2k}. Let k∗ be such that 2k∗ ≤
‖Aα‖ < 2k∗+1. Then α ∈ Bk∗ . By the approximate lower bound counting
property of AM (Bab85), there is a predicate Q (computable in polynomial
time given the oracle A=n) such that

◦ If x ∈ Bk then Prr[∃yQ(x, y, r) = 1] ≥ 2/3

◦ If x 6∈ Bk−1 then Prr[∃yQ(x, y, r) = 1] ≤ 1/3

Thus if Prr[∃y Q(x, y, r) = 1] > 1/3 then x ∈ Bk−1. However ‖A=n‖ = 2m

implies that ‖Bk−1‖ ≤ 2m−k+1. Now by Theorem Theorem 2.9 we obtain
CAMDq,A=n

(α) ≤ m− k∗ + O(log3 n).

Putting the above together we have

CAMDq,A=n

(α)+CAMDq,A=n

(β|α) ≤ m− k∗ + k∗ +O(log3 n) ≤ m+O(log3 n)

which gives the first statement of the theorem.

To prove the “furthermore”, note that approximate lower bound counting
of NP sets can be done in AM (Bab85), and apply Lemma Lemma 5.1 to give
the bound on (unrelativized) CAMD complexity of NP sets. �
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Corollary 5.7. For any set A ⊂ B∗ × B∗ and any polynomial p(n) there is
a polynomial q such that for all but at most a 1/n fraction of 〈x, y〉 ∈ A=n,

CAMDp(n),A=n

(x, y) ≥ CAMDq(n),A=n

(x) + CAMDq(n),A=n

(y |x)−O(log3 n).

Furthermore, if A ∈ NP then

CAMDp(n)(x, y) ≥ CAMDq(n)(x) + CAMDq(n)(y |x)−O(log3 n).

Proof. For all but at most a 1/n fraction of 〈x, y〉 ∈ A=n we have

CAMDp(n),A=n

(x, y) ≥ log ‖A=n‖ −O(log n).

Applying Theorem Theorem 5.6 we get the first statement of the corollary.
Applying the “furthermore” of Theorem Theorem 5.6 gives the furthermore
here. �

Theorem 5.8. For any strings x, y ∈ Bn, and polynomial p(n) there is a
polynomial q(n) such that Cp(x, y) ≥ CAMDq(x)+CAMDq(y |x)−O(log3 n).

Proof. Fix a pair of strings 〈α, β〉. Let n = |α| + |β|, and suppose that
Cp(α, β) = m. Consider the set A = {〈x, y〉 : Cp(x, y) ≤ m}. As member-
ship in A can be decided in nondeterministic polynomial time, we may invoke
the “furthermore” of Theorem Theorem 5.6 to give log ‖A‖ ≥ CAMDq(α) +
CAMDq(β |α) − O(log3 n) for some polynomial q. On the other hand, ‖A‖ ≤
2m+1, and the theorem is proven. �

From Theorem Theorem 5.8 we obtain as a corollary a result of (LW95),
up to an additive O(log3(n)) factor: if P = NP then

Cp(x, y) ≥ Cq(x) + Cq(y |x)−O(log3 n).

More generally, the following corollary holds.

Corollary 5.9. Suppose that for any polynomial p = p(n) there is a poly-
nomial q = q(n) such that for any x, y, Cq(x | y) ≤ CAMDp(x | y) + O(log3 n).
Then (HDSI) holds for polynomial time printing complexity, up to an O(log3 n)
additive factor.
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6. What Implies Symmetry of Information?

Is there an assumption weaker than P=NP which would imply symmetry of
information? Corollary Corollary 5.9 shows that symmetry of information (up
to a log3 n factor) follows from the assumption:

For any polynomial p there exists a
polynomial q such that for all x, y :
Cq(x | y) ≤ CAMDp(x | y) + O(log(n)),
where n = |x|+ |y|.

(∗)

It is easily seen that this property follows from P = NP. We now see that it is
in fact equivalent to P = NP.

Theorem 6.1. Property (∗) implies P = NP.

We first prove the following lemma.

Lemma 6.2. Suppose the following hold:

◦ NP ⊆ BPP

◦ For every polynomial q there exists a polynomial p such that for all x,
Cp(x) ≤ CBPq(x) + O(log |x|).

Then P = NP.

Proof. By the results of Ko (Ko82), the first item implies PH ⊆ BPP and
NP = RP. Thus to show P=NP it suffices to derandomize RP. Let L ∈ RP
witnessed by a machine M running in polynimial time and using m = m(n)
random bits on an input x of length n. We shall assume that m > n.

By standard amplification we transform M into a polynomial machine M ′,
which uses m(n)3 random bits and for which the probability that M ′(x, r) re-
jects when x ∈ L is less than 2−m2

. As the set of random strings r ∈ Bm3
which

give the ‘wrong’ answer is in P given x, we can apply the Language Compres-
sion Theorem for nondeterministic complexity to give that for a polynomial
time bound q′, CNDq′(r |x) ≤ |r| −m2 + O(δ(m)), for any such ‘bad’ r, where
δ(m) =

√
m log m as in Theorem Theorem 2.8. In particular, this means that

if CNDq′(r) = |r| = m3 then M ′(x, r) must accept.
We now claim that for a given length n we can construct a string of length

m′ = (m(n))3 with high CNDq′ complexity in the polynomial hierarchy. Indeed,
checking that a string has maximal CND complexity can be done with a Σp

2
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oracle. Thus the lexicographically first string of length m′ with maximal CND
complexity, call it r∗, can be found with a Σp

3 oracle by doing a prefix search.
This means that Cq′,Σp

3(r∗) = O(log n). As the hypothesis of the theorem
implies PH ⊆ BPP, and following the proof that BPPBPP = BPP, we obtain
CBPq′′(r∗) = O(log n). Finally applying the second hypothesis of the theorem
we have Cp(r∗) = O(log n).

Thus to decide if x ∈ L we evaluate M ′(x, U(p)) for all programs p of
length d log n for some constant d. We reject if and only if M ′ rejects on all
these computations. U will output r∗ for one of these programs p and by the
above argument, if x ∈ L then M ′(x, r∗) must accept. �

Proof. (Theorem Theorem 6.1) Two consequences follow from assumption
(*)

◦ Cp(x | y) ≤ CBPq(x | y) + O(log n)

◦ Cp(x | y) ≤ CNDq(x | y) + O(log n)

The second item is shown in (FK96) to imply NP = RP. This fact can be
proven as follows. If φ if a formula with exactly one satisfying assignment a
then CNDq(a |φ) = O(1). Thus printing complexity being less than nonde-
terministic distinguishing complexity gives that unique SAT can be solved in
polynomial time, and so by Valiant-Vazirani (VV86) NP = RP. We can now
apply the Lemma Lemma 6.2 to obtain P = NP. �

A corollary of Lemma Lemma 6.2 is that polynomial time symmetry of
information implies BPP 6= EXP. We first need the following lemma.

Lemma 6.3. If (SMI) holds for polynomial time printing complexity, then
for every polynomial q there is a polynomial p such that for all x, Cp(x) ≤
CBPq(x) + O(log |x|).

Proof. Suppose that CBPq(x) = k. This means there is a program p of
length k such that U(p, r) = x for at least 2/3 of the strings r ∈ {0, 1}q(n). By
counting, it must be the case that C(r |x) ≥ |r| −O(1) for one of these strings
r, call it r∗. Using (SMI), there is a polynomial p for which

Cq(r∗) + Cq(x | r∗) ≥ Cp(x) + Cp(r∗ |x)−O(log n).

As Cq(r∗) = Cp(r∗ |x) + O(1) this implies Cp(x) ≤ k + O(log n). �
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Corollary 6.4. If for every polynomial q there exists a polynomial p such
that for every x, Cp(x) ≤ CBPq(x) + O(log |x|), then BPP 6= EXP. In particu-
lar, if (SMI) holds for polynomial time printing complexity then BPP 6= EXP.

Proof. Suppose, for contradiction, that EXP ⊆ BPP. This implies that
NP ⊆ BPP, and thus by Lemma Lemma 6.2 that P = NP. We now have
EXP ⊆ BPP ⊆ NPNP = P a contradiction to the time hierarchy theorem. �

We now turn to relativizations to help us find a good candidate hypothesis,
weaker than P = NP, which would imply symmetry of information. As we know
that symmetry of information implies the nonexistence of cryptographic one-
way functions, it is natural to ask if the converse holds. This is a tantalizing
hypothesis as it is known that the nonexistence of one-way functions does
imply a strong compression result (Wee04, Theorem 6.3). We show that this
implication does not hold in every relativized world. That is, we show there is
an oracle X such that PX = UPX yet symmetry of information does not hold
relative to X.

Theorem 6.5. There is an oracle X such that PX = UPX yet symmetry of
information does not hold relative to X.

Proof. Let X be an oracle where PX = UPX and PX 6= NPX . Such an
oracle is constructed in (BBF98). With respect to this oracle NPX = RPX .
Suppose also that symmetry of information holds relative to X. As the proofs
of Lemma Lemma 6.2 and Lemma Lemma 6.3 relativize, this would then imply
PX = NPX , a contradiction. �
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