
Reliable Computations Based on Locally
Decodable Codes

Andrei Romashchenko∗

September 18, 2005

Abstract

We investigate the coded model of fault-tolerant computations introduced by
D. Spielman. In this model the input and the output of a computation circuit is
treated as words in some error-correcting code. A circuit is said to compute some
function correctly if for an input which is a encoded argument of the function, the
output, been decoded, is the value of the function on the given argument.

We consider two models of faults. In the first one we suppose that an el-
ementary processor at each step can be corrupted with some small probability,
and faults of different processors are independent. For this model, we prove that
a parallel computation running on n elementary non-faulty processors in time
t = poly(n) can be simulated on O(n log n/ log log n) faulty processors in time
O(t log log n). Note that we get sub-logarithmic blow-up of the memory, which
cannot be achieved in the classic model of faulty boolean circuit, where the input
is not encoded.

In the second model, we assume that at each step some fixed fraction of ele-
mentary processors can be corrupted by an adversary, who is free to chose these
processors arbitrarily. We show that in this model any computation can be made
reliable with exponential blow-up of the memory.

Our method employs a sort of mixing mappings, which enjoy some proper-
ties of expanders. Based on mixing mappings, we implement an effective self-
correcting procedure for an array of faulty processors.

1 Introduction
The problem of reliable computations with faulty elements was investigated for several
types of computational models, see a survey in [14]. In the most popular models,
the computation is implemented by a circuit of boolean gates; each gate can fail with
a small probability. A circuit is said fault-tolerant if it returns a correct result with
high probability. For the first time such a model of computation was proposed by
J. von Neumann [1]. Later ideas by von Neumann was developed by Dobrushin and
Ortyukov [3]. N. Pippenger in [5] presented an effective transformation of any boolean
circuit with non-faulty gates into a fault-tolerant circuit.

∗Institute for Information Transmission Problems, Moscow. e-mail:anromash@mccme.ru

1

The construction of Pippenger requires only logarithmic increasing of the number
of gates. In general, this result cannot be improved, and logarithmic redundancy is
inevitable [4, 8, 6, 7]. But this lower bound is caused by the need to encode the input
with some error-correcting code and then to decode the answer. This obstacle can be
eliminated if we allow to get the input and to return the result as an encoded word.
Such a model was used in the work of D. Spielman [10]. Let us define this model (with
minor modifications) in detail.

The computational model.

The computational array consists of N elementary processors s1, . . . , sN . At any mo-
ment, each processor contains one bit of information (a processor is said to have an
internal state 0 or 1). We fix two functions,

E : {0, 1}n → {0, 1}N

and
D : {0, 1}N → {0, 1}n

which are normally the encoding and decoding functions of some error-correcting code.
We say that a circuit gets an input x ∈ {0, 1}n if the initial state of the memory
(s1, . . . , sN) is equal to E(x).

Denote by s
(t)
1 , . . . , s

(t)
N the internal states of the processors at moment t. We call

by a circuit of depth T a list of instructions F
(t)
i , t = 1, . . . , T which define how each

of the processors should update its internal state at each moment. More precisely, the
state of a processor si at moments t evolves by the rule

s
(t)
i = F

(t)
i (s(t−1)

j1
, s

(t−1)
j2

, . . . , s
(t−1)
jr

),

where F
(t)
i are boolean functions (the indexes j1, . . . , jr depend on i and t). The arity

r is supposed to be fixed in advance. We shall always suppose that r is a constant
independent of n.

We say that a circuit of depth T computes a function f : {0, 1}n → {0, 1}n if for
any x

D(s(T)
1 , . . . , s

(T)
N) = f(x), if (s(0)

1 , . . . , s
(0)
N) = E(x)

In other words, we use the encoding E to provide the circuit with an input, and then
use the decoding D to retrieve the result. We shall say also that such a circuit computes
f in T steps.

In the model of random faults we suppose that at any step each processor can be
randomly corrupted, i.e., with some small probability ε it can change its internal state
contrary to the rule above. Faults at different positions i and moments t (i.e., the events
that a processor si was corrupted at moment t) are supposed to by independent. For
this model, we say that some circuit correctly computes a function f with probability
ε′, if

Prob[D(s(T)
1 , . . . , s

(T)
N) = f(x)|(s(0)

1 , . . . , s
(0)
N) = E(x)] = 1− ε′.

2

In another model faults are made by an malevolent adversary. This means that at
any moment t any εN processors can be corrupted. We say that a circuit computes
some function f if for any choice of the positions where processors are corrupted, the
final result is correct, i.e., again

D(s(T)
1 , . . . , s

(T)
N) = f(x) if (s(0)

1 , . . . , s
(0)
N) = E(x)

Note that the defined model is trivial if the functions E and D may depend on the
function f . In the sequel we fix some E and D and show that any function f can be
computed by a reliable circuit (in the model with random faults or in the model with
an adversary).

The rest of the paper is organized as follows. In Section 2 we introduce mixing
mappings, the main combinatorial tool of our proofs. In Section 3 we consider the
model of random faults and prove that any circuit of depth T with n processors can
be converted in a reliable circuit with O(n log(nT)/ log log(nT)) processors, which
computes the same function in timeO(T log log(nT). This bound is a bit stronger than
the result of [10], where the construction requires poly-logarithmic blow-up and poly-
logarithmic slow down. If T = poly(n), the blow-up in our construction is equal to
O(log n/ log log n), i.e., it is below the log n barrier, which is strict for the usual model
of faulty boolean circuits (where the input of a circuit is not encoded). Our construction
is effective, i.e., the fault-tolerant circuit can be constructed from the original one by a
polynomial algorithm.

In Section 4 we deal with the model where faults are chosen by an adversary. We
prove that any circuit of depth T with n processors can be converted in a reliable circuit
with 2O(n) processors and depth O(nT).

2 Mixing functions
In this section we define mixing mappings and prove some of their properties.

Definition 1 We call a mapping F : {0, 1}m × {0, 1}τ → {0, 1}m a (m, τ, α, β)-
mixer if for any A,B ⊂ {0, 1}m such that |A| ≥ α2m

‖|{(x, u) : x ∈ A,F (x, u) ∈ B}| − 2τ |A| · |B|
2m

‖ < β2τ |A|.

This definition was inspired by the well-known Expander Mixing Lemma, see e.g, [11].
The Expander Mixing Lemma implies that an expander is a mixer with appropriate
parameters.

We need mixers with some additional structure. First of all, we consider L =
{0, 1}m as an m-dimensional linear space over Z/2Z (for u, v ∈ L the vector u + v is
just the bitwise sum of u and v modulo 2).

Definition 2 We call a mapping F : {0, 1}m×{0, 1}τ → {0, 1}m a linear (m, τ, α, β)-
mixer if (1) F is a (m, τ, α, β)-mixer, and (2) the mapping G : {0, 1}m × {0, 1}τ →
{0, 1}m defined as G(x, u) = F (x, u) + x, is also a (m, τ, α, β)-mixer.

Standard probabilistic arguments show that a linear mixer exists:

3

Lemma 1 For any α, β ∈ (0, 1) there exists a τ such that for all m there exists a linear
(m, τ, α, β)-mixer.

We prove this lemma in Appendix.
The following properties of a mixer easily follows from the definition:

Claim 1 If 0 < δ′ < δ < 1/8 then for any (m, τ, δ′, δ)-mixer F , for any B ⊂ {0, 1}m

of size at most 2m/8 there are less than δ2m elements x ∈ {0, 1}m such that for at
least 25% of u ∈ {0, 1}τ

F (x, u) ∈ B.

Claim 2 Let 0 < δ′ < δ < 1/128 and F be an (m, τ, δ′, δ)-mixer. Then for any
B ⊂ {0, 1}m of size at most 2m/128 there are less than δ2m elements x ∈ {0, 1}m

such that for at least 1/64 of all u ∈ {0, 1}τ

F (x, u) ∈ B.

We prove Claim 1 in Appendix; Claim 2 follows from similar arguments.

Lemma 2 Let F1 be an (m1, τ1, α1, β1)-mixer and F2 be an (m2, τ2, α2, β2)-mixer.
Then the tensor product F = F1 ⊗ F2

F : {0, 1}m1+m2 × {0, 1}τ1+τ2 → {0, 1}m1+m2

is an (m1 + m2, τ1 + τ2, α, β)-mixer for α =
√

α2 and β = O(α1+β1+β2
α2
√

α2
+
√

α2)

This lemma is interesting for α1 � β1 � β2 � α2. The bound in this lemma is
quite rough, but it is enough for application below. Lemma 2 can be proved with quite
standard combinatorial arguments, see Appendix.

Remark that if F1 and F2 are linear mixers then F1 ⊗ F2 is also a linear mixer.

Lemma 3 For any α, β and large enough τ there exists an algorithm which an the
input m constructs a linear (m, τ, α, β)-mixer in time poly(22m

).

Proof: Denote N = 22m

. From Lemma 1 it follows that for all α′, β′ and a large
enough τ , for all n a linear (n, τ ′, α′, β′)-mixer exists. If 2n2n

= poly(N), we can
construct a linear (n, τ ′, α′, β′)-mixer in time poly(N) using a brute force search. In
particular, for any α′, β′, α′′, β′′ we can get in polynomial time some mixers with pa-
rameters (m/2, τ ′, α′, β′) and (m/2, τ ′′, α′′, β′′). (degree of the polynomial may de-
pend on α′, β′, α′′, β′′). Further, construct a tensor product of these two mixers. From
Lemma 2 it follows that we obtain a linear (m, τ ′ + τ ′′,

√
α′′,O(α′+β′+β′

α′′
√

α′′ +
√

α′′))-
mixer. It remains to choose appropriate α′, α′′ and β′, β′′. �

3 Computations resistant to random faults
In this section we show how to implement reliable computations with a circuit based
on faulty processors. We assume that each processor at one step of computation is

4

corrupted with small enough probability ε > 0, and that faults at different processors
and at different moments of time are independent.

We use encoding based on the Hadamard code. Remind that the Hadamard code is
a mapping

Had : {0, 1}n → {0, 1}2
n

where Had(a1, . . . , an) is the graph of the linear function of n variables

f(x1, . . . , xn) =
∑

1≤i≤n

aixi

(the coefficients ai and the variables xi ranges over the field Z/2Z). The code is linear,
so for any x, y ∈ {0, 1}n we have

Had(x⊕ y) = Had(x)⊕Had(y).

Here and in the sequel we denote by x⊕ y the bitwise sum modulo 2.

Theorem 1 For any circuit S of depth t with n processors, for any εres > 0 there
exists a circuit Ŝ of depth O(t log log(tn)), with O(n log(nt)/ log log(nt)) processors
that computes the same function for the encoded input so that if any processor at each
step is corrupted with probability ε < 1/8 then the result is correct with probability at
least (1 − εres). Moreover, there exists a polynomial algorithm that constructs such a
circuit Ŝ given S.

Proof: Denote by y(j) = (y(j)
1 , y

(j)
2 , . . . , y

(j)
n) the state of the memory of S at the

j-th step of the computation, j = 0, . . . , t. We shall define an encoding E : {0, 1}n →
{0, 1}N and the corresponding decoding D : {0, 1}N → {0, 1}n, and a circuit Ŝ

with N processors so that for any j the internal state z(j) = (z(i)
1 , . . . , z

(i)
N) of Ŝ

with high probability is close to E(y(i)). More precisely, we require that with high
probability the equality D(z(j)) = y(j) holds. In particular, for the final result z(t) we
get D(z(t)) = y(t).

Let us implement the plan presented above. We split the set of variables (x1, . . . , xn)
into blocks of size k = log(log n + log t) + C:

b1 = x1, . . . , xk,
b2 = xk+1, . . . , x2k,
.

(the constant C will be chosen below). The total number of blocks bi is r = dn/ke.
A Restriction on Parallelism: Let us restrict the power of the parallelism in S.

We shall assume that in the circuit S at each step in every block bi only one proces-
sor changes its internal state. Moreover, we assume that every time when a processor
changes its state, its new state is a boolean function of internal states of two proces-
sors from the previous step. In the sequel we show that a circuit that satisfies these
restrictions can be simulated by a fault-tolerant circuit Ŝ with blow-up of the memory
O(2k/k) in real time, i.e., without any slow down.

5

It is easy to see that an arbitrary circuit can be transformed so that the assumptions
above hold. The price for this transformation is a constant blow-up of the memory and
slow down O(k) = O(log log(nt)). Thus, to prove the theorem it remains to explain
how to construct a reliable circuit for an S satisfying these restrictions.

From this moment, we assume that S satisfy the Restriction on Parallelism. First
of all, we specify encoding and decoding. Define encoding E : {0, 1}n → {0, 1}N as
follows:

E(x1, . . . , xn) = Had(b1) . . .Had(br).

Denote b̂i = Had(bi). Note that the length of each b̂i is 2k = 2C log(tn) and the
length of the codewords is N = r2k = O(n log(tn)/ log log(tn)).

Define manipulations with encoded data. Denote by

z(j) = (z(j)
1 , z

(j)
2 , . . . , z

(j)
N)

the state of memory of the circuit at j-th stage of computation. We split z(j) into blocks
of length 2k and denote them b̂

(j)
1 , . . . , b̂

(j)
r .

Further we define the transition rule: how z(j+1) is computed from z(j). We define
it so that with high probability for all j each block b̂

(j)
i differs from Had(b(j)

i) in a
fraction at most 1/8 of all bits.

In our model, at each step j = 1, . . . , t each value z1, . . . , zN is computed as a
function of the internal states of O(1) processors at the previous step. Remind that
some of cells can be corrupted by random faults. Faults at different cells are indepen-
dent and each one occurs with probability ε. We say that the random perturbation is
ε0-normal if for any block b̂i at any stage of computation, there are at most ε0 ·2k faults.

Lemma 4 For any ε0 ∈ (ε, 1/8) and large enough constant C (which defines the
length of blocks bi) the perturbation is ε0-normal with probability greater than (1 −
εres).

Proof of the lemma: For each block b̂i at each step the average number of faults is
equal to ε2k. From the Chernoff bound it follows that

Prob[number of faults > ε02k] < e−(ε−ε0)
22k

.

Sum up this probability for all i = 1, . . . , r and all step j = 1, . . . , t. The sum is less
than εres if the constant C is large enough. �

Let us fix some ε0 ∈ (ε, 1/8); in the sequel we assume that the perturbation is
ε0-normal, and construct a circuit which returns a correct result under this assumption.
Also we fix some δ0 > 0 such that 8δ0+ε0 < 1/8. Let Mix be a linear (k, τ, δ0/2, δ0)-
mixer. As we showed in Lemma 3, such a mixer can be found in time poly(n, t).

In the sequel we prove by induction the following property: if at step j each b̂
(j)
i

differs from the corresponding Had(b̂(j)
i) in at most 1/8 of bits, then each b̂

(j+1)
i also

differs from the corresponding Had(b̂(j+1)
i) in at most 1/8 of bits (we assume that the

random perturbation is ε0-normal).
We define the computation step in two stages. First, we define b̂′i, i = 1, . . . , r;

each bit of b̂′i is a function of O(1) bits from b̂
(j)
i . At the second stage we define

6

b̂′′i , i = 1, . . . , r, each bit of a b̂′′i is a function of O(1) bits from (b̂′1, . . . , b
′
r). Then we

set b̂
(j+1)
i = b̂′′i , i = 1, . . . , r.

Now we describe the first stage of the construction. Fix a number of a block i, num-
ber of a step j, and let b̂

(j)
i = (u1, . . . , u2k). We identify an integer q ∈ {1, . . . , 2k}

and its k-digit binary representation (with leading zeros). Thus, we can use q as the
first argument of the mixer Mix. Moreover, for an integer q ≤ 2k and η ∈ {0, 1}τ we
can consider uMix(q,η)⊕q, where Mix(q, η)⊕ is the bitwise sum of two k-bit words:
Mix(q, η) and the binary representation of q.

Assume that b̂
(j)
i differs from E(b(j)

i) in at most 2k/8 bits. For any q the bit u′q is
computed as

u′q = majority{(uMix(q,η)⊕q − uMix(q,η)) | η ∈ {0, 1}τ}

(here we identify the integer q ≤ 2k and its binary representation; thus, uMix(q,η)⊕q

is uj , where the k-digit binary representation of j is the bitwise sum modulo 2 of the
binary representation of q and Mix(q, η)).)

Let us bound the number of bits in b̂′ = (u′1, . . . , u
′
2k) that differ from the cor-

responding bits of Had(b(j)
i). There may be two reasons why a u′q differs from the

corresponding bit of Had(b(j)
i):

1. in the sequence uMix(q,0)⊕q, . . . , uMix(q,τ)⊕q at least 25% of values differ from
the corresponding values of E(b(j)

i);

2. in the sequence uMix(q,0), . . . , uMix(q,τ) at least 25% of values differ from the
corresponding values of Had(b(j)

i);

From Claim 1 it follows that there are at most 2δ02k positions q where at least one of
these two conditions hold. Thus, we proved the following bound:

Claim 3 There are at most 2δ02k positions q = 1, . . . , 2k, where u′q differs from the

corresponding bit of E(b(j)
i).

Remind that we assume that at each step of the computation in the original circuit
S exactly one bit of every block is updated. Let on the j-th step in a block b̂i0 the
internal state of a processor c0 was updated: x

(j+1)
c0 = Fj(x

(j)
c1 , x

(j)
c2), where Fj is some

boolean function. Let the bits xc1 and xc2 be from the blocks b̂i1 and b̂i2 respectively
(ci ∈ {1, . . . , N}). The difference between Had(b(j)

i0
) and Had(b(j+1)

i0
) is a function

of xc0 , xc1 , xc2 . More exactly, if ξ = Fj(x
(j)
c1 , x

(j)
c2) − x

(j)
c0 , then the bitwise sum

modulo 2
Had(b(j)

i0
)⊕Had(b(j+1)

i0
)

is equal to Had(0, . . . , 0, ξ, 0, . . . , 0).
Let us explain the second stage of the construction and define u′′q . First of all, for

all i 6= i0 we let b̂′′i = b̂′i. For b̂′′i0 make the computations as follows. Let b̂′j0 =

7

(u′1, . . . , u
′
2k), b̂′j1 = (v′1, . . . , v

′
2k) and b̂′j2 = (w′1, . . . , w

′
2k). For each q = 1, . . . , 2k

we estimate the value xc0 as

x̃c0 = majority{(u′Mix(q,η)⊕c0
− u′Mix(q,η)) | η ∈ {0, 1}τ},

and the values xc1 and xc2 as

x̃c1 = majority{(v′Mix(q,η)⊕c1
− v′Mix(q,η)), | η ∈ {0, 1}τ}

and
x̃c2 = majority{(w′Mix(q,η)⊕c2

− w′Mix(q,η)), | η ∈ {0, 1}τ}

respectively. Set ξ̃ = Fj(x̃c1 , x̃c2)− x̃c0 and add the q-th digit of the value

Had(0, . . . , 0, ξ̃, 0, . . . , 0)

to the bit u′q (as usual, all operations are in the field Z/2Z). Note that x̃c0 is estimated
correctly unless at least 25% of the values vMix(q,0)+c0 , . . . , vMix(q,τ)+c0 are corrupted
or at least 25% of the values vMix(q,0), . . . , vMix(q,τ) are corrupted. From Claim 1,
there are at most 2δ02k positions q where one of these two conditions holds. The same
is true for x̃c1 and x̃c2 .

Let us bound the number of positions q where u′′q differs from the q-th bit of

Had(b(j+1)
1). All but 2δ02k positions u′q are equal to the corresponding bits of the

(2k)-bit string Had(b(j)
1). All three values xc0 , xc1 , and xc2 are estimated correctly

for at least 6δ02k positions. Further, at most ε02k bits of one block can be corrupted
due to random faults. In total, the fraction of position where u′′q is not equal to the

corresponding bit of Had(b(i+1)
0) is at most 8δ0 + ε0 < 1/8. �

We proved that any computation can be made reliable so that the result is cor-
rect with some fixed probability (1 − εres). We might want to get a circuit which
fails with exponentially small probability. To decrease the probability of a failure,
we can increase the size k of blocks bi used in the proof of Theorem 1. If we let
k = C ′ log log(tn) for some C ′ > 1, our construction results in a circuit which fails
with probability e−Ω(logC′

(tn)); blow-up of the memory in this circuit is O(2k/k) =
O(logO(1)(tn)). To implement this construction, we need a linear mixer with param-
eters (log(logO(1)(tn)), τ, α, β). Such a mixer can be constructed in time poly(t, n);
really, it is enough to get the tensor product of O(1) linear mixers with parameters
(1
2 log log(nt), τ, α′, β′).

To get a circuit that fails with probability e−Ω(n), we need a linear (log(tn), τ, α, β)-
mixer. Such a mixer exists, though we have no effective algorithm to construct it. But
if we omit the condition that Ŝ can be received from S effectively then we can apply
the same arguments as in Theorem 1 and get the following result:

Theorem 2 For any circuit S of depth t with n processors there exists a circuit Ŝ
of depth poly(t, n) with poly(t, n) processors that computes the same function for
the encoded input so that if any processor at each step is corrupted with probability
ε < 1/8 then the result is correct with probability at least (1− e−Ω(n)). The circuit Ŝ
can be constructed from S in time 2poly(t,n).

8

4 Computations resistant to an adversary
Now we consider the model where at each step an adversary chooses arbitrarily the
fraction ε of all processors and corrupts them. We show that any computation circuit
can made resistant to such an adversary with exponential blow-up of the memory.

Theorem 3 For a small enough ε > 0, for any circuit S of depth t with n processors
there exists a circuit Ŝ of depth tn with N = 2O(n)processors such that Ŝ computes
correctly the same function (for the encoded input) if at each step the fraction at most
ε of all processors are corrupted.

The circuit Ŝ can be constructed from S quasi-effectively: there exists a polynomial
algorithm which gets S, the number of a processor i ≤ 22n, and the number τ , and
returns (1) the boolean function required to update the state of the i-th processor at the
τ -th step, and (2) the list of O(1) processors that are queried by the processor number
i at this step of computation. Note that the binary representation of i is O(n), so this
algorithm runs in time poly(n, t).

Proof: We assume that in the original circuit at each step of computations only one
processor can update its internal state (any circuit can be transformed to this form, for
the price of n-time slow down and constant blow-up of the memory). Further we prove
that a circuit S which satisfy this assumption can be simulated by a fault-tolerant Ŝ in
real time.

Denote by y(j) = (y(j)
1 , . . . , y

(j)
n) the state of the memory of S at the j-th step of

computation, j = 0, . . . , t. Define an encoding function E : {0, 1}n → {0, 1}22n

as
follows:

E(x) = Had(x), . . . ,Had(x),

i.e., E is just the Hadamard code repeated 2n times. The decoding function D :
{0, 1}22n → {0, 1}n is defined as follows: to get D(x) split x into 2n blocks of
length 2n; decode each block using the Hadamard decoding; then for each position
i = 1, . . . , n take the majority of the i-th bits in all 2n results.

We shall define the computation process so that at each step j the memory of Ŝ

contains a value z(j) = (z(j)
1 , . . . , z

(j)
N) which differers from E(y(j)) in at most δN

positions for δ = 1/214. Note that this condition implies D(z(t)) = y(t).
Let us split the internal states of the processors (z(j)

1 , . . . , z
(j)
N) into 2n blocks of

size 2n and denote them b
(j)
1 , . . . , b

(j)
2n .

We shall employ an (n, τ, δ0/2, δ0)-mixer Mix, where δ0 = (δ − ε)/7. Such a
mixer exists for large enough τ = τ(δ0). We don’t need it to be a linear mixer, so we
can employ an expander with appropriate parameters. There are known constructions
of effective expanders with required parameters, e.g. [12].

We describe the transformation from z(j) to z(j+1) in four stages.
Stage 1. Fix i ∈ {1, . . . , 2n}. For each η ∈ {0, 1}τ get the block b

(j)
Mix(i,η) =

(u1(η), . . . , u2k(η)) and compute the vector

wi(η) = (ui⊕1(η)− u1(η), . . . , ui⊕2n(η)− u2n(η))

9

(here for i, s ∈ {1, . . . , 2n} we denote by i ⊕ s the bitwise sum of n-bits binary rep-
resentations of i and s). For each position r = 1, . . . , 2n get the majority of the r-th
bits in all wi(η), η ∈ {0, 1}τ . Denote by c

(j)
i the obtained result (which is a vector in

{0, 1}2n

).
Let us call a block z

(j)
i harmed if it differs from Had(y(j)) in more than

√
δ2n

positions. We assumed that z(j) differs from E(y(j)) in at most δN position. Hence,
there are at most

√
δ2n harmed locks z

(j)
i .

From Claim 2 it follows that for the fraction at least (1 − δ0) of all indexes i

(1 − 1/64) · 2τ of blocks b
(j)
Mix(i,η) (η ∈ {0, 1}τ) are not harmed. Note that if for

some i at least the fraction (1 − 1/64) of blocks b
(j)
Mix(i,η) are not harmed then all but

4(1/64 +
√

δ) · 2n = 2n/8 bits in the resulted block c
(j)
i are equal to y

(j)
i .

Stage 2. Fix i ∈ {1, . . . , 2n}. Let the block c
(j)
i consists of bits (v1, . . . , v2k). For

each r = 1, . . . , 2n calculate the majority in the sequence

vMix(r,η), η ∈ {0, 1}τ ,

Denote the result v′r. Set d
(j)
i = (v′1, . . . , v

′
2k).

From Claim 1 it follows that if a block c
(j)
i contains at least 7/8 · 2n bits equal to

y
(j)
i then in the corresponding block d

(j)
i at least (1 − δ0)2n bits are equal to y

(j)
i . Of

course, we guarantee nothing for a block d
(j)
i if in the corresponding c

(j)
i more than

1/8 of all bits differ from y
(j)
i .

Stage 3. This stage is trivial: we just make a permutation of bits in (d(j)
1 , . . . , d

(j)
2n).

For each l,m we get the l-th bit from c
(j)
m and put it to the m-th position in the l-th

block. Denote the result (f (j)
1 , . . . , f

(j)
2n).

Stage 4. Assume that at the j-th step of the computation in the original circuit S
the bit yi0 is modified:

y
(j+1)
i0

= F (y(j+1)
i1

, y
(j+1)
i2

),

where F is some boolean function. (W.l.o.g. we may assume that that the boolean
function F has only two arguments.)

Fix i ∈ {1, . . . , 2n} and denote f
(j)
i = (u1, . . . , u2k). For each q = 1, . . . , 2n

calculate
ỹi0 = uq⊕i0 − uq

ỹi1 = uq⊕i1 − uq

ỹi2 = uq⊕i2 − uq

Then set ξq = F (ỹi1 , ỹi2) − ỹi0 , and calculate 4q = Had(0, . . . , 0, ξq, 0, . . . , 0) (the
value ξq is placed at the i0-th position). Further, get the q-th position of 4q and add it
to the value uq. Denote the resulted block z(j+1).

Note that if d(j) differs from Had(y(j)) in γ2n positions (for some fraction γ ∈
(0, 1)) then z(j+1) differs from Had(y(j)) in at most 6γ2n positions. Hence, the whole
vector z(j+1) differs from E(y(j+1)) in at most

(δ0 + 6δ0 + ε)2n

10

positions. Note that 7δ0 + ε < δ, and we are done.
In our construction each bit z

(j)
i depends on O(1) bit from z(j). Thus, we have

well defined the transition rule z(j) 7→ z(j+1).
�

5 Conclusion
We proved that any parallel computation fulfilled on memory n in time t can be simu-
lated by a reliable circuit with memoryO(n log(nt)/ log log(nt)) in timeO(t log log(tn)).
Such a reliable circuit returns a correct result with high probability even if it is based
on faulty elements (i.e., each element faults at any step with some small probability
ε, and faults of different elements are independent). Our construction employs encod-
ing based on the Hadamard code. Actually similar arguments can be applied for a
code base on any other linear locally decodable code. For example, we can use the
Reed-Muller code instead of the Hadamard code; then essentially the same construc-
tion provides a bit stronger bound: any computation which was done on non-faulty
circuit with memory n in time t, can be simulated on faulty elements with memory
O(n log(nt)/ logC log(nt)), where the constant C can be made arbitrarily large. By
this method, we cannot obtain much better bounds (like O(n)), because for any lin-
ear locally decodable error correcting code the codeword length must be exponential
in the block length [13]. Thus, the main question, which remains open, is if reliable
polynomial computations can be fulfilled on memory O(n).

Our second result, which concerns computations resistant to an adversary who can
corrupt at each step some fraction of memory cells, seems quite weak. We presented a
construction with exponential blow-up of the memory. Again, the proved bound can-
not be essentially improved with our method, because it is based on a linear locally
decodable error correcting code. Remind that if we want just to store some informa-
tion (without computations), this can be done with a constant blow-up of the memory,
even if at each step an adversary corrupts some fraction of memory cells [2]. To our
knowledge, there are no results achieving polynomial blow-up of the memory for cir-
cuits computing an arbitrary function and tolerating a constant fraction of processors
being corrupted at every step. In [9] this problem was solved only for a special class
of boolean functions. Thus, the second important open question is if any computation
can be made resistant to an adversary, with linear or at least polynomial increasing of
the memory.

Another interesting question is if a linear (m, τ, α, β)-mixer can be effectively con-
structed in time poly(2m). If such a construction exists, the proof of Theorem 2 can be
made effective.

References
[1] J. von Neuman. Probabilistic logics and the synthesis of reliable organisms from

unreliable components. In C. Shannon and J. McCarthy, editors, Automata Stud-
ies. Princeton University Press, 1956.

11

[2] A.V. Kuznetsov. Information storage in a memory assembled from unreliable
components. Problems of Information Transmission. vol. 9(3), 1973, pp. 254–
264.

[3] R. L. Dobrushin, S. L. Ortyukov. Upper bound for the redundancy of self-
correcting arrangement of unreliable functional elements. Problems for Infor-
mation Transmission, vol. 13(1), 1977, pp. 203-218.

[4] R. L. Dobrushin, S. L. Ortyukov. Lower bound on the redundancy of self-
correcting arrangement of unreliable functional elements. Problems for Infor-
mation Transmission, vol. 13(1), 1977, pp. 201-208.

[5] N. Pippenger. On Networks of Noisy gates. In Proc. of the 26-th IEEE FOCS
Symposium, 1985, pp. 30–38.

[6] N. Pippenger, G.D. Stamoulis, J.N. Tsitsikilis. On a lower bound on for the re-
dundancy of reliable networks with noisy gates. IEEE Trans. Inform. Theory,
vol. 37(3), 1991, pp. 639-643.

[7] R. Reischuk, B. Schmeltz. Reliable computation with noisy circuits and decision
trees – a general n log n lower bound. In Proc. of the 32-th IEEE FOCS Sympo-
sium, 1991, pp. 602-611.

[8] P. Gács, A. Gál. Lower Bounds for the Complexity of Reliable Boolean Circuits
with Noisy Gates. IEEE Transactions Information Theory. vol. 40, 1994, pp. 579–
583.

[9] A. Gál, M. Szegedy. Fault Tolerant Circuits and Probabilistically Checkable
proofs. In Proc. of 10th Annual Structure in Complexity Theory Conference,
1995, pp. 65–73.

[10] D. A. Spielman. Highly fault-Tolerant parallel Computation. Proc. of the 37-th
IEEE FOCS Symposium, 1996, pp. 154-163.

[11] A. Goldreich, A. Wigderson. Tiny Families of Functions with Random Properties:
a Quality-Size Trade-off for Hashing. Random Struct. Algorithms 11(4), 1997,
pp. 315-343.

[12] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag prod-
uct, and new constant degree expanders. Annals of Mathematics, 155(1), 2002,
pp. 157–187.

[13] O. Goldreich, H.J. Karloff, L.J. Schulman, L. Trevisan. Lower Bounds for Linear
Locally Decodable Codes and Private Information Retrieval. IEEE Conference
on Computational Complexity, 2002, 175-183.

[14] P. Gacs. Lectures on Reliable Cellular Automata.

http://www.cs.bu.edu/ gacs/papers/iv-eng.pdf

12

6 Appendix
Proof of Lemma 1: Chose a random mapping F : {0, 1}m × {0, 1}τ → {0, 1}m and
check that with high probability F is a linear (m, τ, α, β)-mixer. We assume that for all
x ∈ {0, 1}m and u ∈ {0, 1}τ the value F (x, u) ∈ {0, 1}m is chosen at random (uni-
formly), and values for different points are independent. Let us bound the probability
that a random F is not a linear mixer.

Fix some A,B ⊂ {0, 1}m. For each pair (x, u) ∈ A × {0, 1}τ the value F (x, u)
belongs to B with probability |A|/2m. From the Chernoff bound we get

Prob[‖{(x, u) : x ∈ A,F (x, u) ∈ B}| − 2τ |A| · |B|
2m

‖ > β2τ |A|] < 2e−β2|A|2τ

If |A| ≥ α2m, we get

Prob[‖{(x, u) : x ∈ A,F (x, u) ∈ B}| − 2τ |A| · |B|
2m

‖ > β2τ |A|] < 2 · e−αβ22m+τ

As the values of F (x, u) are chosen at random independently, the values of G(x, u) are
also random and independent. Hence, for the function G the same bound holds:

Prob[‖|{(x, u) : x ∈ A,G(x, u) ∈ B}| − 2τ |A| · |B|
2m

‖ > β2τ |A|] < 2e−αβ22m+τ

Now sum up the probabilities above for all A,B. The total number of subsets in
{0, 1}m is 22m

. Thus, a randomly chosen F is not a linear mixer with probability less
than

2 · (22m

)24e−2αβ22m+τ

,

which is less than 1 for large enough τ . �
Proof of Claim 1: Let us fix some B of size at most 2m/8. Assume the claim is

false: suppose there exist δ2m different elements x ∈ {0, 1}m such that for a randomly
chosen u ∈ {0, 1}τ

Probu[F (x, u) ∈ B] ≥ 0.25

Let A be a set that contains exactly δ2m points x as above. As F is a mixer, we have

|{(x, u) : x ∈ A,F (x, u) ∈ B}| < δ2τ2m · |B|
2m

+ δ22τ2m < (δ/4) · 2m+τ

On the other hand, we assumed that for each x ∈ A, for at least 0.25 · 2τ points
u ∈ {0, 1}τ the value F (x, u) is in B. Hence,

|{(x, u) : x ∈ A,F (x, u) ∈ B}| ≥ 0.25 · δ2m+τ ,

and we get a contradiction. �
Proof of Lemma 2: Denote X1 = {0, 1}m1 and X2 = {0, 1}m2 . Let us fix some

A,B ⊂ X1 ×X2. Our aim is to evaluate the number of pairs (x, u) such that x ∈ A,
u ∈ {0, 1}τ1+τ2 , and F1 ⊗ F2(x, u) ∈ B.

Let δ = (α2)2. We use the following notation:

13

• for any u ∈ X1 let Au = {u⊗ v|v ∈ X2, u⊗ v ∈ A};

• for any v ∈ X2 let Bv = {u⊗ v|u ∈ X1, u⊗ v ∈ B};

• Ai = {x ∈ X1|iδ ≤ |Ax|/2m2 < (i + 1)δ};

• Bi = {x ∈ X1|iδ ≤ |Bx|/2m2 < (i + 1)δ};

• Âi = {u⊗ v ∈ A|u ∈ Ai} =
⋃

x∈Ai

Ax, i = 0, . . . , d1/δe;

• B̂i = {u⊗ v ∈ B|v ∈ Bi} =
⋃

y∈Bi

By , i = 0, . . . , d1/δe.

Step 1. First, we count the number of pairs (x, u) ∈ A × {0, 1}τ1+τ2 such that
x ∈ A and F (x, u) ∈ B. To evaluate the number of such pairs, we calculate for each
i, j the number of pairs (x, u) such that x ∈ Âi and F (x, u) ∈ B̂j , and then sum up
these values.

The first case: i, j ≥ 1/
√

δ, |Ai| ≥ α12m1 .
Fix some integer i, j as above. At first, count the number of pairs (x, u) ∈ X1 ×

{0, 1}τ1 such that x ∈ Ai and F1(x, u) ∈ Bj .
As F1 is a mixer,

‖|{(x, u) ∈ Ai × {0, 1}τ1 |F1(x, u) ∈ Bj}| −
2τ1 |Ai| · |Bj |

2m1
‖ ≤ β12τ1 |Ai|.

Further, for any x ∈ Ai, y ∈ Bj we have

‖|Ax| − iδ2m2‖ < δ2m2

and
‖|Ay| − jδ2m2‖ < δ2m2

Note that the condition i > 1/
√

δ implies |Ax| ≥ α22m2 . As F2 is a mixer, we have

‖|{(y, v) ∈ Ax × {0, 1}τ2 |F2(y, v) ∈ By}| − ij2m2+τ2δ2‖
≤ β2(i + 1)δ2m2+τ2 +O(1/i + 1/j) · ij2m2+τ2δ2

= β2(i + 1)δ2m2+τ2 +O(
√

δ) · ij2m2+τ2δ2

Thus, the number of pairs (x, u) such that x ∈ Âi, u ∈ {0, 1}τ1 , and F (x, u) ∈ B̂j is
equal to

|Ai|
2m1

· |Bj |
2m1

· ij2m1+m2+τ1+τ2δ2(1 +O(
√

δ)) +O(β1 + β2) · 2m1+m2+τ1+τ2

The second case: |Ai| < α12m1 .
For every i such that |Ai| < α12m1

‖|{(x, u) ∈ Ai × {0, 1}τ1 |F1(x, u) ∈ B}| ≤ α12m1+m2+τ1+τ2

14

The index i ranges over 1, . . . , d1/δe. Hence,∑
i,j: Ai<α12m1

|{(x, u) ∈ Âi×{0, 1}τ1+τ2 |F1(x, u) ∈ B̂j}| ≤ O(α1/δ)·2m1+m2+τ1+τ2 .

The third case: i < 1/
√

δ.
If i < 1/

√
δ and x ∈ Ai we have |Ax| ≤

√
δ2m2 . Hence,∑

0≤i<1/
√

δ,j≥0

|{(x, u) ∈ Âi × {0, 1}τ1+τ2 |F (x, u) ∈ B̂j}| ≤ |X1| ·
√

δ2m2+τ1+τ2 ,

which less than
√

δ2m1+m2+τ1+τ2

The fourth case: j < 1/
√

δ and i > 1/
√

δ.
For i, j under those conditions and any x ∈ Ai and y ∈ Bj there are at most

√
δ|Ax|2τ2 + β2|Ax|2τ2 ≤ (

√
δ + β2)2m2+τ2

pairs (x, u) ∈ Ax × {0, 1}τ2 such that F2(x, u) ∈ By . Thus,∑
0≤j<1/

√
δ, i>1/

√
δ

|{(x, u) ∈ Âi×{0, 1}τ1+τ2 |F1(x, u) ∈ B̂j}| ≤ (β2+
√

δ)·2m1+m2+τ1+τ2

Sum up the four cases above:

|{(x, u) ∈ A× {0, 1}τ1+τ2 |F1(x, u) ∈ B}| =
2τ1+τ2+m1+m2 · (1 +O(

√
δ)) ·

∑
i,j>1/

√
δ and |Ai|≥α12m1

|Ai|
2m1

|Bj |
2m2 ijδ2

+2τ1+τ2+m1+m2 · (O((α1 + β1 + β2)/delta +
√

δ)))

Step 2. Count the product |A| · |B|:

|A| · |B| =
∑
i,j

|Âi||B̂j | =∑
i,j>1/

√
δ

|Âi||B̂j |+O(
√

δ) · 22(m1+m2) =

22(m1+m2) ·
∑

i,j>1/
√

δ

|Ai|
2m1

|Bj |
2m1 ij +O(

√
δ) · 22(m1+m2) =

22(m1+m2) ·
∑

i,j>1/
√

δ,|Ai|≥α12m1

|Ai|
2m1

|Bj |
2m1 ij + 22(m1+m2) · O(α1/δ +

√
δ)

Step 3. From the bounds obtained in step 1 and step 2 we get

|{(x, u) ∈ A× {0, 1}τ1+τ2 |F1(x, u) ∈ B}| = |A||B| · 2(τ1+τ2)−(m1+m2)

+ O((α1 + β1 + β2)/δ +
√

δ)) · 2m1+m2+τ1+τ2

Obviously, if |A| ≥ √
α22m1+m+2+τ1+τ2 , we have

O((α1 +β1 +β2)/δ+
√

δ)) ·2m1+m2+τ1+τ2 = O(((α1 +β1 +β2)/δ+
√

δ))/α2) · |A|

Recall that δ = (α2)2, and we get that F1⊗F2 is a (m1 + m2, τ1 + τ2,
√

α2, β)-mixer
for β = O(α1+β1+β2

α2
√

α2
+
√

α2). �

15

