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Abstract—Let there be a pair of words (a, b) with sufficiently large mutual information. Can
we always “materialize” this information, i.e., point out a word ¢ that can be computed from a
and b simply and whose Kolmogorov complexity equals the mutual information between a and
b? In this paper, we propose a better estimate for the amount of mutual information which
may be materialized for words from the construction of Géacs and Korner, and also give a new
method for constructing pairs of words with nonmaterializable mutual information.

1. INTRODUCTION

Let there be two files 2 and y. Assume that some correlation exists between the data written in
them. If we need to keep (or transmit) information about x and y in the most economical way, it is
reasonable to demand that the “common” information of z and y should be kept in the form of a
separate collection of data. The question arises whether it is possible to encode x by a pair of files
(u,v) and encode y by a pair (u,w) in such a way that the length of u correspond to the amount
of mutual information between the two source files. Then, instead of the pair (z,y), we could keep
the triple (u,v,w). In doing so, we should be able to calculate u easily from x as well as from y.

Let us put this question in a more formal way. If we are given the words z and y, we can consider
their Kolmogorov complexities and their mutual information. The mutual information I(x : y)
indicates how much the knowledge of one of these words simplifies the problem of generating the

other:
I(z:y) = K(y) - K(y|=z)

Sometimes, this quantity can be given a visual interpretation. Consider the simplest example. Let
the word z be a concatenation of the words u and v and let the word y be a concatenation of the

words v and w, namely,
T = uv, Y = uw. (1)

Assume that all three words u, v, and w are chosen as random and independent and their lengths
are equal to n. Then the complexities of the words z and y are equal to 2n, and their mutual
information equals n. This fact is consistent with intuition: the words z and y have a common
part u, and the mutual information is the complexity of this common part. The word u is a
“materialization” of the mutual information between = and y.

In [1], the question was posed whether for any two words we can always find a third one, which
materializes their mutual information. The word z materializing the mutual information between
x and y should be easily calculable from each of them. Thus, we are interested in the question of
if there always exists a word with a low complexity conditioned on each of the two given words,
while its own complexity is equal to the mutual information between these words.

As is shown by Gdcs and Kérner [1], this question is answered negatively. However, to formulate
the exact statement, we need to explain what we mean by saying that some word z can easily be
obtained from the word z and the word y (i.e., the Kolmogorov complexities K (2 |x) and K(z|y)
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are small). It seems to be impossible to define the relation of “conditional simplicity” for specific
words (we cannot draw a boundary between “simple” and “complex” words). Therefore, let us
turn from individual words to infinite word sequences and consider asymptotic properties of their
complexities. In such terms, we can state the result of Gdcs and Korner.

Theorem 1. There exist word sequences x, and y, such that
K(z,) = n+ o(n), K(yn) = n+ o(n), I(xy : yn) = an+ o(n)
(a is a positive constant), and for any word sequence z, satisfying the condition
K(zn|zn) =o0(n),  K(za|yn) = o(n),

it follows that K (z,) = o(n).

Speaking informally, this theorem asserts that there exist z,, and y, such that if the complexity
of zy is small conditioned on z, and on y,, then the complexity of z, on its own is also small. In
addition, the mutual information of the words x, and y, grows linearly with n. Thus, there exist
word sequences for which their mutual information cannot be materialized. Moreover, Theorem 1
claims that one cannot materialize even a part of the mutual information of the words z, and
yn. More exactly, the amount of mutual information that can be materialized is infinitesimal with
respect to n.

In [1], a certain class of examples of pairs (zn,y,) possessing the aforementioned property is
described. In doing so, this construction permits us to generate such sequences x, and y, for any
values of the parameter a, 0 < a < 1; i.e., we can determine z,, and y,, whose mutual information
is very large (a is close to 1) but even a small part of it cannot be materialized.

No exact evaluation of the remainder terms was performed in [1]. But by analyzing the proof
we can verify that Theorem 1 will still be true if we replace the terms o(n) in its condition by
O(y/n) (or by O(f(n)), where f(n) is any function growing faster than /n, but slower than n, i.e.,
f(n) = o(n), f(n) > y/n). However, in statements concerning the Kolmogorov complexity, it is
natural to formulate equalities up to a logarithmic term. Indeed, such properties as the symmetry
of mutual information

I(z : y) = I(y : x) + O(log(|z| + [y]))
or the relation between the conditional complexity and the complexity of a pair of words

K((z,y)) = K(z) + K(y|z) + O(log(|z| + [y]))

are valid up to the logarithm of the word length (see [2,3]). It therefore seems to be interesting to
consider a strengthening of Theorem 1, namely, to prove it when o(n) in its conditions is replaced
by O(logn). More formally, a natural strengthening of Gdcs and Kérner’s theorem follows.

Theorem 2. For any function f(n) such that f(n) = o(n) and f(n) > logn, there exist word
sequences Ty and Yy, such that

K(zn) =n+0(f(n)),  K(w)=n+0(f(n)),  I(zn:yn)=an+O0(f(n))
(a is some positive constant), and for any word sequence zy satisfying the condition
K(zn|zn) = O(f(n)),  K(zn|yn) = O(f(n)),
it follows that K(z,) = O(f(n)).
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In [4,5], Theorem 2 was proved for an arbitrary value of the parameter a, 0 < a < 1. Other
examples of word sequence pairs with nonmaterializable mutual information (and, hence, other
proofs of Theorem 2 for some special values of a) were also given in [6,7].

Thus, for any a < 1, we can find words =, and v, such that their complexities are approximately
equal to n, their mutual information is approximately equal to an, and their mutual information
cannot be materialized. An. A. Muchnik has raised the question: What are the values of the
parameter a such that for any n of complexity n it is possible to find y, of complexity n with
mutual information I(z, : ¥n) Which is approximately equal to an but cannot be materialized?
More exactly, for what values of the parameter a is the following strengthening of Theorem 2 valid?

Theorem 3. Let f(n) be a function such that f(n) = o(n) and f(n) > logn, and let T, be a
sequence such that K (z,) =n+ O(f(n)). Then there exists a sequence Yn such that

K(ya) =n+0(f(n)),  I(zn:ya) =an+0(f(n)),
and for any word sequence z, satisfying the condition
K(zm|za) =O0(f(n),  K(zalyn) = O(f(n)),

it follows that K(z,) = O(f(n)).
For a = 1/2, this theorem was proved in [5].

In the present paper, we consider two arguments which make it possible to prove Theorem 3 for
any values of the parameter a, 0 < a < 1. The first of them utilizes an example of pairs of words
given in [1]; the new method of the proof makes it possible to enhance the estimation of the amount
of mutual information that can be materialized (and, thereby, to prove Theorems 2 and 3). The
second argument is based on a new algebraic construction which generalizes the method of [5].

Remark 1. For the sake of simplicity, we prove Theorem 3 for f(n) = logn only. For the case
of an arbitrary f(n), all the arguments are carried over almost literally.

Notation Used

T, y, z, ... are binary words (finite sequences of zeroes and ones); the length of a word z is
denoted by |z|;

z = {z.}, vy = {yn}, 2 = {2}, ... are infinite sequences of words; we assume that the
word length in all sequences to be considered grows not faster than linearly: |z,| = O(n), lyn| =
O(n), |zn| = O(n), ...; we say that the sequence T = {z,} is simple conditioned on the sequence
y = {yn} if K(zn|yn) = O(logn);

(z1,22,...,Tn) is a tuple of binary words; we fix some computable enumeration of all finite
tuples of words;

a, B, v, ... are discrete random variables;

K () is the Kolmogorov complexity of a word z;

K (z1, 3, ..., 2y) is the Kolmogorov complexity of the index of a word tuple (z1,Z2,...,%s) in
the chosen enumeration;

K(z|y) is the Kolmogorov complexity of a word z conditioned on a word y;

K(x1,%2y -1 %n | Y1, 925+ -+ . ym) is the Kolmogorov complexity of the index of a tuple (z1,z2,...,
) conditioned on the index of a tuple (y1,¥2,--->¥m);

I(z: y) = K(y) — K(y| ) is the mutual information of words x and y;

I(z : y|2) :== K(y|2) — K(y|,z) is the mutual information of words z and y conditioned on
z; the mutual information of word tuples (conditioned on word tuples) is defined analogously;

PROBLEMS OF INFORMATION TRANSMISSION  Vol. 36 No. 1 2000




4 ROMASHCHENKO

H () is Shannon’s entropy of a random variable &;

I(a: B) == H(a) + H(B) — H(c, B) is the mutual information of random variables a and f;

let (z1,Z9,...,Tk) be a word tuple and let V = {i1,d9y.yir} € {1,2,...,k} be aset of indices;
then we denote by z¥ the tuple (z;,, Ziy, . . . , %3, ); & similar designation is used for tuples of random
variables;

in the paper, all logarithms are taken to the base 2.

2. STOCHASTIC PAIRS

Let us consider a particular case from the family of Gécs and Korner’s examples, for which we
give a new simpler proof of nonmaterializability of the mutual information. The new argument will
allow us to improve the estimate for the amount of information separated and obtain proofs for
Theorems 2 and 3.

Before we begin the proof, let us give several definitions.

Definition 1. Let random variables ¢!, ¢?, ... , o* assume values in finite alphabets Avgidog i
Ay and possess the joint distribution

P @il )= Prob[p! =a', ¢’ = a2,..., ¢ =d.

Then the tuple of infinite word sequences (!, x2,...,x") is called P-typical if for any set of values
(al,a?,...,ak), the number of positions i such that in every word zf, the ith place is occupied by

the letter a’ is equal to nP(al,d?,...,a*) + O(1).
Definition 2. We call a P-typical tuple of word sequences (x!,x?,...,2¥) P-random if for any
nonempty set of indices V C {1,2,...,k} and any (maybe, empty) set of indices W C {1,2,...,k},

the equality ) ,
K(z¥ |2¥) =nH(p" |¢") + O(logn) (2)

holds. (In the case where the set of indices W is empty, the conditional Kolmogorov complexity
and conditional Shannon entropy in (2) become unconditional.)

Remark 2. Let a pair of sequences (z,y) be random with respect to the distribution P of a pair
of random variables (¢,). Then the values of K(zn), K(yn), and K (n,Yn) are equal (up to a
logarithmic addend) to nH (), nH (), and nH (¢, ), respectively. Hence, the analogous equality
is valid for the mutual information as well. Indeed,

I(p: ) = H(p) + HY) — H(p,¥)

and
I(zn : yn) = K () + K (Yn) — K(2n, yn) + O(log n).
Therefore,
I(xy 2 yn) = nZ(p : ¢) + O(logn).
Proposition 1. (1) If random variables ol p%,..., " possess a joint distribution P, then for
any P-typical sequences =*,x?,... .z, any nonempty set of indices V. C {1,2,...,k}, and any

(maybe, empty) set of indices W C {1,2,...,k}, we have the inequality
K(zy |z ) £ nH(p" | ") + O(log n).

(2) For any distribution P, there exist P-random tuples.

Proof. For k = 1, the proof is given in [2], as well as in [3]. In the general case, the proof is
similar. A
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Remark 3. Let a pair of sequences (z,y) be typical with respect to the distribution P of a pair
of random variables (i, ), and let K (zn,yn) = nH(p, %) + O(logn). Then the given pair is P-
random. Let us prove, for example, that K () = nH(p)+ O(log n). Indeed, due to Proposition 1,
we have the inequality K (z,) < nH(p)+0O(logn). To prove the converse, it suffices to add together

the equalities

K(2n,yn) = K(zn) + K(yn | zn) + O(log n),
nH(‘P: TP) = K(xmyn) ;2 O(]Dg '.Q)

and the inequality
K(yn 1 -In) < W»H(%b | (,0) b O(l(}g n)'

In a similar way, we can prove the following equalities:

K (yn) = nH(3) + O(log n),
K (zn | yn) = nH(p|¥) + O(log n),
K (yn|xn) = nH (¢ | p) + Oflogn).

In what follows, we need a construction, which will enable us to extend P-random tuples. Specif-
ically, let k and ! be positive integers with [ < k. We assume that random variables !, ¢?%,...,oF
have a joint distribution P. We denote by P’ the projection of P on the first [ coordinates, i.e., the
joint distribution of ¢, ©?,...,¢. Then any P’-random tuple can be complemented to a P-random

one. More exactly, we have the following lemma.

Lemma 1. Assume that P is the joint distribution of k random variables, each of which takes
two values 0 or 1, P’ is the projection of the distribution P on the first | coordinates, and a tuple
(x',x?,...,a!) is P'-random. Then there evist sequences 2t 22 xF such that the tuple

(xl,x?,..., x*) is P-random.
Proof. Let us give the proof for the case of k = 2, 1 =1 (the proof in the general case is
analogous).
Let binary random variables ¢, have a joint distribution P:
Prob[p = i, = j] = pij,
where i,j = 0,1. In the case considered, P’ is the distribution of y:

Prob[p = i] = pio + pi1.

Assume that we are given a P’-random word sequence x. We need to find a sequence y such that
(x,y) is P-random.

Let the characters 0 and 1 occur so and s; times, respectively, in the word =y (the values of sp
and s; depend on n). Since the sequence x is P’-random, we have

s; = n(pio + pir) + O(1)

for i =0,1.
Consequently, we can represent the numbers so and s; as sums 8; = S; + 8i1 so that

sij = npij + 0(1)
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(the numbers s;; will also depend on n).

We call a binary word 7 of a length n admissible if it can be obtained from the word z, by the
following transformation: in the word z,, we must replace (sg1 + s10) bits by their complements,
namely, replace so; zeroes by ones, and sjg ones by zeroes.

Clearly, if 7 is admissible, then the frequencies of ones and zeroes in this word correspond to
the probability distribution 1, and the pair (zn,7) is P-typical. It remains to choose an admissible
§j such that the resulting pair is P-random. But for this purpose, it suffices to take an admissible
word having the largest complexity conditioned on .

For a fixed z,,, the number of all admissible words ¥ is equal to (C - C510). If, as yn, we take
an admissible word of the maximum complexity conditioned on n, then

K(§n | n) = log(C5d* - Grd S o O(logn) = nH (¢ | ¢) + O(log n).

(The latter equality can easily be proved by estimating the values of the binomial coefficients with
Stirling’s formula.) Furthermore, since the sequence  is P-random, K (z,) = nH(p) + O(logn).
By the equality

K(zn,yn) = K(xn) + K(yn |zn) + O(log n),

we obtain
K (20, yn) = nH(p) + nH( | ) + O(logn) = nH(p,¥) + O(logn). (3)
According to Remark 3, from (3) it follows that the pair constructed is P-random. &
Lemma 1 is valid not only for binary but also for arbitrary jointly distributed random variables.
However, we have proved (and will use) it only for joint distributions of binary random variables.

Let us introduce one more notion. Consider the joint distributions of a pair of random variables
(g, 1) with the following properties: both variables ¢, ¥ take values 0 and 1 with probability
1/2 (i.e., they are binary uniformly distributed); in addition, ¢ and 1 take different values with
probability a (and, accordingly, coincide with probability (1 — a)). Thus,

11—«
2 1

Pl‘Ob[(p =0,9 = O] = Pl‘Ob[gO =19 = ]_] =
PrOb[@ = lgi,b = O] = PrOb[(p = 0,1!) ] ]_] = %

This distribution is given by Table 1.

Table 1. Distribution P of the pair of random variables ¢,

n,o\ﬂ’ 0 1

0 =t @
2 2

1 o 1—a
2 2

Definition 3. Let us call word sequences @, y an a-pair if they are a P-random pair with
respect to the distribution P given by Table 1.

Let random variables ¢ and 9 have a joint distribution P specified in Table 1, and let sequences
x and y form an a-pair. Then z,, Y, are random words of length n and differ from each other at
an + O(1) positions.
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Furthermore, one can easily calculate Shannon’s entropies of the random variables ¢ and 1, as
well as the entropy of the pair (@, ),

H(p)= HW)=1, H(py)=1-(aloga+ (1 —a)logl—a)).
We obtain the mutual information of the given random variables
I(p:) =1+ (aloga+ (1 —a) log(1l — «)).
Denote the amount of mutual information
c(a) =1+ (aloga + (1 — a)log(l — a)). (4)

Obviously, ¢(a) > 0 for a # 1/2.
If ¢ and y form an a-pair, then

K(zp) = n+ O(logn),
K(yn) = n+ O(logn),
I(n, yn) = c(a)n + O(log n).

Thus, for a # 1/2 the mutual information of zy and y, grows linearly in n.

The case @ = 1/2 should be considered separately. Since ¢(1/ 2) = 0, the mutual information
between the words z,, and y, is equal to O(logn). This agrees with intuition: if two words are
chosen randomly and independently, they differ approximately in a half of bits. But according to
the definition of a 1/2-pair, the words x, and y, must actually be a pair of random words which
differ approximately in a half of bits.

Exactly o-pairs appear to be examples of words satisfying Theorem 2. We will prove that for
any a € (0;1) the mutual information of random a-pairs cannot be materialized. To this end, we
need the following technical lemmas.

Lemma 2. Let a sequence z be simple conditioned on and on y, i.e., K(zn|2zn) = O(log n)
and K (zn |yn) = O(logn). Then K(z,) < I(zn : yn) + O(log n).

Proof. For any Zn, Un, 2n We have the relations

K(zn,2n) = K(zy) + K(zn | zn) + O(logn),

K(zy) — K(zn |yn) = I(2n : yn) + O(log n),

K(zn | yn) < K(@n|2m) + K(2n| yn) + O(logn),
)

K(2n | 2n) + K (2n) = K (@n, 20) + O(logn).
By adding them together, we obtain
K(z) < K(2n | 2r) + K(2n | yn) + I(2n : yn) + O(log n). (5)

Taking into account that K(zn|zn) = O(logn) and K(zn|yn) = O(log n), we obtain K(z,) <
I(zn : yn) + O(logn). A

Lemma 3. Assume that we are given four sequences T, Y, x', Yy such that z, and y, are
independent conditioned on z), and on yy:

I(zy : Yn | 2;;) = O(logn), I(zn : Yn | yp) = O(logn).

Then every sequence z, which is simple conditioned on © and y (so that K(zy,|zn) = O(logn) and
K (zn | yn) = O(logn)), is also simple conditioned on 2’ and y' (so that K(z,|a},) = O(logn) and
K(zn |yn) = O(log n)).
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Proof. Let z be simple conditioned on @ and y. Let us show that 2 is also simple conditioned
on ' and y'. Consider a relativized version of the inequality (5)

K(zn | 2l) < K(2n |20, zn) + K(zn | Yy ) + I(@n : yn | @) + Olog n).

By weakening it, we obtain
K(zn | @) < K(2n|xn) + K(2n| yn) + I(@n : Yn | 2n) + O(log n).

Since z is simple conditioned on @ and y and the sequences x and y are independent conditioned
on a', we obtain K(zn |z)) = O(logn). Similarly, K (z |4,) = O(logn). &

The following lemma will allow us to reduce the problem of nonmaterializability of the mutual

information for an a-pair to that for some (-pair, where § > a.
Lemma 4. Let o < 1/2 and let the sequences & and y be an a-pair. Then for any 3 such that

a<pB<min{l-v1l- 2a,1/2},

a B-pair @', y' egists such that any sequence z, which is simple conditioned on T and y, 1 also
simple conditioned on @’ and y'.
Proof. Let us construct sequences @', gy, which form a (-pair and are such that

I(zn : yn|2}) = O(logn),  I(@n :yn|¥h) = Ollogn)-
Then, according to Lemma 3, every sequence, which is simple conditioned on = and y, is also simple

conditioned on ' and y'. For constructing @' and y', let us use the properties of quadruples of

sequences of a special form.

Consider a quadruple of binary random variables @1, @2, 3, and ¢4, which have the following
joint distribution P’. First of all, assume that the joint distributions of the pairs of these random
variables (p1,¢2) and (3, p4) are as shown in Table 2. Secondly, the conditional probability

Table 2. Projections of distribution P!

Distribution of ¢ and 2 Distribution of y3 and @4
tpl\‘” 0 1 (pg\‘»"‘i 0 1
l-a a 1= B
0 —_— - 0 — —
2 2 2 2
1 = S 1 p 1-8
2 2 2 2

distributions of the pair (@1, o) for known values of o3 and (4 must be such as in Table 3. In

1-(6—+v1-2
P @ as the value of the parameter t. The expression for the

doing so, let us take
quantity t makes sense (the radicand is nonnegative) since by definition o <1 /2.

The given definition is correct, i.e., Tables 2 and 3 actually specify a joint distribution of a
quadruple of random variables if all numbers in the tables are nonnegative. This condition holds
ift>0and 1—3—1t>0. It is easy to verify that both inequalities are satisfied for the chosen
value of the parameter. Indeed, the first inequality follows from the restriction # < 1 —+v1—2a
in the condition of the lemma and the second inequality is valid for any o and (3 from the interval

(0,1/2).
PROBLEMS OF INFORMATION TRANSMISSION  Vol. 36 No. 1 2000
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Table 3. Distributions of @1, 2 for fixed values of 3, ¢4

w3 =0,04=0 p3=0,p4=1
o1 \P2 0 1 o1 \ P2 0 1
1w et 8—a a
0 2 0 =
= . 20 2 |
t o 83— a
1 i 5| 2 % f';
p3=1,p4=0 p3=1,ps=1 |
o1 \? 0 1 o1\ 0 1
g —« fo! t |
0 — 0 _— 0 i
25 28 1-5
e 8 —-o 1—=g=% A
1 —= 1 0 — a
20 2p 1-0

Let us prove that for the chosen value of t, the random variables ¢ and (g are independent
conditioned on (3 and 4, and hence

(o1 :pa|w3) =0,  Z(pr:p2|ps) =0.

The proofs of the independence of ¢; and  conditioned on 3 = 0, p4=0,p3=1and pg =1
are completely analogous, and we consider only the case of 3 =0.

So let us prove that if we choose the parameter t as indicated, the random variables ¢ and 2
are independent conditioned on @3 = 0. One can easily see that the joint distribution of ¢; and
(9 conditioned on @3 = 0 is such as shown in Table 4. Independence of a pair of binary random

Table 4. Distribution of ¢; and s conditioned on w3 =0

991\"92 0 1
8—-a «
1—3—1t+- — f
0 g-t+ 2 5 |
a 8 — a |
— |
1 2 t+ )

matrices means that the distribution-generating matrix of four numbers is of rank one. It remains
to find a value ¢ such that the determinant of the matrix given by Table 4 equals zero. We obtain

the quadratic equation
B - a) ( B — a) o?
- -_ e = o t - — —
(1 B—t+ 7 g 1 0,

i~ fi—ufT— D
- .

We have proved that the random variables ¢ and @p are independent conditioned on 3 and
4. Consequently, if the sequences x,y, z',1y form a P-random quadruple, then

one of whose roots is exactly the number

I(zn : yYn | z),) = O(logn), I(zn : Yn | yn) = O(logn).

PROBLEMS OF INFORMATION TRANSMISSION Vol. 36 No.1 2000
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Moreover, « and y form an a-pair, and x' and y' form a (-pair.
To prove the lemma, it remains to note that if we are given an arbitrary a-pair (z, y), then by
Lemma 1 it can be completed to a P-random quadruple (z,y,z’,y'). &

Corollary 1. Let % <a< %, and let ¢, y be an a-pair. Then any sequence 2 which is simple
conditioned on  and y has a logarithmic complezity, i.e., K(z;) = O(logn).

Proof. Let z be a sequence simple conditioned on = and y. It can easily be verified that
% <1—+1-2a,ie, a€(3/8, 1/2) and B = 1/2 satisfy the condition of Lemma 4. Therefore, 2
is also simple conditioned on some @' and y', which form a 1/2-pair. But the mutual information
between x}, and yj, does not exceed O(logn). By Lemma 2, we obtain K (z,) = O(logn). &

Now let  be an arbitrary number from the interval (0,1). In order to prove that for any a-pair
the mutual information is nonmaterializable, it suffices to repeat the technique from the proof of
Corollary 1 several times. Let us state this in a formal way.

Proposition 2. Let 0 < a <1, and let ¢ and y be an a-pair. Then for every sequence which
is simple conditioned on T and Y,

K(2y) = O(logn).

Proof. So, let z be simple conditioned on @ and on y. First of all, let us note that if z and
y are an a-pair, then, by replacing all bits of words from the sequence y by their complements,
we obtain a (1/2 — a)-pair with the same properties of materializability of the mutual information.
Therefore, it suffices to consider a < 1/2.

The case a = 1/2 is trivial. The words of a random 1/2-pair are independent, ie, I{(zniyn) =
O(logn). By Lemma 2, the complexity of the word 2, is not greater than the mutual information
of 2, and y,. So it only remains to consider a < 1/3:

Now let 0 < a < 1/2. Let us choose the parameter ol as
a! = min {1 - v1—20a,1/2}.

By Lemma 3, there exists an o'-pair @', y! such that any sequence z simple conditioned on x and
y is simple conditioned on z!, y! too. If @y = 1/2, the proof is complete. Otherwise, let us again
apply Lemma 3, according to which there exists an a2-pair 2, y? with

o? = min {1 — V1 —2a%,1/2},

such that every z simple conditioned on ' and y! is also simple conditioned on 22, y%. By applying
Lemma 3 repeatedly, we obtain

(@, yY), (@) (@Y
where for any n the sequences " and y™ form an o"-pair,
o™ = min {1 - v1-22",1/2}, n=12,.... (6)

At the same time, every sequence z simple conditioned on & and y is also simple conditioned on
each of the sequences " and y". It remains to prove that at some step we will obtain a 1/2-pair,
ie.,

aN oV =1/2

Assume the contrary. Then {a™} is an infinite strictly increasing sequence, all members of which
are less than 1/2. Therefore, the sequence converges to some limit aao. Substituting aco into the

recurrent relation (6), we obtain
Qoo = 1 — V1 — 200,
whence oo = 0. But this contradicts the increasing of an. A
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Proposition 2 make it possible to prove Theorem 2 for any value of the parameter a. Indeed,
according to (4), for any a from the interval (0,1) there exists a such that c(a) = a; then, for an
o-pair @, Y,

K(zn) =n+0(ogn),  K(ya) =n+O(ogn),  I(zn:yn)=an+O(logn).

But by Proposition 2, for any a-pair the mutual information is nonmaterializable. To prove

Theorem 3, it remains to note that if a € (0,1) and z is a sequence such that |zn| = n and
K(z,) = n+O(logn), then by Lemma 1 it is possible to find a sequence y such that « and y form
an a-pair.

3. ORTHOGONAL LINEAR SUBSPACES

In this section, we consider a second construction which allows us to obtain word sequences x, Y
with nonmaterializable mutual information. Let us fix two parameters, namely, positive integers i
m and k such that 2k < m. For any n € N, let us choose a finite field Fy, (the field F, consists of |

29(") ¢lements). Now we denote by V;, the m-dimensional linear space over F,. We assume that
some basis is fixed in V,,. We say that vectors v and w from V;, are orthogonal if in the basis fixed,
v=(v,v%...,v"), w= (w,w?. .., 0™

?

and
viw! +v?w? 4 ...+ ™™ =0. |
Accordingly, we call linear subspaces A, B C V;, orthogonal if any vector from A is orthogonal to I
every vector from B. I
As z,, and y,, we take pairs of orthogonal k-dimensional subspaces of V,,. If P, is the number of
all pairs of orthogonal k-dimensional subspaces in V,, then, obviously, K (zn,yn) < log P,+0(logn). |
We are interested in random pairs (Zn, ¥n), i.e., pairs such that K (zn,yn) = log P, +O(logn). Note
that for k = 1 and m = 3 we obtain the construction from [5].
The parameters of the given construction are the numbers m and k, as well as the sizes of the
fields F,. Below we will choose values of the parameters such that the complexities of x, and y,
will be close to n, and the quantity I(z, : ) will depend on the ratio of k and m. Most interesting
is the case where k is chosen close to m/2 since the mutual information between x, and y, appears
then to be close to n.
For fixed values of the parameters, any word z, of complexity n may be considered as a code
in a random k-dimensional linear subspace of V,,. For any k-dimensional subspace z,, we can _
find a k-dimensional subspace y, orthogonal to it such that the conditional complexity K (yn | Zn) ':
has the maximum possible magnitude (more exactly, K (yn|zn) is the logarithm of the number of
k-dimensional subspaces in V}, that are orthogonal to the subspace x,). It is clear that the pair
(Zn,yn) will then be random, i.e., will have a complexity of log P, + O(logn). To obtain the proof
of Theorem 3, it remains to verify that Theorem 2 holds for random pairs of orthogonal subspaces
(the mutual information cannot be materialized).
The proof is based on the following property of orthogonal subspaces. Consider a graph G
whose vertices are all k-dimensional subspaces in V,. Edges in this graph connect orthogonal
subspaces. Fix some vertex vg of the graph. Consider a random walk along this graph starting in
vg. Let v; be the graph vertex where the random walk appears after ¢ steps. For any 4, the random
variable v; is distributed on the vertex set of Gy, (i.e., on the set of k-dimensional subspaces of Vy,).
Let us show that for some s the distribution of v, is close to the uniform one. This s depends on
m and k, but does not depend on n.
So, for any n, let the words z, and y, encode a random pair of orthogonal k-dimensional
subspaces of V},. The formal proof is as follows.
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Proposition 3. The Kolmogorov complezities and mautual information of &, Yy grow linearly in
n, namely,

K(zn) = (mk — k)| Fa| + O(log n), (7)
K (yn) = (mk — k*)|Fy| + O(log n), (8)
(x5 : Yn) = k*|Fn| + O(logn). (9)

Proof. Let W be a linear space over Fn. Let us find the number of sequences €1,€2;...,€k
consisting of k linearly independent vectors of the space W.

Denote s = dim(W) and N = |Fy|. As e;, we can take any nonzero vector of W. T hus, to
choose the first vector in a sequence, we have N°—1 possibilities. Let a vector e1 be already chosen.
Then, to choose the second vector in a sequence, we have (N® — N) possibilities since €2 must be
linearly independent of e;. Next, if we have chosen the first ¢ vectors of a sequence, then, as a
vector e;41, we can take any vector, which does not belong to the linear span of e1,...,€i; 1.e, to
choose e;41, we have N® — N i possibilities. Consequently, in the space W we have

(N* = 1)(N* = N)...(N° = N*71) = N¥(1+O(1/N))

sequences of k linearly independent vectors. Replacing s with the number m, we find the number
of sequences of k linearly independent vectors in the whole space V,. Furthermore, substituting
the number k instead of s, we find the number of sequences from k linearly independent vectors in
every k-dimensional subspace of V,,. The ratio of these quantities,

Qn = N™ ¥ (1+0(1/N)),
gives the number of k-dimensional subspaces of V. Since x, and yy, are chosen at random,

K(z,) = log Qn + O(log n), K (yn) = log Qn + O(log n).
It remains to find the mutual information between n and Yn.

Let us calculate the magnitude of the conditional complexity K(yn|zn). If the subspace z,, is
already fixed, then y, lies in the subspace of vectors of Vi, orthogonal to z,. The dimension of this
subspace is equal to m — k. But in every (m — k)-dimensional subspace, there are

T, = Nm=Rk=+(1 1 O(1/N))

k-dimensional subspaces. The complexity K (yn | z,) equals the logarithm of T,, with accuracy up
to O(logn). Hence,

I(@n - o) = K (n) = K(yn | 2) = 0g (%ﬂ) 4+ Ollogn).

n

By the direct calculation of the logarithms of Qn and T,,, we obtain the required statement. A

Let us assume that m, k, and Fy, (|Fn| = 90(n)) are chosen in such a way that

K (zy) = n+ O(logn), (10)
K(yn) = n+ O(logn), (11)
Iz : yn) = an+ O(log n), (12)

where a is some positive constant. Thus, the mutual information of x, and yn grows linearly in
n. One can easily note that as the ratio k /m tends to 1/2, the corresponding value of a tends to
unity. Consequently, we can choose the values of the parameters m and k in such a way that a will
be made arbitrarily close to unity.

Let us show that for the sequences Tn, Yn constructed, their mutual information cannot be
materialized; i.e., the assertion of Theorem 2 is valid for them.
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Proposition 4. For the sequences x, y that we have constructed and for any sequence z simple
conditioned on & and on y, the equality K(z,) = O(logn) holds.

Proof. Let z, be a sequence of words simple conditioned on zy and yn (that is, K (zn |Zn) =
O(logn) and K (2 |ya) = O(logn)). Let us prove that K(z,) = O(logn). Fix a positive integer n.
In what follows, for the sake of simplicity of notations, we omit the subscript n each time when it
does not lead to confusion.

Since z is simple conditioned on x and ¥,

K(z|z) = K(z,z) — K(2) + O(log n) (13)
= K(z) + K(z|z) — K(2) + O(log n) = K(z) — K(2) + O(log n).

A similar calculation can also be performed for y. Put
D =max{K(z|2),K(y|2)}
(Note that |K(x|z) — K(y|2)| = O(logn).) In the new notation,
K(z|2) £ D, K(y|z) £ D.

Below we will show that there exist sufficient enough words whose complexity conditioned on
z does not exceed D (and thus the number D is large enough). Moreover, we will show that
D = K(z) — O(logn). This means that the conditional complexity K (x| z) differs very little from
the unconditional complexity K (). Next, using (13), we will obtain a logarithmic estimate for the
complexity of z.

In this proof, we consider chains of subspaces, i.e., finite sequences

-yl -z

Loy —y =0, (14)
where i, y' are k-dimensional subspaces of V,, and any adjacent subspaces in the chain are orthog-
onal. The subspace zg is called the left end, and the subspace z”, the right end of the chain. The
number 7 is called the length of the chain (r is independent of n). We are only interested in chains
such that 20 = z. Such a chain is a trajectory of a random walk along the graph Gn. Note that
the number of steps in the walk is even, odd steps are marked by z!, i = 0,1,...,r, and even by
y', i=1,...,r, respectively.

A random walk along the graph corresponds to the uniform distribution on the set of chains
with a fixed left end. The uniform distribution on the chains induces some distribution on the set
of their right ends. We will select a value of the parameter r such that the resulting distribution
on the set of right ends of the chains will appear to be close to the uniform one. At the same time,
we will show that, with a large enough probability, the right end of a randomly chosen chain has a
complexity not greater than D conditioned on z. We will thereby show that the number of right
ends of chains with complexity not greater than D conditioned on z is large.

First of all, let us show that for a polynomial part of all chains of the form (14), the complexity
of the right end z" is small conditioned on 2.

Lemma 5. Let X" be the set of all chains of the form (14). Then the number of chains whose

right ends satisfy the inequality
K(z"|2) <D

|X7]

is not less that , where poly(n) is a polynomial.

poly(n)
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Proof. Let us prove a stronger statement. Namely, let us show that not less than a polynomial
part consists of chains of subspaces which satisfy the following two conditions:

(a) all elements of the chain «i, y have complexity not greater than D conditioned on z;

(b) each pair of adjacent (in the chain) subspaces (y7,27) or (z4,y7*1) is random, ie., has
complexity not less than log P — O(logn) (here and throughout what follows, we use the notation
from the proof of Proposition 3).

Note that a pair (y7,27) has complexity close to P, if and only if the complexity K (x7) is close
to log Qn and the conditional complexity K (y’ |27) is close to log T,,. More exactly, randomness of
the pair (y7,7) is equivalent to the fact that some constant C satisfies the inequalities

K(a') 2 logQn — Clogn,
K(y | 7) > log T, — C'log .

Xi
Let us prove the lemma by induction on the length of a chain. Let there be not less than l——c—l

chains of length i satisfying the condition of the lemma. Choose any of them and consider all its
possible extensions ...—y"*! — £+1. In doing so, the subspace y*t' must be orthogonal to z*, and
2+ to yitl. In all, there are Tp such extensions. It suffices to show that at least a polynomial
part of these extensions satisfies conditions (a) and (b).

By the assumption, K (z*|z) and K (y'|z) do not exceed D and the pair (z,y') is random. (For
i = 0, we assume that y? = y.) From the definition of D and the relation (13), we obtain

K(z|2') = K(a',2) — K(a") + O(log n)
= K(z'|2) + K(2) — K(z') + O(logn)
< D+ K(z) — K(z) + O(logn) = O(logn).

Consider the set L of all k-dimensional subspaces 7 orthogonal to z' and such that
K(glz) = D.

Note that if we know the word z', we can obtain z with a logarithmic complexity and then initiate
the process of enumerating the set L. But the subspace ' lies in L. Therefore, to find 3, it suffices
to have a program that enumerates L and to know the index of y* in this enumeration. Thus,

K(y'|z') < log|L| + O(logn).

By the induction assumption, the pair (zt,y') is random, and the complexity of y* conditioned on
z! is not less than log T, — C'logn. Consequently, |L| > Tn/poly(n)-

Now let us choose some constant ¢’ > C and discard those subspaces of L whose complexity
conditioned on 7 is less than Ty, — C'log n. More exactly, let L' C L consist of all subspaces J such
that

K(f|a') > Tn — C'logn.

If the constant C is large enough, then |L'| = T/ poly(n). We can take any subspace of L' as y**L.
Indeed, for any § € L' the pair (z*,7) is random, and K(7]2) < D.
In a similar way, we can prove that if y*** € L' is chosen, then there are not less than T}, /poly(n)

subspaces Z, each of which can be taken as zitl,

2
n

o
poly(n)
those satisfying conditions (a) and (b). (Note that the degree of the resulting polynomial poly(n)
depends on r.) A

Thus, among T2 extensions of the chosen chain of length i, there are not less than
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Let us define a sequence of numbers /; by the following recurrent relation:

lo =k, (15)
liy1 = max{l; + 2k — m;0}. (16)
Note that, starting from some number, all the numbers l; equal zero.
We call a chain of subspaces regular if for i = 1,2,...,7
dim(z® Nz°) = I;. (17)

Now let us show that a randomly chosen chain is regular with probability exponentially close to
unity. More exactly, we have the following lemma.

Lemma 6. Among all chains of subspaces of the form (14), the part of reqular ones is not less
than 1 — 27" for some ¢ > 0.

Proof. First of all, let us prove two simple combinatorial sublemmas.

Sublemma 1. Let us randomly (with respect to the uniform distribution) choose a system of q
equations in s variables over the field Fy. Then the rank of the given system will equal min{s; g}
with probability not less than 1 —2-°" (for some constant ¢ > 0).

Proof. Let ¢ < s. Let us show that all equations of the system are linearly independent with
probability exponentially close to unity. Indeed, if the equations are linearly dependent, then one
of them is a linear combination of the others. In all, there are | F |7 ! linear combinations of (g—1)
equations. A single equation can be chosen in |Fy|® ways. Thus, for each i, the probability that
the ith equation of the system is a linear combination of the others does not exceed [Fn1(q_”‘3. It
remains to sum up the given probabilities over all i from 1 to g. Since ¢ < s, the part of linearly
dependent systems does not exceed q|Fp|~t. But |Fy| = 29(n)  which proves the statement.

If ¢ > s, then the first s equations are linearly independent and the rank of the system equals s
with probability exponentially close to unity. A

Remark 4. Note an obvious consequence of the sublemma proved. Let us randomly choose a
system of g linear equations in s variables over a finite field F. Assume that we know that some
sets of equations from the system obtained are linearly independent. It is clear that under the given
condition, the probability of the event “the rank of the whole system chosen equals min{s;q}” is
all the more exponentially close to unity.

Sublemma 2. (1) Let W be a linear space over a finite field F' and let a be an s;-dimensional
subspace of W. Let us randomly (with respect to the uniform distribution) choose an sa-dimensional
subspace b in W. Then the probability of the event that dim(anb) = r depends solely on the values
of 7, s1, 82, dim(W), and |F| (but does not depend on the choice of the s-dimensional space a).

(2) Let W be a linear space over a finite field F, and let a and b be s-dimensional linear subspaces
of W. Let us randomly choose an s-dimensional subspace ay from the orthogonal complement of
a and an s-dimensional subspace by from the orthogonal complement of b. Then, for any l, the
probabilities of the events that dim(a; Nb) =1 and dim(a N b1) =1 are equal.

Proof. (1) Let a’ be an arbitrary linear subspace of W of dimension s;. Obviously, there exists
an automorphism ¢ of the space W such that pa = a'. Then for any linear subspace b of the space
W we have dim(a N b) = dim(a’ N ¢b). Consequently,

Proby [ dim(a N b) = 1] = Proby | dim(a’ N pb) = [] = Proby[dim(a’ Nb) =1].
(2) Note that dim(a’ Nb) = dim(a N b*). Indeed,
dim(W) — dim(a N b%) = dim ((a N ™)) = dim(a™ @ D)
= dim(a*) + dim(b) — dim(a* Nb) = dim(W) — dim(a™ Nb),
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where (a* © b) denotes the sum of the subspaces a' and b. It remains to apply statement (1) of
Sublemma 2 to the space at, which includes b ot and the randomly chosen a1, and to the space
bL, which includes a N bL and the randomly chosen b;. A

Let us prove the lemma by induction on the chain length. The induction base is obvious. To
perform the induction step, it suffices to show that if the chain

mﬂ_yl__xl_y‘Z_“._yz_mz

is regular, then all its extensions

Io_yl__ml_yZ__“_yi__xi_yé—i—l_xii—l’
except for an exponentially small part, are also regular. Consider the final fragment of the given
chain,

gL ot
To choose yit! and zit1, we have T;? different possibilities (in the notation of the proof of Propo-
sition 3). Let us calculate the probability that dim(z® N 2*t) = liy1.

Assume that y*+! is already chosen. Now we may consider only the pair of the subspaces x°
and y'T1: we need to know what is the probability of the event that a randomly chosen third
subspace (we call it z'*!) has an l;+1-dimensional intersection with 20 provided that y**! and
zit1 are orthogonal. By statement (2) of Sublemma 2, the latter problem is equivalent to another
one, namely: What is the probability that a randomly chosen subspace y? has an l;+1-dimensional
intersection with +! provided that 2° and y° are orthogonal?

Thus, in order to calculate the probability with which the equality dim(z° N 2't1) = l;41 holds,
we may solve another problem as follows. Let y° be a randomly chosen k-dimensional subspace of
V,, orthogonal to z°, and let yit1 be a randomly chosen k-dimensional subspace of V,, orthogonal
to z!. What is the probability that dim(y° NytY) = lLiya?

The subspaces 3° and yi*! can be defined by systems of m — k linear equations. Without
loss of generality, we may assume that the first k equations in the first system correspond to the
orthogonality of y? to the space 2%, and the first k equations in the second system correspond to
the orthogonality of y**! to the space 2. We may also assume that the first [; equations in both
systems are identical and correspond to the requirement of orthogonality of both subspaces y® and
1 to the subspace z° N .

Combining the systems of equations that define 2 and y**!, we obtain a system of 2(m—k)—1;
equations. By Sublemma 1, with probability exponentially close to unity, the given system has
rank min{m, 2(m — k) — [;} and, hence,

dim(y° N yt1) = max{0; 2k — (m — i)} = lia1-

Therefore, with the same probability we have dim(z° N 2*1) = lip1. Thus, with probability
exponentially close to unity, the chain satisfies the condition (17). A

Let A™ be the set of all k-dimensional subspaces of V,, whose intersection with z has dimension
I,. By Lemma 6, for most chains of the form (14), 2" belongs to A". Now let us prove the following
property of homogeneity: all subspaces from A" are right ends of the same number of regular chains
of length r (as before, we consider only chains whose left end coincides with x).

Lemma 7. If v,w € A", then the number of regular chains whose right end coincides with v
equals the number of reqular chains whose right end coincides with w.
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Proof. Let us prove this by induction on r. For each subspace 2" € A", we need to calculate

the number of chains

m?'—l _ y‘r _ xr,
where 27! € A", More exactly, it suffices to show that the number of such chains does not
depend on the choice of z" € A" and depends on the index r only. Let us fix the subspace z" € A
and choose a random y” orthogonal to it. Next, let us choose a random z" 1 orthogonal to y". We
want to know what is the probability of the event that z™~! € A" (i.e., dim(z® Na"™1) = l,1).

Let the subspace y" be already chosen. We need to determine the probability for a randomly
chosen subspace ™! to have an l,_j-dimensional intersection with z° provided that 2"~! and y"
are orthogonal. By statement (2) of Sublemma 2, the probability in question is equal to that of the
event that a randomly chosen subspace 3° has an l,_;-dimensional intersection with " provided
that y° and z° are orthogonal.

Thus, we may proceed to the solution of a new problem, namely, to find the probability that a
pair of randomly chosen k-dimensional subspaces y° and y", the first of which is orthogonal to a0
and the second is orthogonal to 2", have an [,_;-dimensional intersection.

The subspaces y® and y" are defined by systems of n — k linearly independent equations. We
assume that the first k equations in the first system correspond to the orthogonality of y° to the
space z°, and the first k equations in the second system correspond to the orthogonality of y" to
the space z". Moreover, we may assume that the first [, equations of both systems are identical
(and corresponding to the orthogonality of both subspaces 4%, y" to the subspace z Nz"). Let
us combine the two given systems of equations. The space of solutions of the new system (of
2(n — k) — I, equations) is the intersection of y° and y". We are interested in the probability that
its dimension equals l,_1. Obviously, this probability is determined by the values of n, k, and r,
but is independent of the choice of a specific z". We do not need to know the magnitude of the
given probability. It counts only that it is uniquely determined by the index r (for a given n). A

Now we complete the proof of Proposition 4. Consider the set X" of subspace chains (14)
with length r. According to Lemma 6, all such chains, except for an exponentially small pauti‘t),( ra|,re
poly(n)
of these chains have right ends simple conditioned on z (i.e., their complexity conditioned on z

X7
poly(n)
of complexity not greater than D conditioned on z. But because of the homogeneity (Lemma 7,
all subsll;:im::les from A" are right ends of the same number of regular chains. Consequently, not less
poly(n)

Let us choose the minimum 7 for which I, = 0. Then A" consists of all k-dimensional subspaces
having zero intersection with z. In this case, all k-dimensional subspaces of V,, except for an
exponentially small part, lie in A”. Indeed, a subspace x of V}, is determined by a system of (m — k)
linear equations. Let us randomly choose additional (m — k) linearly independent equations (which
define some k-dimensional subspace of ;). Let us combine the two given systems of equations.
The new system contains 2(m — k) equations. Since 2k < m, with probability exponentially close
to unity, the rank of this system equals m (Sublemma 1), and it has no nontrivial solutions. This
means that a randomly chosen subspace of V;, has a zero intersection with x with probability
exponentially close to unity.

Thus, A" contains all k-dimensional subspaces of V;, except for an exponentially small part. We
know that not less than a polynomial part of all subspaces from A" have complexity not greater
than D,, conditioned on z. Therefore, at least a polynomial part among all k-dimensional subspaces

regular, which means that their right ends lie in A”. Furthermore, by Lemma 5, at least

chains both are regular and have right ends

does not exceed D). Therefore, not less than

than

elements of the set A” have complexity not greater than D conditioned on z.
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of V,,, as well, have complexity not greater than D conditioned on z. Thus, if Qn is the number of
all k-dimensional subspaces of Vy, we have

9D > @n .
~ poly(n)

Let us recall that K (z) = log Qn + O(log n). Moreover, D = K(z|2) + O(logn) = K(z) - K(z)+
O(logn). Hence, '
K(z) — K(2) 2 K(z) — O(logn).
Thus, K(z) = O(logn). A
Remark 5. The construction considered may be generalized. Let ki, ko, m be positive integers

such that k; + k2 < m. Consider word sequences {zn} and {yn}, where Tn and 7, are random
orthogonal linear subspaces of F™, whose dimensions are equal to k and k2 respectively.

Then for some a, b, ¢ (which are determined by the parameters k1, ko, and m),
K (z,) = bn + O(log n), K (yn) = cn + O(log n), I(zn : yn) = an + O(log n).

The consideration analogous to the proof of Proposition 4 shows that the mutual information
between {z,} and {yn} cannot be materialized, i.e., for any sequence {2} simple conditioned on
{n} and {yn}, we have K (z,) = O(logn).

The author thanks N. K. Vereshchagin for the scientific supervision and help in the work on the
paper.
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