Московский физико-технический институт Факультет инноваций и высоких технологий Математическая логика и теория алгоритмов, весна 2013 Арифметическая иерархия и теорема о неполноте

Пусть \mathcal{C} является некоторым классом (множеством) множеств натуральных чисел. Множество A называется m-полным в классе \mathcal{C} , если $A \in \mathcal{C}$ и любое множество $B \in \mathcal{C}$ m-сводится к A. Аналогично, множество A называется полным по Тьюрингу в классе \mathcal{C} , если $A \in \mathcal{C}$ и любое множество $B \in \mathcal{C}$ сводится по Тьюрингу к A.

- **1.** Докажите, что декартово произведение двух множеств из класса Σ_n также принадлежит классу Σ_n .
- **2.** Докажите, что объединение и пересечение двух множеств из класса Π_n также принадлежат классу Π_n .
 - **3.** Докажите, что если $A, B \in \Sigma_n$, то множество $(A \setminus B)$ принадлежит $\Sigma_{n+1} \cap \Pi_{n+1}$.
- **4.** Докажите, что всякое m-полное в Σ_1 множество A бесконечно и имеет бесконечное дополнение.
- **5.** Докажите, что если множество A является полным по Тьюрингу в Σ_1 , то все множества из Π_1 также сводятся по Тьюрингу к A.
 - **6.** Приведите пример таких множеств A, B, что $A \leq_T B$, но $A \nleq_m B$.
- **7.** Докажите, что если множество A является m-полным п в Σ_1 , то не все множества из класса Π_1 m-сводятся к A.
- **8.** Докажите, что если множество A является m-полным п в Σ_2 , то его дополнение \bar{A} является m-полным в Π_2 .
- **9.** Обозначим T множество всех таких номеров программ для машины Поста, которые останавливаются на любом входе. Докажите, что данное множество T m-полно в классе Π_2 .
- 10. Обозначим F множество всех таких номеров программ для машины Поста, которые останавливаются на конечном числе входов. Докажите, что данное множество F m-полно в классе Σ_2 .
- **11.** Докажите, что для любого n>0 классы Σ_n и Π_n не свопадают. Указание: Воспользуйтесь теоремой об арфиметической иерархии, которая гласит, что $\Sigma_n \neq \Sigma_{n+1}$ для всех n.

Будем называть $meopue\ddot{u}$ в языке первого порядка L такое множество замкнутых формул T, которое замкунто относительно логического следования (если формула φ выводима в исчислении предикатов из T, то φ и сама принадлежит T).

Системой аксиом в языке первого порядка L мы будем называть разрешимое множество формул. Говорят, что формула φ языка L выводима из данной системы аксиом $\mathcal A$ (доказуема в данной системе аксиом), если φ выводится из $\mathcal A$ в исчислении предикатов.

Система аксиом называется *противоречивой*, если из неё можно вывести некоторую формулу φ и её отрицание $\neg \varphi$. В противном случае система аксиом называется *непротиворечивой*.

Системой аксиом \mathcal{A} в языке первого порядка L называется полной, если для любой замкнутой формулы φ языка L либо сама φ , либо её отрицание $\neg \varphi$ выводима из \mathcal{A} .

- 12. Докажите, что все общезначимые формулы выводятся из любой системы аксиом.
- **13.** Докажите, что из противоречивой системы аксиом можно вывести любую формулу языка.
- **14.** Рассмотрим некоторую интепретацию языка первого порядка L и множество T замкнутых формул языка, истинных в данной интепретации. Докажите, что T является теорией.
- **15.** Пусть некоторая система аксиом непротиворечива и полна. Докажите, что множество всех замкнутых формул, выводимых из данной системы аксиом, разрешимо.
- 16^* . Рассмотрим теорию (\mathbb{Q} , \leq) (теория линейного порядка на множестве рациональных чисел множество всех истинных формул данной интерпретации). Докажите, что данная теория имеет конечную аксиоматизацию: существует конечная система аксиом A, из которой выводятся все истинные замкнутые формулы данной теории и не выводится ни одной ложной формулы. Указание: В качестве системы аксиом нужно взять аксиомы плотного линейного порядка без максимального и минимального элемента. В доказательстве воспользуйтесь тем, что (1) любая непротиворечивая система аксиом имеет счетную модель, и (2) все счётные модели теории плотного линейного порядка без максимального и минимального элемента непротиворечивы.
- **17.** (а) Докажите, что арифметично множество таких пар (n, m), что m = n!. (б) Докажите, что арифметично множество таких пар (n, m), что m является n-ым по счёту простым числом.

На лекциях мы описали процедуру, которая позволяет для каждой машины Поста π построить в языке формальной арифметики такую формулу $\varphi_{\pi}(x)$ (с единственной свободной переменной x), что π останавливается на входе n, если и только если φ_{π} истинна при подстановке n вместо параметра x.

18. Рассмотрим отображение $F: \pi \mapsto \pi'$, которое каждой программе π сопоставляет следующую программу π' :

 ${\tt Ha}$ входе n

- 1. перечисляем все выводы в системе аксиом PA пока не найдём доказательство $\neg \varphi_\pi(\bar{n})$ для $\bar{n} = \underbrace{S(S(\ldots S(0)))}_n$
- 2. останавливаемся и выдаём значение 1

Теорема Клини о неподвижной точке гарантирует, что для данного отображения найдется программа π_0 , которая эквивалентна $F(\pi_0)$. Останавливается ли такая программа π_0 на входе 0? Можно ли вывести из аксиом Пеано утверждение $\varphi_{\pi_0}(0)$ или $\neg \varphi_{\pi_0}(0)$?

19. Докажите, что существует такая непротиворечивая система аксиом для языка формальной арифметики, из которой выводятся некоторые ложные (в стандартной модели) формулы.

- **20.** Докажите, что в языке формальной арифметики существует бесконечно много истинных (в стандартной интерпретации), но не выводимых из аксиом Пеано замкнутых формул.
- **21.** Докажите, что множество T всех истинных (в стандартной интерпретации) замкнутых формул формальной арифметики не является перечислимым.
- 22^* . Докажите, что множество T всех истинных (в стандартной интерпретации) замкнутых формул формальной арифметики не лежит в классе Σ_2 . Указание: Воспользуйтесь теоремой об арифметической иерархии.