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Abstract We consider combinatorial generalizations of Jung’s theorem on covering
a set by a ball. We prove the “fractional” and “colorful” versions of the theorem.
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1 Introduction

The famous theorem of Jung states that any set with diameter 1 in R
d can be covered

by the ball of radius Rd =
√

d
2(d+1)

(see [3]).

The proof of this theorem is based on Helly’s theorem:

Theorem 1 (Helly’s theorem) Let P be a family of convex compact sets in R
d such

that an intersection of any d + 1 of them is not empty. Then the intersection of all of
the sets from P is not empty.

Helly’s theorem has many generalizations. Katchalski and Liu in 1979 [8] proved
a “fractional” version of Helly’s theorem and Kalai in 1984 [7] gave the strongest
version of it. In 1979, Lovász suggested a “colorful” version of Helly’s theorem. In
this paper, we give analogous generalizations of Jung’s theorem.
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2 The Fractinal Version of Jung’s Theorem

Let us recall the fractional version of Helly’s theorem.

Theorem 2 (Katchalski and Liu [8]) For every d ≥ 1 and every α ∈ (0, 1] there
exists a β = β(d, α) > 0 with the following property. Let X1,X2, . . . ,Xn be convex
sets in R

d such that
⋂ Xi �= ∅ for at least αCd+1

n index sets I ⊆ [n] of size (d + 1).
Then there exists a point contained in at least βn sets among Xi .

The best possible value of β(d, α) is 1−(1−α)1/(d+1) [7] and, in particular, β → 1
as α → 1.

Using this we can prove the fractional version of Jung’s theorem.

Theorem 3 For every d ≥ 1 and every α ∈ (0, 1] there exists a β = β(d, α) > 0
with the following property. Let V be an n-point set in R

d such that for at least αC2
n of

pairs {x, y} (x, y ∈ V) the distance between x and y is less than 1. Then there exists
a ball of radius Rd , which covers βn points of V . Moreover, β → 1 as α → 1.

Proof Let us show that β > 0 exists.
We construct a graph G on points of V as vertices. Two vertices of G are connected

if and only if the distance between the points is not greater than 1.
Then the degree of some vertex v of G is not less than α(n − 1). The ball with

center at the point corresponding to v and radius 1 contains at least α(n − 1) + 1
points of V . Any ball of radius 1 can be covered by cd balls of radius Rd , where cd is
a constant depending only on the dimension d. Then one of these balls should cover
more than α(n−1)

cd
points of the set V . Therefore the statement of the theorem holds for

β = α/2cd , because

α

2cd
n <

α(n − 1)

cd
.

Note that this argument works for any radius R not necessarily equal to Rd .
Let us show that β → 1 as α → 1. Any pair of vertices belongs to Cd−1

n−2 subsets
of d + 1 vertices. Therefore, if there are at most (1 − α)C2

n empty edges in G, then
the number of incomplete subgraphs on d + 1 vertices is not greater than

(1 − α)C2
n Cd−1

n−2 = (1 − α)Cd+1
n C2

d+1.

We see that among the Cd+1
n subgraphs of d + 1 vertices at least α′Cd+1

n are full,
where α′ = 1 − (1 − α)C2

d+1.
Consider the family B of n balls of radius Rd with centers at the points of V .

If the distances between the centers of some set of balls is no greater than 1, then these
balls have nonempty intersection (because Jung’s theorem implies that these centers
can be covered by a ball of radius Rd ). Therefore, among Cd+1

n subsystems of d + 1
balls from B, at least α′Cd+1

n have nonempty intersection. From fractional Helly’s
theorem, it follows that there is a point which belongs to β(d, α′)n balls. The ball with
the center at this point and radius Rd covers βn points of V . To conclude the proof,
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we note that α′ tends to 1, as α → 1. The result of Kalai now implies that β(d, α′)
also tends to 1. 	


Note that using an approximation arguments it is possible to prove the same theorem
for a measure.

3 Close Sets

We will use the following definition.

Definition 1 We call two nonempty sets V1 and V2 close if for any points x ∈ V1 and
y ∈ V2, the distance between x and y is not greater than 1.

It is easy to see that if two close sets V1 and V2 are given, the diameter of each of
them is not greater than 2. Moreover, the following theorem holds.

Theorem 4 The union of several pairwise close sets in R
d can be covered by a ball

of radius 1.

Proof Denote by X one of the sets and by Y union of other sets. Without loss of
generality, we may assume that X and Y are convex closed sets, because the condition
of the theorem also holds for cl (convX ) and cl (convY). If X and Y have nonempty
intersection, then a unit ball with center at any point from the intersection covers
X and Y .

Suppose they do not intersect. Choose points x ∈ X and y ∈ Y so that the length of
[x, y] is minimal. Let m be the midpoint of the segment [x, y]. We will show that the
unit ball with center at m covers X and Y . It is known that the hyperplane perpendicular
to [x, y] and passing through m separates X and Y (see [6]). Take any point z from
X . Note that the angle zmy is obtuse (Fig. 1). Therefore the segment [m, z] is shorter
than [y, z], which is no longer than 1. The same argument works for any point z
from Y . 	


It is clear that the diameter of the covering ball in this theorem could not be
decreased. The following two questions arise naturally.

Suppose that a family of pairwise close sets V1, V2, …, Vn in R
d is given.

1. What is the minimal R so that at least one of the sets Vi can be covered by a
ball of radius R?

Fig. 1 Covering of two bodies
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2. What is the minimal D so that at least one of the sets Vi has diameter no greater
than D?

For n = 3 and d = 2, the author learned the answer to the first question from
Vladimir Dol’nikov. His arguments work well for all n > d. In Theorem 5, we find
the exact value of R for all pairs d and n in the first question. In Theorem 7, we show
that the second question is equivalent to the well-known problem about spherical
antipodal codes.

4 Colorful Jung’s Theorem

Theorem 5 Let V1, V2, …, Vn be pairwise close sets in R
d . Then one of the sets Vi

can be covered by a ball of radius R.

R = 1√
2

if n ≤ d;
R = Rd =

√
d

2(d+1)
if n > d.

Proof First, let us show that R from the statement of the Theorem is minimal. Suppose
n ≤ d. Consider a crosspolytope with 2n vertices and with edge length 1. Let the sets
Vi be the pairs of opposite vertices of the crosspolytope. Then the distance between
any two points from different sets is equal to 1, and distance between two points from
the same set is exactly

√
2. Therefore the radius of the minimal cover ball for each of

the sets equals 1√
2

.

For n > d, let the sets Vi coincide with regular simplices with edge length 1. In
this case, the sets Vi are close to each other and the radius of the minimal cover ball
for each set equals Rd .

Now let us show that one of the sets Vi can be covered by a ball of radius R. Without
loss of generality, we may assume that the sets Vi are all closed, since the condition
of the theorem holds for the closure of these sets.

Suppose n ≤ d. For any set Vi , consider the minimal ball B(oi , ri ) covering this
set. Let r1 be the minimal radius among ri . Note that there exists a point x of the set V2
which does not belong to the interior of the ball B(o1, r1). Indeed, if all the points of
the set V2 belong to the interior of the ball B(o1, r1), then V2 can be covered by a ball
of radius less than r1. This contradicts the assumption that r1 is minimal among ri .
Let s be a hyperplane passing through the point o1 and perpendicular to the segment
[o1, x] (Fig. 2). This hyperplane divides the sphere S(o1, r1) onto two hemispheres.

Fig. 2 The minimal covering ball and a point outside
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Denote by S′(o1, r1) the hemisphere, which lies in the halfspace generated by s not
containing x . We need the following lemma (see [3] statements 2.6 and 6.1 or [5]
Lemma 2).

Lemma 1 If a sphere S is the boundary of the minimal ball which covers a closed set
V , then the center of S belongs to conv(cl V ∩ S).

Therefore the hemisphere S′(o1, r1) contains at least one point y from the set V1.
Note that distance from any point of the hemisphere S′(o1, r1) to x is no less than√

2r1. Thus the distance between the points x and y is no less than
√

2r1. Since V1 and
V2 are close and the distance between x and y is no greater than 1, we have r1 ≤ 1√

2
.

Consider the second case: n ≥ d + 1. This argument is due to V. L. Dol’nikov.
We will use the following theorem of Lovász [1].

Theorem 6 (Colorful Helly’s theorem) Let F1,F2, . . . ,Fd+1 be d+1 finite families
of convex sets in R

d . If ∩d+1
i=1 Xi �= ∅ for all choices of X1 ∈ F1, X2 ∈ F2, …,

Xd+1 ∈ Fd+1, then for some i the tersection of all sets from Fi is not empty.

Let Bi be a family of balls of radius Rd with centers at the points of the set Vi .
Note that this set of families satisfies condition of colorful Helly’s theorem. Indeed,
if we choose one ball from each of the sets Bi ∈ Bi , then the distance between its
centers will not be greater than 1. From Jung’s theorem, it follows that they can be
covered by a ball B of radius Rd . This means that the center of B is contained in all
sets Bi , i = 1, 2, . . . , n. Thus they have nonempty intersection.

Applying colorful Helly’s theorem to the families Bi , we obtain that for some i ,
the balls of the family Bi have nonempty intersection. Therefore, all points of the set
Vi can be covered by a ball of radius Rd centered at any point of intersection of all
balls from the family Bi . 	

Remark 1 Note that, by the same arguments, it can be shown that for n ≤ d all sets
except one can be covered by a ball of radius 1/

√
2. For the proof, one considers the

minimal ball which covers all sets except one.
If n > d, then all but d sets can be covered by a ball of radius Rd . Here one should

use the modified version of colorful Helly’s theorem: Suppose a collection of families
{Fi } of convex sets is given and the intersection of any d+1 sets from different families
is not empty. Then there is a point which pierces all but d sets from the families {Fi }.

The proof is the same as the classical proof of colorful Helly’s theorem (see [9]):
consider d sets from different families whose intersection has the lowest higher point
among all intersections of d sets from different families. This point should be contained
in all but the chosen d sets of the families {Fi }.

5 The Bound on the Diameter of a Set

In this section, we study a bound on the diameter of Vi .

Definition 2 A spherical code is a finite set of points in S
d . A spherical code is called

antipodal if it is symmetric with respect to the center of the sphere.
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A spherical code W of n points is called optimal if it has a maximal minimal
diameter (min |x − y|, where x, y ∈ W and x �= y) among all spherical antipodal
codes of the cardinality n.

By Dd(n), we denote the minimal diameter of the optimal spherical antipodal code
of cardinality 2n on the unit sphere S

d−1.

Theorem 7 Let V1, V2, …, Vn be pairwise close sets in R
d . Then one of the sets Vi

has diameter no greater than

D = 2√
4 − Dd(n)2

.

Proof Suppose otherwise. Then the diameter of each Vi is no less than D′ > D.
Again, we may assume that all sets Vi are closed convex sets. Then in each set Vi , it is
possible to choose two points ai and bi with distance between them equal to D′. So,
we can assume that each set Vi is a two-point set: Vi = {ai , bi }.

Let us show, without loss of generality, we may assume that the midpoints of the
segments [ai , bi ] coincide.

Indeed, denote the origin by o.
Suppose

a′
i = o +

−−→
bi ai

2
, b′

i = o +
−−→
ai bi

2
.

Then

|a′
i − a′

j | = |−−→a′
i a

′
j |

= |−−→ai bi + −−→
b j a j |

2
= |−−→ai b j + −−→

a j bi |
2

≤ 1
2 (|ai − b j | + |a j − bi |) ≤ 1.

The same inequality holds for all other pairs of points (a′
i , b′

j ) and (b′
i , b′

j ).
We may assume that the points of the sets Vi lie on the sphere of radius D′/2 and

form the antipodal code. Since the distance between the points, say, ai and a j is not
greater than 1, the distance between ai and b j should be greater than

√
D′2 − 1.

Therefore,

2
√

D′2 − 1

D′ < Dd(n)

⇔ 4D′2 − 4 < Dd(n)2 D′2
⇔ 4D′2 − Dd(n)2 D′2 < 4

⇔ D′2 ≤ 4

4 − Dd(n)2

⇔ D′ ≤ 2√
4 − Dd(n)2

= D.

This contradicts the assumption D′ > D and concludes the proof. 	
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It is clear that the corresponding optimal antipodal code yields equality for D.
Unfortunately, the precise value of Dd(n) is known only for a few cases. In partic-

ular, the following numbers are known (see [2,4]):

D2(n) = 2 sin
π

2n
;

Dd(n) = √
2 for n ≤ d;

D3(6) = 2√
10 + 2

√
5
;

D4(12) = D8(120) = D24(98280) = 1.
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